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Abstract

In this paper we propose different classes of isotropic microstructured media
with tunable Poisson’s ratio. The elastic periodic systems are continuous
porous media and two- and three-dimensional lattices. The microstructural
parameters can be tuned in order to have an effective Poisson’s ratio equal
to zero. The connection between microstructural parameters and effective
properties is shown in detail both analytically and numerically.

Keywords: Null Poisson’s ratio, porous materials, lattice structures,
isotropic media, metamaterials

1. Introduction

The effective behavior of a material depends on the internal structure that
is possessed by the material at different scales (see, for example, Christensen
(1979) and Milton (2002)). The capability to design different microstructures
can lead to extreme constitutive properties, that cannot be achieved by nat-
urally occuring materials. In the last decades the design of new microstruc-
tured media has been accompanied by new technologies in the production of
artificial materials, such as 3D printing, 3D laser and multiphoton litogra-
phy, with possible advanced applications for ceramic materials, as shown by
Bauer et al. (2014) and Jang et al. (2013).

In the present paper we are interested in the design of new microstruc-
tures, that can guarantee a Poisson’s ratio equal to zero. The purpose of this
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choice is in the possibility of ‘decoupling’ the deformation mechanism in dif-
ferent directions, so that when a material is stressed in one direction it does
deform only in the direction of the load, but not in the orthogonal directions.
Another feature of interest is the design of isotropic materials, so that the
‘decoupling deformation’ mechanism does not depend on the direction of the
application of the load.

For isotropic materials constitutive stability limits the Poisson’s ratio ν
between −1 and 0.5. While negative values of Poisson’s ratio are theoretically
possible, most of the naturally occuring materials show positive ν. Love
(1944) mentioned materials with a negative Poisson ratio, which are named
auxetic after Evans (1991). Extended reviews of existing auxetic models
can be found in Greaves et al. (2011), Elipe et al. (2012), Mir et al. (2014),
Milton (2015). There are very few examples of materials with null Poisson’s
ratio. A naturally occurring material with a Poisson’s ratio close to zero is
cork (Jardin et al. (2015)), while a three-dimensional spongy graphene and
a nanoparticle multilayer have been proposed by Wu et al. (2015) and by
Nguyen et al. (2012), respectively, as artificial systems with ν = 0. Materials
with null Poisson’s ratio are very useful for sealing (Gibson and Ashby (1997))
and biomedical applications, such as scaffolds in tissue engineering (Soman
et al. (2012)).

Here, we present different classes of microstructured materials: a porous
continuum and different classes of lattices. The topology of the microstruc-
ture assures an isotropic behavior at least within the linear range of the
stress-strain response curve of the material. The effective behavior can be
tuned by modulating the microstructural parameters. The microstructure is
simple and can be easily produced with existing technologies.

The paper is organized as follows. In Section 2 we present the porous
medium and we give evidence of the effect of the size and of the relative
inclination of the pores on the effective properties. In Section 3 we propose
different lattice models, namely a two-dimensional lattice with a hexagonal
and a triangular microstructure and a three-dimensional body centered cubic
system. In the plane models effective properties are given analytically, while
for the three-dimensional lattice the problem is analyzed numerically. For
all the elastic systems analyzed we show the design of isotropic media with
Poisson’s ratio equal to zero. Final considerations conclude the paper.

2. A continuous porous model

We consider a perforated ceramic sheet, which can be designed such that
it exhibits a null Poisson’s ratio. The holes are disposed in a hexagonal
arrangement as sketched in Fig. 1a, where θ is the angle measured from the
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normal to the hexagon side and l is the hexagon side length. Each hole is
made of a rectangle of length a, ending with two semicircles of diameter b, as
shown in Fig. 1b. The structure is formed by repetitive cells, one of which
is drawn in Fig. 1c.

Figure 1: (a) Hexagonal pattern of the holes in the two-dimensional ceramic structure;
(b) illustration of a single hole; (c) representation of the elementary cell of the structure.

