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The point group symmetry of materials is closely
related to their physical properties and quite im-
portant for material modelling. However, super-
lattice materials have more complex symmetry
conditions than crystals due to their multi-
level structural feature. Thus, a theoretical frame-
work is proposed to characterize and determine the
point group symmetry of non-magnetic superlattice
materials systematically. A variety of examples
are presented to show the symmetry features of
superlattice materials in different dimensions and
scales. In addition, the deformation-induced
symmetry-breaking phenomenon is also studied
for superlattice materials, which has potential
application in tuning physical properties by imposing
a strain field.

1. Introduction
Superlattice materials are lattice materials comprising
two or more structural levels, which exhibit distinct
features compared with single crystals. For example,
the unit cell of superlattice materials ranges from
nanometres to millimetres. In addition, the material
distribution in the unit cell of superlattice materials
could be designed in favour of the required performance.
Therefore, superlattice materials exhibit prominent
physical properties and multi-functional performance
that are usually unattainable in single crystals. The
applications of superlattice materials are quite broad:
they include, but are not limited to, cellular materials
[1–4], phononic/photonic crystals [5–10], materials
with controllable heat/electron conductivity [11–13],
periodic metamaterials [14–16], nanoparticle superlattice
materials [17,18] and two-phase periodic composites
[19,20]. Therefore, superlattice materials have drawn
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much attention by researchers from fabrication to application. Particularly, the design and
fabrication of superlattice materials have benefited from the modern fabrication techniques
developed in the past decades. For example, widely used techniques include the material removal
method (e.g. etching), additive manufacturing [1–3], physical or chemical deposition [13] and self-
assembly [17]. Up to now, superlattice materials of different material types have been fabricated
from one dimension to three dimensions and at all scales including the nano-, micro- and
macro-scale.

Similar to crystals, the long-range physical properties of superlattice materials must be
compatible with their point group symmetry according to Neumann’s law [21]. The relations
between point group symmetry and the physical properties of crystals have been studied
extensively and outlined in [21,22]. The physical properties (e.g. elastic, thermal, dielectric, optic)
are usually represented by different ranks of tensors, which are invariant or form-invariant
under symmetry transformations of the material point group. Therefore, the long-range physical
properties of superlattice materials could be determined qualitatively once their symmetry is
known. However, the point group symmetry of superlattice materials is more complex than that
of single crystals. Note that the unit cell of a superlattice material may have complex topology
and material heterogeneity that cannot be easily determined through visualization. Thus, there is
a strong demand for a theoretical framework to analyse and determine the point group symmetry
of superlattice materials systematically, which is one primary aim of this work.

Another interesting problem is the deformation-induced symmetry breaking [23–26], which
arises in superlattice materials (or single crystals as well) once a strain field is imposed.
This phenomenon is important in at least two applications. First, the symmetry breaking of
superlattice materials may lead to changes in their physical properties, which opens opportunities
to tune/control the physical performance and design of functional materials. For example,
deformation-induced acoustic, optical and thermal property changes in materials are reported
in the literature [24,27–29]. Second, the symmetry evolution is also important for the constitutive
modelling of superlattice materials because the symmetry property changes must be considered
when modelling the material property evolution during deformation [30,31]. Therefore, the
symmetry evolution of superlattice materials after deformation is discussed in this work with
an emphasis on the symmetry breaking at small strain cases.

The main goal of this work is to study the point group symmetry characteristics of superlattice
materials. To achieve this goal, a theoretical framework is proposed with describe and determine
the point group symmetry of superlattice materials with a wide range of examples outlined and
discussed. Thereafter, the symmetry breaking of deformed superlattice materials is introduced.
In addition, special remarks on the relation between symmetry and the physical properties
of superlattice materials are addressed at the end. Note that the analysis is for non-magnetic
superlattice materials.

2. Symmetry of superlattice materials
Two examples are illustrated in figure 1 to show the multi-level structural feature of superlattice
materials and the complexity of their symmetry. Different from single crystals, superlattice
materials have symmetry and translation order at multiple structural levels, and each level may
have different symmetry properties. For example, figure 1a shows a cubic lattice material at
level 1 (the coarsest scale) with its constituent material exhibiting a hexagonal lattice at level
2 (finer scale). By contrast, figure 1b illustrates a nanocrystal superlattice [32] with face-centred
cubic (FCC) structures at both level 1 and level 2, but with different lattice orientations. In
summary, the symmetry of superlattice materials has three unique properties compared with
that of single crystals. (i) The point group symmetry of a superlattice may not be the same at
different levels (e.g. figure 1a). (ii) The lattice orientations may be distinct across different levels,
even if they belong to the same point group (e.g. figure 1b). (iii) The material components of the
superlattice unit cell could have different materials, orientations and symmetries. It is thus clear
that the multi-level structural feature and complex unit cell topology lead to great difficulty in
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Figure 1. Two typical examples of superlattice materials and their multi-level structural features. (a) A cubic cellular material
composed of a material with a hexagonal lattice at level 2. All the ligaments have the same material type and orientation. (b)
Self-assembled nanocrystal superlatticewith FCC structures at both levels. However, the orientations of the lattices are different
at the two levels. (Images in (b) are reprinted with permission from [32]. 1996 American Chemical Society.) (Online version
in colour.)

determining the overall symmetry of superlattice materials by visualization alone. To address
this issue, a theoretical framework is established to characterize and determine the point group
symmetry of superlattice materials in a systematic manner. Without loss of generality, we focus
on superlattice materials with two structural levels since they are commonly seen. The proposed
theory could be easily applied to superlattice materials with three levels or more [33,34] using a
hierarchical approach.

