
February 27, 2007 
ES 242r 

Problem Set #2 
Due by submission to the TFs on March 15, 2007 

7.  Suggestions for fellow students and for teaching staff 

Adrain Podpirka, who is taking this course from Harvard, has posted some remarks about 
this class (http://imechanica.org/node/931).  Please write a comment in the comment 
section of his post, in the spirit of giving pointers to fellow students and feedback to 
teaching staff.  For example, you can talk about any one or a combination of the 
following topics 

• Do you have prior experience with courses taught using powerpoint slides?  Have 
you found a good way to use the slides? 

• Have you found any supplementary textbooks that complement the lectures and 
slides? 

• For students taking the course from University of Nebraska, how well have the 
lectures being working?  Anything that can be done to improve the lectures? 

• Any other topics that have come to your mind. 

 
8.  Depth of a surface crack due to residual tensile surface stress 
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The above approximations are given in Tada, et al. for the stress intensity factor of a 
surface crack of length a  in a semi-infinite body having a surface layer of thickness b  
which is uniformly stressed to σ .  Given the mode I toughness, I cK , create a nice 
dimensionless plot showing the depth a  to which the crack penetrates.  Hint:  Let one 
variable of your plot be /( )I cK bσ  and be sure to indicate the range of values of this 
parameter such that a plane strain crack can exist satisfying I cK K= . 



9.   A fatigue crack growth problem 
A steel has 100ICK MPa m=  and a threshold cyclic stress intensity factor 

10IthK MPa m∆ = .  It’s curve of /da dN  is shown below (for cycles with min 0K = ). 
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Consider the edge-cracked beam on overhead 5 of the first lecture which is of width b  
and is subject to a cyclic moment per unit thickness max minM M M∆ = −  where 0minM = .  
Suppose the beam has thickness 0.10b m=  and suppose it has an initial crack of length 

4
0 10a m−=   (these might be considered as inherent design flaws).  Assume small scale 

yielding. 
a) What is the cyclic moment/thickness, thM∆ , such that for  thM M∆ < ∆  there will 

be no crack growth? 
b) Estimate the number of cycles for the crack to reach length 310a m−=  for 

1.1 thM M∆ = ∆  and 1.5 thM M∆ = ∆ . 
c) Estimate the number of cycles for the crack to reach length / 2 0.05a b m= =  for 

1.1 thM M∆ = ∆  and 1.5 thM M∆ = ∆ . 
 

10.  Fully plastic crack growth 
Model the material in the deeply cracked compact tension specimen below as being 
elastic-perfectly plastic with a tensile yield stress Yσ . The limit yield moment/thickness 
in plane strain for an elastic-perfectly plastic deeply cracked section is 20.35L YM cσ= .  
Assume this moment governs the fully plastic yielding of the uncracked ligament of the 
compact tension specimen with M PL=  where P  is the load/thickness and 

( ) / 2L a b= + .  Neglect the contribution of elasticity (both in the arms and in the 
ligament) and determine J  (approximately) based on the deeply-cracked formula   
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= = ∆∫ ∫   (because M PL=  and / Lθ ≅ ∆ ) 



Assume the crack growth resistance is (neglecting initiation—see the data for A533B in 
the notes): 
 ( )1/ 2

0 0( ) / /RJ a J a∆ = ∆      where 2
0 ( / )J J m  and 0 ( )m  are constants. 

a) Obtain relationships for (∆ , a∆ ), ( P , a∆ ) and ( P , ∆ ) assuming an initial crack 
length 0a  where 0 0 0c b a a= − << .  
b) Plot the relationships for 050b = , 0 040a = . 
c) Assess whether the crack growth is stable or not for b). 
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11.  Reading on the analysis of large scale yielding 
 Read Section 12 of the nonlinear fracture notes (pgs. 55-62) with particular 
attention to pages 59-62 discussing fully plastic pure power-law solutions and their use in 
interpolating solutions from small scale yielding (LEFM) to large scale yielding.  The 
solution for a plane strain crack of length 2a  in an infinite pure power-law material is  
 ( ) 1

0 0 0( ) /
n

J a h nασ ε σ σ
+∞=  

where σ ∞  is the stress at infinity and ( )h n has been computed (He, M.Y., Hutchinson, 
J.W., “The Penny-Shaped Crack and the Plane Strain Crack in an Infinite Body of Power-
Law Material” Journal of Applied Mechanics 48 830-840, 1981).  Use this result to 
derive an interpolation formula for J  for the full range of σ ∞  ranging from small scale 
yielding to large scale yielding.   
 
12.  Residual stress in layered materials 
 A metal layer, of thickness tm , is sandwiched between two identical ceramic 
layers, each of thickness tc .  The bonding is made at a high temperature, TH , at which the 
structure is stress-free.  Upon cooling to a low temperature, TL , the metal is under tension, 
and the ceramic is under compression.  Because of the symmetry, the structure does not 
bend. The lateral size is large compared to the thickness, so you can neglect the 
complicated stress field near the edge of the layers, and focus on the stress states in the 



layers far away from the edges. The layers are well bonded, and each layer is under a 
biaxial stress state.  Show that the stresses in the two materials are 

  σc =
Ec

1−νc

αc −αm( )TH − TL( )
1+

2tcEc 1−νm( )
tmEm 1−νc( )

, σ m = −
2tcσc

tm

. 

Notes: 
(i) The stress jumps across the interface. 
(ii) When the metal is much thicker than the ceramics, namely, tm / tc»1, the stress 

in the metal vanishes, and the stress in the ceramic thin layers is 

σc =
Ec

1 −νc

αc −αm( )TH − TL( ) 

(iii) Diamond is hard and resists wear and corrosion, but it is expensive.  A recent 
technology is to coat metals such as steel with diamond thin films.  
Representative thickness of diamond coating is 1 µm.  Representative 
thickness of the metal substrate is 1 cm.  Diamond E = 1000GPa , ν = 0.2 , 
α = 1×10−6 K−1 .   Steel  α = 11×10−6 K−1 .  Deposition temperature and 
room temperature difference is ∆T = 700 K.  

 
13.  Tunneling crack 

S. Ho and Z. Suo, Tunneling cracks in constrained layers. J. Appl. Mech., 60, 890-
894 (1993).  (http://www.deas.harvard.edu/suo/papers/024.pdf)  

For this homework problem, you will look at a special case that can be worked 
out analytically.  A brittle layer, thickness h, is bonded between two thick substrates.  The 
three materials have similar elastic constants (Young’s modulus E and Poisson’s ratio ν).  
The layer is under residual tensile stress σ.  Cracks can tunnel in the layer.   
(a)  Use two methods to show that the steady state energy release rate at the tunnel front 
is 

  G =
π 1 −ν 2( )σ 2h

4E
. 

Hint.  The elasticity problem of a Griffith crack of size 2a has been solved analytically.  
The crack opening displacement of the Griffith crack is  

  δ x( )=
4σ 1− ν2( )

E
a2 − x2 . 

The energy release rate for plane strain crack is 

  ( )
E

aGps

221 σνπ −
= . 

(b)  The brittle layer has fracture energy Γ = 10J/m2 , Young’s modulus 100 GPa.  It is 1 
µm thick, and is under a tensile stress 500 MPa.  Will tunnel cracks form? 
(c)  Discuss Fig. 4 in the above paper.  Explain qualitatively the trend of the curves. 
 