We assume that the matrix is made of magnesium oxide, which is used
in several engineering applications for its excellent performance at high tem-
peratures, resistance to corrosion and transparency to infrared light. The
matrix is characterised by a Young’s modulus Em = 300 GPa, a Poisson’s
ratio νm = 0.36 and a yield stress σy = 160 MPa. The elastic modulus and
Poisson’s ratio of the homogenised structure, consisting of both the matrix
and the holes, will be indicated as E and ν, respectively.

We note that the hexagonal disposition of the holes makes the medium
isotropic in the plane (see Carta et al. (2015)). As a consequence, the con-
stitutive properties of the perforated sheet can be evaluated by loading or
stretching the structure in only one direction.

2.1. Finite structure

We start by analysing a perforated sheet of finite dimensions. The struc-
ture has a square shape of side L = 200 mm on the plane x-y, as shown in
black color in Fig. 2a, with a thickness t = 5 mm in the z direction. The
dimensions of the microstructure are the following: l = 9.0 mm, b = 1.0 mm,
a = 0.765 l = 6.9 mm and θ = 75◦.

We determine the homogenised properties of the perforated sheet by em-
ploying a finite element model developed in Comsol Multiphysics R©. We use

3
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Figure 2: (a) Finite structure showing a null Poisson’s ratio (θ = 75◦, a/l = 0.765); com-
parison with structures having the same matrix properties but different holes, exhibiting
(b) a positive Poisson’s ratio (θ = 0◦, a/l = 0.765) and (c) a negative Poisson’s ratio
(θ = 75◦, a/l = 1.000). The undeformed configurations are shown in black, while the col-
ors in the deformed configurations represent the values of the von Mises stress, indicated
on the right of each figure.

a mesh of around 5×105 triangular elements, which is refined near the holes.

4
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We impose zero horizontal displacements at the left boundary and apply a
horizontal displacement of 0.01 mm on the right boundary.

The deformed configuration in shown in Fig. 2a (in the figure, the scale
factor for the displacement is equal to 2000). The colors indicate the values
of the von Mises stress, which are detailed on the right of the figure. We
point out that the maximum value of the von Mises stress, detected near
the holes, is well below the yield limit σy of the matrix. From Fig. 2a it is
apparent that the perforated sheet does not contract nor expand laterally as
it is stretched, hence it has a null value of the Poisson’s ratio.

In order to precisely compute the homogenised Poisson’s ratio and Young’s
modulus of the porous structure, we refer to a square area of side 100 mm
in the central part of the model. This area is far enough from the bound-
aries to neglect the boundary layer effects and it is large enough to contain
a sufficient number of elementary cells. In this area, we determine the av-
erage normal stresses σxx and σyy and the average axial strains εxx and εyy.
The homogenised Poisson’s ratio and elastic modulus are calculated from the
following expressions:

ν =
σyy εxx − σxx εyy
σxx εxx − σyy εyy

, (1)

E =
σ2
xx − σ2

yy

σxx εxx − σyy εyy
. (2)

We obtain ν = −0.00156 ≈ 0 and E = 81.3 GPa. The Young’s modulus
of the porous structure is obviously smaller than that of the matrix for the
presence of the holes.

If the orientation angle θ is modified while keeping the length of the holes
a fixed, the behavior of the perforated sheet can be affected significantly. For
instance, if θ = 0◦ the porous structure exhibits a positive Poisson’s ratio
(see Fig. 2b). On the other hand, if the value of θ is not changed whereas a is
increased, the Poisson’s ratio of the medium becomes negative (see Fig. 2c).
The deformations of the porous structure under stretching and compression
in the three different cases investigated in Fig. 2 are better illustrated in the
videos accompanying this paper (see Video1-Video3 in the Supplementary
Material).