The notations used in this work are introduced. We use R for the real number set, N for
the natural number set, R

d for the d-dimension Euclidean space (d = 2 or 3), lowercase Greek
letters for scalars (e.g. α, β), lowercase bold-face Latin letters for vectors (e.g. a, b), uppercase
bold-face Latin letters for tensors of rank 2 (e.g. A, B) and rank more than or equal to 3 (e.g.
A, B), and uppercase script letters for point groups (e.g. A,B). The inner products are defined
as Ab = Aijbjei and AB = AijBjkei ⊗ ek, where ei is the basis vector, ⊗ is the dyadic product
and Einstein’s summation rule applies. Some other tensor operations will be defined in the
text. In addition, the Hermann–Mauguin notation [35] is adopted to represent the material
point groups.

The point group of a two-level superlattice material is determined by examining its symmetry
at both level 1 and level 2. Thus, the symmetry of the topology, material type, material orientation
and local material point group should be evaluated when the reference configuration B ⊂ R

d

is mapped to the transformed configuration B′ ⊂ R
d (figure 2), where B and B′ are sets

containing all material points and the prime symbol indicates quantities or fields after a symmetry
transformation. Hence, a material point X ∈ B will be mapped to the point X′ ∈ B′ after the
transformation [36]. The symmetry of superlattice materials is more complicated than the classical
point group theory of single crystals, which only considers the symmetry of the atom location and
species in a unit cell. Therefore, we will divide the symmetries of superlattice materials into two
categories: topology symmetry and material symmetry.
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Figure 2. Schematic illustration of the reference configurationB and its transformed configurationB′ for a cubic superlattice
material. The material is rotated by 90◦ as an example of the symmetry transformation. The field quantities ϕ andM are
transformed toϕ′ andM′, respectively, under the symmetry transformationT orG. (Online version in colour.)

(a) Topology symmetry
This includes the symmetries of the geometry and material type, which are determined at level
1. Herein, the material type merely means the material name and phase (e.g. copper with FCC
lattice), regardless of the material orientation. The material type field is characterized by a scalar
function ϕ(X) : R

d �→ N since the material type of each material point could be labelled as a natural
number. Thereafter, the topology point group T = {T} of the superlattice material is defined as

T := {T ∈O(d) | ϕ(TX) = ϕ(X), ∀ X ∈ B}, (2.1)

where O(d) represents the orthogonal group in R
d. Equation (2.1) is derived from the fact that

ϕ′ ≡ ϕ(X′) = ϕ when the map X �→ X′ = TX does not change the material type field. Alternatively,
the topology symmetry of the superlattice material is preserved once the material type field ϕ(X)
is invariant under a symmetry transformation.

(b) Material symmetry
This includes the symmetry properties of the local material orientations and local point groups
at level 2 of a superlattice material. Generally, not all operations in the topology point group T
guarantee the material symmetry at level 2. Hence, by denoting the overall point group of the
superlattice material as G = {G}, it is obvious that G must be a subgroup of T , as

G ≤ T . (2.2)

A concept of the material point group field is introduced first, i.e. M(X), which is a function
mapping an arbitrary material point ∀ X ∈ B to its corresponding local material point group. Note
that M(X) could even have different orders for different material points. As shown in figure 2, the
material point group field M(X) should be form-invariant under symmetry transformations, as

M′ ≡M(X′) = GM(X)GT, ∀ X ∈ B, (2.3)

where the superscript ‘T’ indicates the transpose operation and GMGT := {GMGT|∀ M ∈M}.
Therefore, the point group G is defined based on equations (2.2) and (2.3), as

G := {G ∈ T |M(GX) = GM(X)GT, ∀ X ∈ B}. (2.4)

The point group of single crystals can be described solely by equation (2.1), the invariant of a
scalar field ϕ(X), whereas that of superlattice materials also requires the form-invariant of a tensor
group field M(X) shown in equation (2.4). Generally speaking, equations (2.1) and (2.4) provide
all information required to determine the point group of a superlattice material. However, it is
usually inefficient and impractical to exhaust the material type and point group invariant at each
material point. Therefore, a simpler method will be introduced in §3.
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Figure 3. Schematic illustration of the material symmetry transformation of a pair of material components in a superlattice
unit cell. (Online version in colour.)

3. Determination of the point group of superlattice materials

(a) Overview of the method
A practical method is proposed to determine the point group of the superlattice material. The
superlattice unit cell is divided into nM material components, each with the same material type
and orientation, and then their symmetry properties are compared. For example, the unit cell
in figure 2 has 12 material components (nM = 12), which are numbered in sequence. Denote the
symmetry orders of the point groups G and T as nG and nT, respectively, which satisfy nG ≤ nT
according to equation (2.2). Thus, under the lth topology symmetry transformation Tl ∈ T (l ≤ nT)
at level 1, a material component is transformed to the position of another one, forming a
pair of material components whose local material symmetries at level 2 should be examined.
Consequently, a total of nl = nM (or nl = nM/2 for some cases) pairs of material components will
be formed under the lth transformation Tl ∈ T . Finally, the superlattice point group G will be
determined after evaluating the material symmetries of all

∑nT
l=1 nl pairs of material components

for every topology symmetry transformation in T .

(b) Symmetry of a pair of material components
As illustrated in figure 3, the material symmetry of two material components Blk and B′

lk is
studied first; this is the kth pair (k ≤ nl) of material components related to the topology symmetry
transformation Tl ∈ T , i.e. the configuration transformation is X �→ X′ = TlX for ∀ X ∈ Blk. For the
sake of convenience, two local Cartesian coordinate systems xlk and x′

lk are established for the
material components Blk and B′

lk, respectively, according to the convention of crystallography for
lattice orientations. By this means, the material point groups of Blk and B′

lk have a unified form
as M̄lk = {M̄lk} in their own local coordinate systems, which brings about great simplification
for the analysis. A brief introduction to the default lattice orientation and material point groups is
attached in appendix A. Note that the material point groups of Blk and B′

lk can also be represented
in the global coordinate system X, which is correlated to the local coordinate systems by xlk = QlkX
and x′

lk = Q′
lkX, where Qlk and Q′

lk are orthogonal transformation matrices. Therefore, in the global
coordinate system, the material point groups Mlk and M′

lk of the two material components Blk
and B′

lk are expressed as

Mlk = QT
lkM̄lkQlk

and M′
lk = Q′T

lk M̄lkQ′
lk.