2.2. Periodic structure

Now we assume that the perforated sheet is of infinite extent, so that we
can study a single elementary cell with periodic conditions at the boundaries.
We determine the homogenised properties of the cell by applying a macro-
scopic uniaxial strain εxx = 10−4, which is below the yield limit. Accordingly,

5
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the periodic conditions are given as follows (refer to Fig. 1c):

u|BC = u|AD+εxx
√

3 l, v|BC = v|AD , u|CD = u|AB , v|CD = v|AB . (3)

In the formulae above, u and v are the horizontal and vertical components of
the displacement field, respectively. In order to compute the average values of
the normal stresses σxx and σyy, we build a finite element model in Comsol
Multiphysics R©, which has a very fine mesh with around 25000 triangular
elements. Then, we calculate the homogenised Poisson’s ratio ν and Young’s
modulus E from Eqs. (1) and (2), respectively. We find ν = 0.00132 ≈ 0
and E = 83.1 GPa, which are very close to the values obtained for the finite
structure (the small discrepancies are due to the boundary layer effects). The
same results are derived by applying a macroscopic uniaxial strain εyy = 10−4

or a macroscopic shear strain εxy = 10−4, since the medium is isotropic in
the plane.

The periodic elementary cell is adopted to perform a parametric study
on the geometrical and constitutive properties of the structure. For instance,
it is interesting to investigate the effects of the orientation angle θ on the
behavior of the medium. To this aim, we fix the elastic constants of the
matrix (Em = 300 GPa, νm = 0.36) and we determine - for different values of
the orientation angle θ - the ratio a/l which yields a null Poisson’s ratio. The
outcomes are shown in Fig. 3a by the circles, while the squares represent
the limit values of the ratio a/l, above which the holes merge. In Fig. 3b
we report the corresponding values of the homogenised Young’s modulus.
As expected, the porous structure achieves the maximum rigidity when the
length of the holes has a minimum, found at θ = 52.5◦. This result is very
important for practical applications to optimise the mechanical behavior of
the structure.

Next, we fix the value of the inclination angle and of the Young’s modulus
of the matrix (θ = 52.5◦, Em = 300 GPa) and we consider different values
of the Poisson’s ratio of the matrix νm. For each value of νm, we compute
the ratio a/l that gives ν = 0. The results are plotted in Fig. 4a, while
Fig. 4b shows the relative values of the homogenised elastic modulus. The
ratio a/l increases with νm, with a trend that is almost linear; nonetheless,
the range of variation of a/l is narrow. Correspondingly, as a/l increases the
homogenised Young’s modulus E decreases.

Finally, we set θ = 52.5◦ and νm = 0.36, and we vary Em. For each value
of Em, we determine the ratio a/l which provides ν = 0, shown in Fig. 4c.
As expected, the change in the elastic modulus of the matrix does not affect
the ratio a/l for which ν = 0, which remains constant (a/l = 0.710). Fig.
4d shows the corresponding values of the homogenised elastic modulus E,
which increases linearly with Em.

6
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Figure 3: (a) Circles: values of a/l for which the perforated sheet has a null Poisson’s ratio,
for different values of the inclination angle θ; squares: maximum values of a/l, beyond
which the holes coalesce. (b) Corresponding values of the homogenised Young’s modulus
E. In these computations, we have taken Em = 300 GPa and νm = 0.36.

Figure 4: (a) Values of a/l for which ν = 0, determined for different values of the Poisson’s
ratio of the matrix νm; (b) corresponding values of the Young’s modulus E (θ = 52.5◦,
Em = 300 GPa). (c) Values of a/l for which ν = 0, derived for several values of the elastic
modulus of the matrix Em; (d) corresponding values of the homogenised Young’s modulus
E (θ = 52.5◦, νm = 0.36).

The macroscopic behavior and, in particular, the Poisson’s ratio is af-
fected slightly by a variation of the hole width b, assuming that the latter is
much smaller than the hole length, namely b/a� 1.

7
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3. Lattice models

We propose a class of isotropic lattices, which are designed to exhibit a
Poisson’s ratio equal to zero. This effect is achieved by the superposition of
clockwise and anti-clockwise internal rotations leading to a macroscopic non-
chiral effect. Two in-plane isotropic lattices and a three-dimensional isotropic
lattice are proposed, for which the macroscopic Poisson’s ratio is given as a
function of the constitutive behaviors of the single constituents and of the
micro-structure. For the two-dimensional lattices we determine analytically
the properties capable to guarantee a null Poisson’s ratio, whereas for the
three-dimensional lattice the results are obtained numerically implementing
a finite element model.

3.1. Two-dimensional lattices

The two-dimensional lattices are composed of cross-shaped elements with
arms of the same length p (see Fig. 5). The number of arms is 3 and 6 for the
hexagonal and the triangular geometries, respectively. The lattices are built
by assembling each couple of cross-shaped elements in two parallel planes;
indicated in blue and red in Fig. 5. Each couple is mutually constrained to
have the same displacement at the central point, where a hinge is introduced.
Different couples are then constrained at the external end of each arm by
truss elements acting as longitudinal springs. The springs, with longitudinal
stiffness kL, are depicted in green in Fig. 5. The three-fold and six-fold
symmetries of the microstructures assure an isotropic behavior if the blue
and red cross-shaped elements have the same material properties (see Cabras
and Brun (2014)). We restrict the attention to the linear elastic range.
The linearized behavior depends nonlinearly on the reference configuration
described by the angle γ between the arms and the springs (see Fig. 5).

The two geometries described in Fig. 5 correspond to the fundamental
centered rectangular (rhombic) and hexagonal Bravais lattices, respectively.
The periodic systems have a Bravais periodic lattice

R = n1t1 + n2t2 , (4)

where n1,2 are integers and t1,2 are the primitive vectors spanning the lattice.
For the hexagonal structure

t1 = p sin γ

(
0
6

)
, t2 = p sin γ

(
−
√

3
3

)
, (5)

while for the triangular one

t1 = p sin γ

(
0
1

)
, t2 = p sin γ

(
−
√

3/2
−1/2

)
. (6)

8
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(a) (b)

Figure 5: Lattice composed of cross-shaped elements, depicted in blue and red, and elastic
trusses, depicted in green. The longitudinal stiffness of the trusses is kL. (a) Hexagonal
lattice, (b) triangular lattice. The dashed area represents a typical unit cell of the periodic
elastic system.

In order to determine the effective properties of the lattices, we implement
classical structural theories considering each arm of a single cross-shaped ele-
ment as an Euler-Bernoulli beam undergoing flexural and longitudinal defor-
mations. The beams have Young’s modulus Eb, cross-sectional area Ab and
second moment of inertia Jb. The truss elements (depicted in green in Fig.
5) have longitudinal stiffness equal to kL. We introduce the non-dimensional
stiffness ratio parameters α1 = kLp/(EbAb) and α2 = kLp

3/(EbJb). Peri-
odic boundary conditions are considered; in particular, we apply antiperiodic
nodal forces indicated with FN , FT1 and FT2 in Fig. 6a and additional kine-
matic constraints to prevent rigid body motions. The macroscopic stresses
are computed averaging the resultant forces on the boundary of the unit cell.

The macroscopic effective properties are computed analytically by means
of the Principle of Virtual Work (PVW), that is applied in two steps. In
the first step we find the internal actions (bending moments M , shear forces
V , axial forces N and spring forces S) of the structure searching for the
kinematically admissible configuration in the set of statically admissible ones
(Flexibility Method, see Capurso (1971)). In the second step we compute
the macroscopic displacements. In the following, we describe in detail the
determination of the effective properties for the hexagonal microstructure.

We consider the elastic structure as in Fig. 6a, subjected to known nor-
mal and tangential external forces. Forces FN and FT = (FT1 + FT2)/2 are

9
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associated with macroscopic stresses

σ11 =

√
3FN + FT
3p sin γ

, σ22 =

√
3FN − 3FT
3p sin γ

. (7)

We introduce an equivalent statically determined (or isostatic) system as in

(a) (b)

(c) (d)

Figure 6: Simplified lattice structures used in the Principle of Virtual Work. (a) Simplified
structure, where the reaction forces FN , FT1

and FT2
, with FT = (FT1

+FT2
)/2 correspond

to macroscopic stress components σ11 and σ22 as in eq. (7). Grey numbers in part (a)
indicate the nodes. (b) Disconnected statically determined structure introduced for the
determination of the internal actions M , N and S. Structures adopted for the computation
of the horizontal displacement u1 (c) and the vertical displacement u2 (d) of the point B.