⎫⎬
⎭ (3.1)
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Further, it is obtained from equation (2.1) that the relation between Mlk and M′
lk is

M′
lk = Q′T

lk QlkMlkQT
lkQ′

lk. (3.2)

Equation (3.2) implies that Mlk and M′
lk are conjugate [37].

The material symmetry of Blk and B′
lk is examined under the corresponding topology

symmetry transformation Tl ∈ T . Based on equation (2.4), the material symmetry of Blk and B′
lk

requires that TlMlkTT
l =M′

lk. In addition, the point group M′
lk does not change under a symmetry

transformation of its own members, i.e. M′
lk = M′

lkM
′
lkM′T

lk . Finally, it is obtained that the material
symmetry condition of the two material components is

TlMlkTT
l =M′

lk

= M′
lkM

′
lkM′T

lk

= Q′T
lk QlkMlkMlkMT

lkQT
lkQ′

lk, for ∀ Mlk ∈Mlk, (3.3)

where the last equality is derived by using equation (3.2). Thus it is found from equation (3.3) that
the material symmetry of the kth pair of material components can only be conserved when

Tl ∈ Q′T
lk QlkMlk. (3.4)

Finally, the symmetry condition for the pair of material components is obtained by substituting
equation (3.1) into equation (3.4), as

Tl ∈ Q′T
lk M̄lkQlk. (3.5)

(c) Point group of superlattice materials
As mentioned in §3a, the overall point group G of a superlattice material can be obtained by
examining the material symmetry of all material component pairs for each Tl ∈ T . Therefore, as a
direct generalization to equation (3.5), Tl will satisfy the material symmetry of all its nl material
component pairs if and only if

Tl ∈
nl⋂

k=1

Q′T
lk M̄lkQlk. (3.6)

Furthermore, the overall point group G is determined by examining the condition in equation
(3.6) for ∀ Tl ∈ T , as

G :=
{

Tl

∣∣∣∣∣Tl ∈ T and Tl ∈
nl⋂

k=1

Q′T
lk M̄lkQlk

}
. (3.7)

Equation (3.7) expresses the general form of the overall point group G for a superlattice material,
which is straightforward to evaluate by computation. Some remarks are noted when applying
equation (3.7). First, it is suggested that one evaluates G in equation (3.7) by starting from the
symmetry transformation generators Tg ∈ T [35], which may greatly reduce the amount of work.
Moreover, in case that one symmetry transformation T is excluded from G, several similar ones
can also be excluded by comparing the subgroups [35] of T .

Even though the general form of G is shown in equation (3.7), it is worthwhile introducing
several special cases in particular, which are quite useful and applicable to most superlattice
materials found in the literature. There are at least four special cases as follows:

C1 G = T ∩ M̄. This is achieved when Qlk = Q′
lk = I and M̄lk = M̄, namely all material

components have the same orientations and material point groups. This case is quite
useful for many superlattice materials, e.g. the one in figure 1a.

C2 G = T ∩ QTM̄Q. This is a generalization to the case C1 when Qlk = Q′
lk = Q and M̄lk =M̄,

i.e. the local coordinate system is disoriented with the global one. A typical example is
the nanocrystal superlattice material in figure 1b.
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C3 G = T . Surprisingly, the overall symmetry of the superlattice can still be identical to its
topology symmetry, which is achieved when Tl ∈ Q′T

lk M̄lkQlk for all pairs of material
components. This also provides a chance that a material with low-order symmetry can
be carefully arranged to design a superlattice material with high-order overall symmetry.
In addition, G = T is always valid if the constituent material is isotropic.

C4 G = {I}. This is a case with the least order symmetry. Note that this happens frequently
for superlattice materials since the topology symmetry and material symmetry cannot
always be guaranteed simultaneously.

4. Superlattice materials in different dimensions
Superlattice materials have been synthesized or fabricated from one dimension to three
dimensions. A variety of representative examples are introduced in this section to show the
symmetry features of superlattice materials in different dimensions. In addition, the symmetry
of particles will also be studied as an additional application of the theory.

(a) Three-dimensional superlattice materials
Typical three-dimensional superlattice materials include the cellular materials, nanocrystal
superlattices and periodic two-phase composites, among others. Generally speaking, the point
groups of these three-dimensional superlattice materials are within the 32 crystal point groups
and seven continuous groups whose symmetry transformations are briefly introduced in
appendix A. Some examples are shown to further introduce the symmetry of three-dimensional
superlattice materials.

The cubic cellular structure in figure 1a is studied first. It is obvious that the topology point
group T in level 1 is m3̄m with an order of 48. By contrast, the material point group M̄ in level
2 is 6/mmm with an order of 24. In addition, the local and global coordinate systems coincide
with each other, namely Qlk = Q′

lk = I. Therefore, this is exactly the special case C1, and the point
group of this superlattice material is G = T ∩ M̄. After comparing the transformations in these
two groups, it is found that G is the point group mmm with an order of 8. Thus, the overall
symmetry of this cubic cellular material is in the orthorhombic class, quite different from the
topology symmetry and material symmetry.

The nanocrystal superlattice in figure 1b shows different features compared with the cubic
cellular structure in figure 1a. In this case, both the topology symmetry and material symmetry
belong to the m3̄m group since they are both FCC structures. Hence, the overall point group G
would also be m3̄m if the lattice orientations in the two levels coincide with each other. However,
this is not the case in figure 1b. According to Wang [18], the orientation correlation between the
superlattice (level 1) and nanocrystal lattice (level 2) is [110] ‖ [110]s and [001] ‖ [11̄0]s (implying
[11̄0] ‖ [001̄]s), where the subscript ‘s’ indicates the Miller index of the nanocrystal. Therefore, it
is derived that Qlk = Q′

lk = Q with

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

1√
2

1
2

1
2

−1√
2

−1√
2

1√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.1)

This nanocrystal superlattice is a typical example of the special case C2, whose overall point
group is determined by G = T ∩ QTM̄Q. It is finally found that G belongs to the orthorhombic
point group mmm with the three reflection planes as (110), (11̄0) and (001) of the superlattice (see
appendix B for details). Note that the obtained point group G is a conjugate group of the mmm
group listed in the table of point group transformations [38,39].
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Figure 4. Point group symmetry of a cubic cellular material with transversely isotropic materials. (a) The privileged axis of the
material is along the [001] direction of the superlattice. The overall point group is 4̄/mmm. (b) The privileged axis of thematerial
is along the [111] direction of the superlattice. The overall point group is 3̄m. (Online version in colour.)

So far, the two examples discussed above are for the crystal point groups. Actually, the
proposed theoretical framework can also be applied to the continuous point groups (see
appendix A). Consider the cubic lattice structure shown in figure 2 with a topology point group
T of m3̄m. Assume that the constituent material is transversely isotropic (e.g. M̄ is ∞/mm) with
the privileged axis along the [001] direction of the superlattice, as shown in figure 4a. In this
case, the overall point group G is found to be 4̄/mmm of the tetragonal class. However, note
that the overall symmetry is affected by the orientation of the privileged axis of the constituent
material. For instance, if the privileged axis is rotated to the [111] direction (figure 4b), the
overall symmetry G of the cellular structure will be 3̄m of the trigonal class with the threefold
axis along the [111] direction, which is totally different from the one in figure 4a. This analysis
has particular application to three-dimensionsal printed superlattice materials [1,2] since the
constituent material often shows transversely isotropic behaviour with the privileged axis along
the print orientation. Therefore, the three-dimensional printing direction will definitely affect the
overall symmetry behaviour and also the physical/mechanical properties [22] consequently.

(b) Two-dimensional superlattice materials
The two-dimensional superlattice materials have a two-dimensional lattice structure at the
superlattice level (level 1); these two-dimensional superlattice materials include two-dimensional
cellular materials, two-dimensional phononic/photonic crystals, graphene nanomesh [12], etc.
Similar to the three-dimensional material point groups, there are a total of 10 crystal point groups
and two continuous point groups in two dimensions. Note that all of the transverse isotropy
groups degenerate to the isotropic case in two dimensions. Although the symmetry analysis to
two-dimensional superlattice materials is similar to the three-dimensional cases in §4a, there are
still some unique features. Two examples are studied to show the symmetry characteristics of the
two-dimensional superlattice materials.

Strictly speaking, a two-dimensional superlattice material requires both the superlattice
(level 1) and material lattice (level 2) to be in two dimensions. However, there are very few
two-dimensional materials in the world. One exception is graphene, which belongs to the two-
dimensional point group 6mm. A representative two-dimensional superlattice material is the
graphene nanomesh [12] shown in figure 5a, which is fabricated by perforating holes in a
hexagonal pattern to tune its electronic property. The overall point group G is also 6mm. Of course,
the overall point group could be adjusted by changing the superlattice pattern. For example, a
graphene nanomesh with holes distributed in a square pattern [40] has an overall point group G
of 2mm.

Since two-dimensional materials are very rare, most two-dimensional superlattice materials
are actually composed of three-dimensional materials, like the Si-based phononic crystal in
figure 5b. Even though the superlattice is in two dimensions, it is better to study the three-
dimensional point group of this kind of material; otherwise, the out-of-plane symmetry property
will be missed. In order to use the proposed theory, the two-dimensional topology point group
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(b)(a)

Figure 5. (a) A graphene nanomesh with holes perforated in a hexagonal pattern. (b) A Si-based phononic crystal with a
two-dimensional superlattice structure. (Online version in colour.)

Si Ge Si Ge ...(b)(a) (c)

[110]

[110]
[001]

e3
e2

e1

[1
–
1
–
1
–
]

[1
–
1
–
1
–
]

[112
–
][112

–
]

[11
–
1
–
]

2
1 [111

–
]T

[111
–
]T

[11
–
1
–
]

100 nm

Si
Ge

Figure 6. (a) Si/Ge superlattice nanowire. (Image reprinted with permission from [41]. 2012 American Chemical Society.)
(b) One-dimensional Si/Ge superlattice material. (c) GaAs twinning superlattice. A superlattice unit cell can be divided into two
components indicated by dash lines. A global coordinate system is established with e1, e2 and e3 as the axes. (Image reprinted
with permission from [43]. 2013 American Chemical Society.) (Online version in colour.)

of the superlattice is augmented to three dimensions by assuming the superlattice unit cell has
an infinitesimal out-of-plane lattice parameter. Therefore, the superlattice unit cell in figure 5b
is indeed a tetragonal type instead of a two-dimensional square one. Correspondingly, the Si-
based phononic crystal has a topology symmetry T of 4/mmm in three dimensions rather than
4 mm in two dimensions. The overall symmetry G also depends on the material point group M̄ of
the Si, which has an FCC diamond structure with a point group of m3̄m. If we consider that the
two levels of lattices have the same orientation, the overall symmetry G of the Si-based phononic
crystal would be 4/mmm, a subgroup of m3̄m.