Fig. 6b, where the force in the springs X is the unknown to be determined.
The general field of tension Λ (Λ = M,V,N, S) in equilibrium with the
external loads is

Λ = Λ0 +XΛ1, (8)

where the field Λ0 is due to the external loads, while Λ1 is the autosolution of
the problem, computed with zero external loads and X = 1. The expressions
of the internal actions are reported in Table 1 for each beam. The unknown

10
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Beam Axial force N Bending moment M

23 N0 = (2 cos2 γ+1)FN−
√
3FT

sin γ M0 = 2FN cos γ x

N1 = −2 cos γ M1 = −2 sin γ x

34 N0 = FT cos γ + FN sin γ M0 = −FT sin γ x+ FN cos γ x

N1 = cos γ M1 = − sin γ x

37 N0 = −FT cos γ + FN sin γ M0 = −FT sin γ x− FN cos γ x

N1 = cos γ M1 = sin γ x

13 N0 = FN cos 2γ+2FN−FT

√
3

sin γ M0 = 2FN cos γ x

N1 = −2 cos γ M1 = −2 sin γ x

36 N0 = −FT cos γ + FN sin γ M0 = −FT sin γ x− FN cos γ x

N1 = cos γ M1 = sin γ x

35 N0 = FT cos γ + FN sin γ M0 = −FT sin γ x+ FN cos γ x

N1 = cos γ M1 = − sin γ x

Spring force S

S0 = −
√
3FT cos γ+3FN cos γ

sin γ S1 = −2

Table 1: Internal actions in the hexagonal lattice. Refer to Fig. 6a for the node numbers,
indicating the starting and ending point of each beam.

X is computed as

X = −
∑

beam

∫ p
0

(
M0

M1

EJ
+N0

N1

EA

)
ds+

∑
spring S0

S1

kL/2∑
beam

∫ p
0

(
M1

M1

EJ
+N1

N1

EA

)
ds+

∑
spring S1

S1

kL/2

=

=

(
FN −

√
3(1 + α1)

3 + 3α1 cos2 γ + α2 sin2 γ
FT

)
cotgγ. (9)

The external applied forces FN and FT = (FT1 + FT2)/2 are

FT =
3

2

kLp
√

3 sin γ(sin2 γα2 + 3 cos2 γα1 + 3)(ε11 − ε22)
sin4 γα2

2 + 9 cos4 γα2
1 + 3(2 sin2 γ cos2 γ + 1)α1α2 + 3α2 + 9α1

, (10)

FN =
1

2

kLp sin γ(c1α
2
1 + c2α2α1 + c3α1 + c4α

2
2 + c5α2 + 3c6)ε11

c11α3
1 + c10α1α2

2 + c12α2
1α2 + c13α2

2 + c14α2
1 + c15α1α2 + 3c6α1 + c6α2

+

+
kp sin γ(c7α

2
1 + c8α1α2 + c9α1 + c4α

2
2 + 3c10α2 − 3c6)ε22

c11α3
1 + c10α1α2

2 + c12α2
1α2 + c13α2

2 + c14α2
1 + c15α1α2 + 3c6α1 + c6α2

,

(11)

11
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respectively, where

c1 = 9(sin2 γ cos4 γ + cos2 γ), c2 = 6(1 + cos6 γ − 2 cos4 γ),

c3 = −9(sin2 γ cos2 γ − 2), c4 = sin6 γ,

c5 = −3(cos4 γ − 1), c6 = 3 cos2 γ,

c7 = 9(sin2 γ cos4 γ − cos2 γ), c8 = 6 sin4 γ cos2 γ,

c9 = −9(cos4 γ + cos2 γ), c10 = sin4 γ,

c11 = 9 cos4 γ, c12 = 3(2 sin2 γ cos2 γ + 1),

c13 = sin4 γ cos2 γ, c14 = 9(cos6 γ + 1),

c15 = 3(2 sin2 γ cos γ4 + cos γ2 + 1). (12)

Applying the superposition principle, as in eq. (8), the internal actions are
given as linear functions of external forces FN and FT .

A second application of the PVW is performed in order to obtain the
macroscopic displacement as linear combination of the external forces. The
macroscopic displacement coincides with the displacement of the point B
shown in Fig. 6c. To this purpose, we consider the real structure as kine-
matically admissible, and the isostatic structures, shown in Figs. 6c and 6d,
as statically admissible. As a consequence, the PVW equations have the
form

ui =
∑
beam

∫ p

0

(
M∗

i

M

EJ
+N∗i

N

EA

)
dξ +

∑
spring

SL∗i
S

kL/2
, (i = 1, 2), (13)

where (M∗
i , N

∗
i , S

L∗
i ) (i = 1, 2) are the internal actions of the statically ad-

missible structure. We note that the virtual external work, i.e. the left hand
side of eq. (13), coincides with the horizontal and vertical displacements of
the point B, given by u1 and u2, respectively. The latter are obtained as

u1 = A1 FN +B1 FT ,

u2 = A2 FN +B2 FT , (14)

where

A1 =

√
3(α1 + cos2 γ)

2 sin2 γ kL
,

B1 =
9 cos2 γ(cos2 γ sin2 γ−1)α2

1−9 cos2 γ(cos2 γ+1)α1

6 sin2 γ(3 + 3α1 cos2 γ + α2 sin2 γ)kL

+
6 cos2 γ sin4 γ α1α2 +sin6 γ α2

2+3 sin4 γ α2−9 cos4 γ

6 sin2 γ(3 + 3α1 cos2 γ + α2 sin2 γ)kL
,
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A2 = 3
3
√

3 cos2 γ α2
1 + sin2 γ α1α2 + 3(1 + cos4 γ)α1

2 sin2 γ(3 + 3α1 cos2 γ + α2 sin2 γ)kL

+ 3
cos2 γ sin2 γ α2 + 3 cos2 γ

2 sin2 γ(3 + 3α1 cos2 γ + α2 sin2 γ)kL
,

B2 = −
√

3
9 cos2 γ(cos2 γ sin2 γ+1)α2

1+6 sin2 γ(cos2 γ sin2 γ+1)α1α2

6 sin2 γ(3 + 3α1 cos2 γ + α2 sin2 γ)kL

− 9(2− cos2 γ sin2 γ)α1 + sin6 γ α2
2+3(1− cos4 γ)α2+9 cos2 γ

6 sin2 γ(3 + 3α1 cos2 γ + α2 sin2 γ)kL
. (15)

The displacement components of point B are associated with the macroscopic
strains

ε11 =
2u1√

3p sin γ
= 2

A1FN +B1FT√
3p sin γ

, ε22 =
2u2

3p sin γ
= 2

A2FN +B2FT
3p sin γ

.

(16)
Solving eqs. (16) in terms of FN and FT and substituting the results into

eq. (7) leads to the effective constitutive relation between the macroscopic
stress σ and macroscopic strain ε, that can be used to determine the effective
properties of the microstructured medium. The effective Poisson’s ratio of
the hexagonal lattice is found to be

νHL
=
σ22ε11 − σ11ε22
σ11ε11 − σ22ε22

=
c1α

2
1 + c2α

2
2 + c3α1α2 + c4α1 + c5α2 + c6

c7α2
1 + c2α2

2 + c8α1α2 + c9α1 + c10α2 − c6
, (17)

where

c1 = 9 cos2 γ(cos4 γ − cos2 γ + 2), c2 = − sin6 γ,

c3 = 3 sin2 γ(2 cos4 γ − 2 cos2 γ + 1), c4 = 9(2 cos4 γ + cos2 γ + 1)

c5 = −3(2 cos4 γ − 3 cos2 γ + 1), c6 = 18 cos2 γ,

c7 = 9 cos2 γ(cos4 γ − cos2 γ − 2), c8 = 3 sin2 γ(2 cos4 γ − 2 cos2 γ − 3),

c9 = −9(2 cos4 γ − cos2 γ + 3), c10 = −3 sin2 γ(2 cos2 γ + 1). (18)

We note that the effective Poisson’s ratio depends on the stiffness ratios α1,
α2 and on the geometric parameter γ.