(c) One-dimensional superlattice materials
One-dimensional superlattice materials are usually easier to synthesize/fabricate than the two-
or three-dimensional ones. They have been proved to be quite useful and effective for designing
phononic/photonic crystals, heat-conducting materials and thermoelectric materials [13,41,42].
Three representative examples are introduced to show their symmetry characteristics.

A Si/Ge superlattice nanowire [41] is shown in figure 6a. It is known that both Si and Ge have
the diamond cubic crystal lattice, which belongs to the m3̄m point group. In addition, the axial
direction of the nanowire is along [001] of the crystal lattice and the lateral facets are the planes
{110}, as illustrated in figure 6a. In this case, the topology point group T of the superlattice is
actually the tetragonal group 4/mmm, which keeps the material type field invariant. Therefore,
the overall point group G = T ∩ M̄ is 4/mmm since this is the special case C1. It should be noted
that the topology point group may change if the nanowire is not in such a regular shape.

Figure 6b shows another one-dimensional Si/Ge superlattice material [42], which spans the
two directions perpendicular to the one-dimensional superlattice axis. For this class of one-
dimensional superlattice material, the topology point group T is actually the continuous group
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(a) (b)

Figure 7. Schematic illustration of Au nanoparticles. The Au crystal has an FCC structure. (a) A truncated octahedron
nanoparticle of single crystal. (b) Fivefold decahedral twinned nanoparticle. (Images are generated by VMD [45].) (Online
version in colour.)

∞/mm, because there is no topology boundary in the two in-plane directions. The remaining
analysis would be similar to the example in figure 6a and the overall point group is 4/mmm.

The proposed theory can also be applied to analyse the symmetry of twinning superlattices
[43,44], e.g. the one shown in figure 6c. It is well known that the twin boundary is a reflection
plane. However, the overall point group is not easy to determine. The current theory provides a
feasible way to determine the overall point group of a twinned superlattice systematically and
completely. For example, the GaAs twinning superlattice [43] in figure 6c has an overall point
group G of 6̄2m, which is the same as its topology point group T (appendix C). However, the
GaAs material only has a point group of 4̄3m. This indicates that a twinning boundary could
create some symmetries that are significantly different from the original single crystal material.
Actually, this is an example of the special case C3 mentioned in §3c, in that the overall symmetry
could be identical to the topology symmetry by arranging the material components carefully.

(d) Particles
Rigorously, particles cannot be considered to be superlattice materials, but they are actually the
basic building blocks of many superlattice materials from one dimension to three dimensions.
Figure 7 shows two kinds of nanoparticles: a single crystal nanoparticle and a twinned
nanoparticle. The symmetry analysis for the single crystal nanoparticle is easy. For example,
the truncated Au nanoparticle in figure 7a has an m3̄m point group for M̄, T and G. Actually,
this is why truncated particles (with typical facets) are used to show these crystal structures
for demonstration purposes since the topology symmetry directly reflects its material symmetry.
Another class of nanoparticles are polycrystalline [46], e.g. single-twinned, multi-twinned, etc.
For example, the superlattice unit cell of the GaAs twinned superlattice in figure 6b is a single-
twinned nanoparticle. On the other hand, a multi-twinned Au nanoparticle is shown in figure 7b,
which has fivefold rotation symmetry [47]. In this case, the nanoparticle can be divided into
five components, each with the material symmetry of m3̄m (with slight stretching due to the
mismatch) but different crystal orientation. The symmetry analysis follows a procedure similar
to that in appendix C. The results show that both the topology point group and the global point
group are 5̄m, a non-crystalline point group [35]. This is actually the special case C3 as well, in that
the symmetry of a superlattice material could be designed to be the same as that of its topology. It
should be emphasized that the overall point group of particles could be non-crystalline since the
translation order in the superlattice level does not exist anymore.

5. Symmetry of the structural tensor field
Other than the point group theory, the material symmetry of superlattice materials can also be
characterized by using the structural tensor [30], which has a simpler form and clearer physical
meaning. It is known that each point group can be characterized by a single structural tensor.



11

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150125

...................................................

Thus, the structural tensors of the pair of material components in figure 3 are studied first.
Let us designate P̄lk as the structural tensor of the material component Blk and B′

lk in their
local coordinate systems. Generally, P̄lk is an nth order tensor (n ≥ 1) and exhibits the following
property: 〈

M̄lk
〉
P̄lk = P̄lk, ∀ M̄lk ∈ M̄lk, (5.1)

where the sign 〈�〉 is the form-invariant operator of tensors defined as 〈A〉B= AilAjm · · · AknBlm···nei ⊗
ej ⊗ · · · ⊗ ek in the general case [30].

In the global coordinate system, the structural tensors of the two material components are
derived as

Plk =
〈
QT

lk

〉
P̄lk

and P′
lk =

〈
Q′T

lk

〉
P̄lk.

⎫⎪⎬
⎪⎭ (5.2)

Obviously, it is obtained from the first equation in equation (5.2) that

P̄lk = 〈Qlk〉Plk. (5.3)

In addition, based on equations (5.1) and (5.3), the structural tensor P′
lk in equation (5.2) can be

reformulated as

P′
lk =

〈
Q′T

lk

〉
P̄lk =

〈
Q′T

lk

〉 〈
M̄lk

〉
P̄lk =

〈
Q′T

lk M̄lk

〉
P̄lk

=
〈
Q′T

lk M̄lk

〉 〈
Qlk

〉
Plk

=
〈
Q′T

lk M̄lkQlk

〉
Plk, ∀ M̄lk ∈ M̄lk. (5.4)

Given that the material symmetry is conserved under a topology symmetry transformation Tl ∈
T , it is readily obtained from equations (5.4) and (3.5) that

P′
lk = 〈Tl〉 Plk. (5.5)

Therefore, equation (5.5) indicates that the material symmetry of two material components
requires that their structural tensors are form-invariant under Tl.

Consequently, it is concluded that the overall point group G contains all such topology
symmetry transformation Tl ∈ T which conserves the form-invariant of structural tensors for all
pairs of material components it transforms. Hence, equivalent to equation (3.7), the point group
of superlattice materials can also be determined by

G := {Tl ∈ T |P′
lk = 〈Tl〉Plk for ∀ l ≤ nT, ∀ k ≤ nl}. (5.6)

This structural tensor-based definition in equation (5.6) has a simpler form and clearer physical
meaning than the point group definition in equation (3.7). Even so, equation (3.7) is still much
easier to use since the manipulation of structural tensors is quite awkward.

Actually, similar to equation (2.4), another general definition of the point group G is that

G := {G ∈ T |P(GX) = 〈G〉P(X) for ∀ X ∈ B}, (5.7)

where P(X) is the structural tensor field of the superlattice material. Equation (5.7) is more
generalized than equation (5.6) since it adopts a continuum field description. In addition, equation
(5.7) also indicates that the material symmetry of superlattice materials is characterized by the
symmetry of a tensor field, which is an essential difference from single crystals.
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6. Symmetry of deformed superlattice materials

(a) Discussion on symmetry evolution after deformation
So far, the point group symmetry theory proposed above is only for the undeformed configuration
of superlattice materials. It is already known that the symmetry of superlattice materials might
change once they deform [23–25]. However, the symmetry evolution is usually unpredictable in
most cases. There are at least two reasons for this difficulty.

First, the lattice type is usually hard to predict after deformation. For example, a uniaxial
tensile deformation will change a cubic lattice into a tetragonal lattice with symmetry breaking.
In this case, the point group of the deformed lattice is still tractable since it is only a subgroup of
the point group of the undeformed lattice. However, the symmetry evolution during the reverse
deformation process, i.e. from the tetragonal lattice to the cubic lattice, is intractable since the
symmetry lifting occurs. In even worse cases, the point group symmetry could be totally different
after deformation once the phase transition occurs. Therefore, the point group after deformation
[48] is quite difficult to determine completely unless it is a subgroup of the point group of the
undeformed lattice [49,50]. Fortunately, only symmetry breaking may occur in small deformation
cases [50,51], which will be discussed in detail later on.

Second, the material symmetry field of superlattice materials at level 2 is usually unpredictable
after deformation. The local material symmetry depends on the local deformation field, which is
often intractable for the reason explained above. In addition, the local material symmetry field
should also satisfy the overall symmetry throughout the superlattice unit cell.

Therefore, it is hard to establish a unified theory to predict the symmetry evolution of a
superlattice material after deformation. We will address two basic problems in §6b and §6c,
respectively, as follows. (i) In which case is the topology symmetry transformation preserved
even after deformation? (ii) How does the material symmetry change in small deformation cases?

(b) Deformation that preserves topology symmetry
Without loss of generality, we consider the superlattice material shown in figure 8, whose
topology symmetry after deformation is studied. Given that an affine lattice deformation [51],
represented by a constant deformation gradient tensor FL, is applied to the lattice points in the
superlattice level, the superlattice unit cell will deform from an initial configuration B = {X}
to a deformed configuration B̃ = {χ(X)} [36], as shown in figure 8. The tilde symbol indicates
quantities after deformation. In this case, the deformation gradient F(X) can be decomposed into
an affine lattice deformation FL and a periodic non-affine deformation field Fp(X), as [36]

F(X) ≡ ∂χ

∂X
= FLFp(X) = RLULFp(X), (6.1)

where RL and UL are the lattice rotation and lattice stretch tensors, respectively [36]. Due to the
fact that F(XL) = FL for all lattice points, the periodic deformation gradient Fp satisfies

Fp(XL) ≡ I, for ∀ XL ∈ B, (6.2)

where XL represents the lattice points at the superlattice level.
The symmetry property is studied for the deformed superlattice unit cell. Again, the

topology point group T = {T} is transformed to its conjugacy T̃ = {T̃} = RLT RT
L in the deformed

configuration due to the uniform lattice rotation RL. Hence under the symmetry transformations
T and T̃, the reference configuration and deformed configuration are transformed through {X} =
B �→ B′ = {X′} and {χ} = B̃ �→ B̃′ = {χ ′}, respectively. Then it can be deduced that

X′ = TX

and χ ′(X) = T̃χ (X) = RLTRT
Lχ(X).

⎫⎬
⎭ (6.3)
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F = FLFp
X

c

~(b)(a)

Figure 8. Schematic illustration for the initial and deformed cellular structures under an affine lattice deformation in the
superlattice level. (a) Reference configuration of a rectangular cellular structure. (b) Deformed configuration of the cellular
structure. The initial and deformed unit cells are indicated by dashed contour lines. (Online version in colour.)

If the topology symmetry transformation T̃ is still preserved in the deformed configuration
B̃ = {χ(X)}, the symmetry condition is

χ ′(X) = χ(X′), ∀ X ∈ B. (6.4)

After substituting equation (6.3) into equation (6.4), it is seen that the deformed configuration
should satisfy

RLTRT
Lχ(X) = χ(TX), ∀ X ∈ B. (6.5)

Further, taking a first-order derivative to X in equation (6.5) and using equation (6.1) gives rise to

RT
LF(TX) = TRT

LF(X)TT, ∀ X ∈ B. (6.6)

Equation (6.6) is the fundamental equation to examine whether the deformation gradient F(X)
preserves the topology symmetry of the superlattice material or not.