In order to have a null Poisson’s ratio we set to zero the numerator of the
expression on the right hand side of eq. (17) and we solve it in terms of the
stiffness ratio α2. The condition of null Poisson’s ratio is as follows:

α2 = 2
1− 2 sin2 γ + α1(1− 2 sin2 γ + 2 sin4 γ) + (1 + α1)|1− 2 sin2 γ|

3 sin4 γ
.

(19)
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Figure 7: Non-dimensional bending stiffness ratio α2 as a function of the non-dimensional
axial stiffness ratio α1 and of the angle γ, in order to have zero effective Poisson’s ratio.
(a) Hexagonal lattice, eq. (19). (b) Triangular lattice, eq. (22).

In Fig. 7a we show the non-dimensional axial stiffness ratio α2 as a func-
tion of the non-dimensional bending stiffness ratio α1 and the angle γ that
guarantees an effective Poisson’s ratio ν=0, obtained from eq. (19).

For the triangular lattice the effective Poisson’s ratio is given by

νTL =
d1α

3
1 − 3α2

1α2 + d2α1α
2
2 + d3α

2
1 + d4α

2
2 + d5α1α2 + d6α1 + d7α2

−d1α3
1 + d8α2

1α2 + 3d2α1α2
2 + d9α2

1 + 3d4α2
2 + d10α1α2 − d6α1 − d7α2

,

(20)

where

d1 = −9 cos4 γ, d2 = sin4 γ,

d3 = 9(cos6 γ−4 cos4 γ + 2 cos2 γ−1), d4 = sin4 γ cos2 γ,

d5 = 3(6 cos4 γ−7 cos2 γ−2 cos6 γ + 1), d6 = −9 cos2 γ, (21)

d7 = −3 cos2 γ, d8 = 3(4 sin2γ cos2γ+ 1),

d9 = 9(3 cos6γ−4 cos4γ + 2 cos2γ + 1) d10 = 3(10 cos4γ−6 cos6γ−5 cos2γ + 3).

In this case the condition leading to zero effective Poisson’s ratio is

α2 = 3
cos2 γ + (1 + cos2 γ − 2 sin6 γ)α1 + α2

1 + (1 + α1)
√
D

2 sin4 γ(1 + α1 − sin2 γ)
, (22)

where

D = α2
1−2α1 cos2γ+(1+16α1+4α2

1) cos4γ+(20α1+8α2
1) cos6γ+(8α1+4α2

1) cos8γ.
(23)
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In Fig. 7b we show α2 versus the stiffness ratio α1 and the angle γ, calculated
from eq. (22), which assures an effective Poisson’s ratio equal to zero.

Figure 8: Triangular lattice subjected to an external uniaxial load along the direction x2.
The stress-free reference configuration is shown on the left, while the deformed configu-
ration is plotted on the right. The dashed area in the picture on the right indicates the
domain occupied by the undeformed configuration.

In Fig. 8 we show a the central part of a finite sample made up of 1005
triangular unit cells. The sample is subjected to an uniaxial external load
applied in the vertical direction x2. The Poisson’s ratio is zero, as shown by
the absence of horizontal deformations along the direction x1 in the deformed
configuration.