The symmetry condition of the deformation gradient F(X) is equivalent to two separate
conditions by using the decomposition in equation (6.1). After substituting equation (6.1) into
equation (6.6), we obtain

ULFp(TX) = TULFp(X)TT, ∀ X ∈ B. (6.7)

By substituting equation (6.2) into equation (6.7) and considering the relation Fp(TXL) = I implied
by equation (6.2), the symmetry of the lattice points XL requires that

UL = TULTT. (6.8)

Equation (6.8) indicates that the lattice stretch tensor UL should be form-invariant under the
symmetry operation ∀ T ∈ T if the lattice points are still symmetric after deformation, while
the uniform lattice rotation RL does not affect the symmetry. The formula in equation (6.8) was
derived by Coleman & Noll [50] in another context. Obviously, a uniform dilation deformation,
i.e. UL = λI with λ as a stretching factor, would not affect the symmetry condition in equation (6.8).
The topology symmetry condition of a superlattice material is more complex than equation (6.8)
due to the existence of the periodic non-affine deformation Fp. After eliminating UL in equation
(6.7) by using equation (6.8), the symmetry condition forces the periodic deformation field to
satisfy

Fp(TX) = TFp(X)TT, ∀ X ∈ B. (6.9)

Thus, equation (6.9) indicates that the periodic deformation gradient field should be form-
invariant under the topology symmetry operation ∀ T ∈ T .
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Figure 9. Symmetry breaking of a cellular material induced by deformation. (a) Undeformed configuration. (b) Deformed
configuration.λ is the uniform stretch factor. (Images reprinted with permission from [24]. 2013 American Physical Society.)
(Online version in colour.)

Further, the symmetry-preserving strain field can also be derived. Taking the Green strain
tensor field E(X) = [FT(X)F(X) − I]/2 [36] as an example, it satisfies

E(TX) = [FT(TX)F(TX) − I]
2

= T[FT(X)F(X) − I]TT

2

= TE(X)TT, ∀ X ∈ B. (6.10)

Figure 9 shows an example [24] of how symmetry breaking occurs when the strain field does not
satisfy the symmetry condition in equation (6.10). In this case, equation (6.8) is still valid, while
equations (6.9) and (6.10) are violated. In fact, the strain field does not preserve the 4mm topology
symmetry of the original configuration since the deformed configuration has a topology point
group of 2mm. This strain-induced symmetry-breaking phenomenon has been used to tune the
phonon propagation behaviour in the phononic crystals.

(c) Material symmetry breaking in small deformation
The material symmetry of level 2 is studied for superlattice materials. During the deformation
process X �→ χ(X), the material point group field also changes as M(X) �→ M̃(χ), which is usually
hard to determine analytically. According to equation (6.3), the material symmetry of the field
M̃(χ) requires that

M̃(G̃χ) = G̃M̃(χ)G̃
T

, ∀ G̃ ∈ G̃ and ∀ χ ∈ B̃, (6.11)

where G̃ = RLGRT
L (G̃ ≤ T̃ ) is the overall point group after the affine lattice deformation FL.

In small deformation cases, M̃(χ) could be determined since only symmetry breaking occurs
in the local configuration. The polar decomposition F(X) = R(X)U(X) is introduced, where R(X)
and U(X) are the rotation and stretch tensors. For small deformation cases, symmetry breaking
may occur and the material point group M̃(χ(X)) of the deformed material is [50]

M̃(χ(X)) := {RMRT|U(X) = MU(X)MT, for ∀ M ∈M and ∀ X ∈ B}. (6.12)

On the other hand, the material symmetry evolution is quite complex and almost intractable for
large deformation cases, to which careful attention should be paid.
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7. Remarks on physical properties of superlattice materials
The physical properties of materials are closely related to their symmetry conditions [21,22].
Compared with single crystals, the physical properties of superlattice materials exhibit some new
features due to their structural and material diversity.

First, the physical properties of superlattice materials depend on the symmetry conditions at
different length scales. The analysis of the long-range physical properties of superlattice materials
is similar to that of crystals [52–54]. The point group of superlattice materials should be within the
aforementioned 51 point groups, e.g. 39 in three dimensions and 12 in two dimensions. Therefore,
the basic forms of long-range physical properties, which are characterized by different ranks of
tensors K, could be formulated once the point group is determined [21,22]. Typical examples of
the physical properties are density and heat capacity (rank 0), dielectricity and conductivity (rank
2), elasticity (rank 4), just to name a few. The point group symmetry renders the physical property
to satisfy [21]

〈G〉K= K, ∀ G ∈ G. (7.1)

The point group would usually simplify the forms of physical properties to a large extent;
however, this simplification is dangerous sometimes. Note that the point group symmetry only
determines the long-range physical properties, which means that the characteristic length l is
much larger than the superlattice unit cell size a. By contrast, short-range physical properties
(l � a) are mainly dependent on the local material point group symmetry. The intermediate-
range physical properties are more complex, and are related to the interactions between the global
symmetry and local material symmetry.

Another feature of superlattice materials is that their physical properties can be designed
and tuned in favour of the required performance. The unit cell size, topology, material type and
material distribution in superlattice materials can all be designed and optimized to achieve the
desired physical properties [5–16], which is an advantage that crystals and other homogeneous
materials do not exhibit. Particularly, this property-by-design methodology has been growing
at an unprecedented pace recently owing to the eruption of new synthesis and manufacturing
technologies from the nano- to macro-scale. Recent literature also reports that the symmetry of
superlattice materials can be tuned via deformation [23–25,27] to achieve tuneable or controllable
physical properties, which further broadens the applications of superlattice materials.

In brief summary, the physical properties of superlattice materials strongly depend on their
symmetry properties at multiple length scales. Using the symmetry conditions will greatly
facilitate superlattice material design with multi-functional usage and exceptional properties.

8. Conclusion
Point group symmetry is one of the most important and fundamental properties of materials; it is
related to their physical properties and is useful for materials modelling. However, the symmetry
of superlattice materials is more complicated than the conventional crystal symmetry since the
superlattice materials require both topology symmetry and material symmetry in one superlattice
unit cell. To address this problem, a unified theoretical framework is established to describe and
determine the overall point group of superlattice materials. Current work reveals that the point
group symmetry of superlattice materials can be described by the invariant (or form-invariant) of
a material type field and a material point group field, with the latter equivalent to the structural
tensor field. This is significantly different from the symmetry of single crystals, which only
requires the invariant of the material type field. The proposed theory is explained and applied to
a variety of examples to show the symmetry properties of superlattice materials ranging from one
dimension to three dimensions. In addition, the point group symmetry evolution for deformed
superlattice materials is also discussed with an emphasis on the deformation-induced symmetry-
breaking phenomena for small strain cases. The proposed theory will provide the theoretical
foundation for studying the physical properties of superlattice materials and tuning the physical
properties via symmetry breaking.
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Appendix A. Symmetry transformations of three-dimensional material point
groups
There are a total of 32 crystal point groups and seven continuous point groups for three-
dimensional materials [35]. Each crystal point group contains a finite number of symmetry
transformations, whereas the continuous point groups are non-compact. In order to describe
these symmetry transformations, a Cartesian coordinate system is established which has three
orthogonal axes e1, e2 and e3. Each crystal class has three preferred lattice vectors a1, a2 and
a3 according to the convention of crystallography [35]. The default material orientations are
introduced first, which follow the notations used in [38,39]. (i) Triclinic lattices can be arbitrarily
oriented. (ii) The lattice vector a1 is parallel to the axis e1 for monoclinic lattices. (iii) For
the rhombic, tetragonal and cubic systems, a1, a2 and a3 are parallel to the axes e1, e2 and
e3, respectively. (iv) For the hexagonal system, a1 and a3 are parallel to the axes e1 and e3,
respectively. Note that the trigonal crystal system is classified into the hexagonal system here
[38]. The detailed symmetry transformations of 32 crystal point groups are listed in [38,39].

Besides the 32 crystal point groups, there are two isotropy groups (∞∞m and ∞∞) and five
transverse isotropy groups (∞, ∞m, ∞/m, ∞2 and ∞/mm) in three dimensions [21,35]. The group
∞∞m is equal to the three-dimensional orthogonal group O(3), while the group ∞∞ is equal to
the three-dimensional proper orthogonal group O+(3). On the other hand, all transverse isotropy
groups have a preferred rotation axis along e3. The rotation transformation is represented by a
continuous function, as

Mθ =

⎡
⎢⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎥⎦ , (A 1)

where 0 ≤ θ ≤ 2π . All the symmetry transformations of transverse isotropic groups [38]
can be generated by Mθ and the matrices R1 = diag(−1, 1, 1), R3 = diag(1, 1 − 1) and D2 =
diag(−1, 1, −1). All three-dimensional continuous point groups are listed in table 1.

The two-dimensional material point groups [35] could be degenerated from the three-
dimensional groups, which will not be introduced in detail.

Appendix B. Point group symmetry of the nanocrystal superlattice
The overall point group symmetry of the nanocrystal superlattice shown in figure 1b is
determined in the following procedure. It is known that both T and M̄ belong to the group m3̄m.
Therefore, it is found that

T = M̄= {I, C, R1, R2, R3, · · · }48, (B 1)

where the subscript ‘48’ indicates the order of the point group. All 48 symmetry transformations
are outlined in [38,39] with the same notation. The overall point group is determined by G =
T ∩ QTM̄Q with Q shown in equation (4.1). Hence, we obtain

G = T ∩ QTM̄Q

= {I, T3, R3, D3T3, C, CT3, CR3, CD3T3}

= Q̂M̄mmmQ̂
T

, (B 2)
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Table 1. Symmetry transformations of continuous point groups in three dimensions.

class symmetry transformations

∞∞m O(3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∞∞ O+(3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∞ Mθ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∞m Mθ ,R1,MθR1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∞/m Mθ ,R3,MθR3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∞2 Mθ ,D2,MθD2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∞/mm Mθ ,R1,R3,D2,MθR1,MθR3,MθD2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where M̄mmm represents the mmm point group listed in [38,39] and Q̂ is determined as

Q̂ =

⎡
⎢⎢⎢⎢⎢⎣

1√
2

1√
2

0

−1√
2

1√
2

0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (B 3)

Equation (B 2) indicates that the overall point group G is a conjugate group of mmm. In
addition, the three reflection planes are (110), (11̄0) and (001) of the superlattice according to
equation (B 3).

Appendix C. Point group symmetry of GaAs twinning superlattice
The overall point group of the GaAs twinning superlattice in figure 6c is explained briefly. The
local coordinate systems on components 1 and 2 of the superlattice unit cell can be transformed
from the global coordinate system by Q1 and Q2, as

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1√
2

1√
6

−1√
3

1√
2

1√
6

−1√
3

0
−2√

6

−1√
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0
−2√

6

1√
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (C 1)

For this example, the symmetry point group T and M̄ is given by [38,39]

T = {I, S1, S2, · · · }12 and M̄= {I, D1, D2, · · · }24. (C 2)

It can be verified that the transformations {I, S1, S2, R1, R1S1, R1S2} ⊂ T will transform a
material component into itself and these six transformations satisfy T ∈ QT

1M̄Q1 and T ∈ QT
2M̄Q2.

In addition, the other six transformations {R3, R3S1, R3S2, D2, D2S1, D2S2} ⊂ T will transform the
two material components into each other and they satisfy T ∈ QT

2M̄Q1. Therefore, the overall
point group is identical to the topology symmetry point group, i.e. G = T , because the condition
for the special case C3 is satisfied.
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