3.2. Three-dimensional lattice

We extend the study to a three-dimensional model that can lead to zero
effective Poisson’s ratio. We tessellate the space starting from the cubic cell
shown in Fig. 9 as in Cabras and Brun (2015). Square cross-shaped elements,
depicted in blue and black, are disposed on the faces of the cube and joined
by a hinge at their central points, as in the two-dimensional lattice structures.
Additional truss elements are introduced in order to give constitutive stability
to the lattice. There are two types of additional ligaments: the first ones are
trusses placed on the edges of the cube indicated in green in Fig. 9, the
second ones are diagonal elements indicated in violet. By modulating the
longitudinal stiffnesses of the two types of trusses it is possible to achieve
first isotropic behavior and second an effective Poisson’s ratio equal to zero.
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Figure 9: Three-dimensional cubic unit cell.

All the elements of the microstructure have Young’s modulus Em and
Poisson’s ratio νm. The arms of the cross-shaped elements have length p,
cross-sectional area Ac and second moment of inertia Jc. The ‘green’ trusses
have longitudinal stiffness equal to kL. Diagonal ‘violet’ elements are mutu-
ally constrained to have the same displacement at the central point, where a
hinge is introduced. The diagonal elements have cross-sectional area Ad and
second moment of inertia Jd. In order to characterize the microstructure,
we use the non-dimensional stiffness ratio parameter β = kLp/(EmAc) and
we introduce the sectional area ratio ω = Ad/Ac between the cross-sectional
area of the diagonal beams and the cross-sectional area of the arms of the
cross-shaped elements. We choose to tune such coefficients to obtain a null
Poisson’s ratio in a isotropic structure.

The structure has been studied numerically with the finite element code
Comsol Multiphysics R©, referring to an elementary cell subjected to appropri-
ate periodic boundary conditions. The calculations are performed consider-
ing a Young’s modulus Em = 200000 MPa, a length of the arms p = 10 mm
and a circular cross-section with radius r = 0.25 mm. The constitutive be-
havior of the lattice, generally cubic, is a function of the two non-dimensional
microstructural parameters β and ω, that can be tuned to give an isotropic
behavior and a Poisson’s ratio equal to zero.

To ensure isotropic behavior we start fixing the value of the non-dimensional
parameter β = 0.005, and we modify the ratio ω comparing the effective

16
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(a) (b)

Figure 10: (a) In gray color: effective shear modulus µ as a function of sectional area ratio
ω; in black color effective shear modulus µ∗ in case of isotropic behavior. The curves are
given for a stiffness ratio β = 0.005. The intersection point at ω = 1.13695 represents the
value of the shear modulus for which the lattice assumes isotropic behavior. (b) Sectional
area ratio ω as a function of stiffness ratio β that assures isotropic behavior.

Figure 11: Poisson’s ratio ν as a function of β, in case of isotropic behavior. For β = 0.063
the effective Poisson’s ratio ν = 0.

shear modulus µ with the shear modulus µ∗ = E/(2(1 + ν)) that the lattice
would have in case of isotropic behavior. This comparison is shown in Fig.
10a, where the intersection point identifies the value ω = 1.13695 for which
the lattice has the desired isotropic behavior. Repeating this analysis for
different stiffness ratios β it is possible to determine numerically the set of
microstructural parameters (β, ω) that gives an effective isotropic behavior.
Such a set is shown in Fig. 10b. The value of the Poisson’s ratio as a function
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of β for the isotropic structure is shown in Fig. 11. The Poisson’s ratio for
β = 0.063 is zero.

Figure 12: Deformation of the unit cell under an uniaxial load applied along the direction
x3. On the left the stress-free configuration, on the right the deformed unit cell.

In Fig. 12 we show the deformation of the isotropic lattice for the critical
value of stiffness ratio β = 0.063. The deformation of a single unit cell is
shown and it is given evidence that ε11 = ε22 = 0 when a stress component
σ33 is applied, corresponding to ν = 0.

4. Conclusion

This work describes the design of different microstructured media having
a null Poisson’s ratio. Both continuous and discrete structures have been
proposed and the interplay between the geometry of the microstructure and
the effective Poisson’s ratio has been detailed. Such microstructures are
sufficiently simple and they can be fabricated with existing technologies. We
believe that these types of materials can find advanced applications in many
fields, ranging from heat engines to actuators and energy transmission.
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