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Abstract 

This paper analyzes a membrane of a dielectric elastomer, prestretched and mounted on 

a rigid circular ring, and then inflated by a combination of pressure and voltage.  Equations of 

motion are derived from a nonlinear field theory, and used to analyze several experimental 

conditions.  When the pressure and voltage are static, the membrane may attain a state of 

equilibrium, around which the membrane can oscillate. The natural frequencies can be tuned by 

varying the prestretch, pressure, or voltage. A sinusoidal pressure or voltage may excite 

superharmonic, harmonic, and subharmonic resonance.  Several modes of oscillation predicted 

by the model have not been reported experimentally, possibly because these modes have small 

deflections, despite large stretches. 
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1. Introduction 

 Dielectric elastomers are being developed intensely as electromechanical transducers 

(e.g., Pelrine et al., 2000; Carpi et al., 2008).  Most studies have focused on the quasi-static 

behavior of large deformation for applications such as soft robots, adaptive optics, energy 

harvesting, and programmable haptic surfaces (Carpi et al., 2008).  It has been appreciated, 

however, that dielectric elastomers can deform over a wide range of frequencies.  Applications 

exploiting the dynamic behavior of dielectric elastomers include loudspeakers (Heydt et al., 

2006; Chiba et al, 2007), active noise control (Heydt et al., 2000), and frequency tuning (Dubois 

et al., 2008). Furthermore, inertia can play a significant role whenever devices operate at high 

frequencies.  For example, when an elastomeric pump is driven rapidly, the membrane can 

resonate with the excitation (Goulbourne et al., 2007).   

 This paper focuses on the dynamic behavior of dielectric elastomers.  While dynamics of 

membranes is a classical topic (e.g., Farlow, 1993; Goncalves et al., 2009), few theoretical 

analyses have been devoted to dielectric elastomers.  Mockensturm and Goulbourne (2006) 

investigated a time response of a spherical membrane for a specified applied voltage.  Dubois et 

al. (2008) demonstrated that the frequency of a flat membrane can be tuned by a voltage.  Zhu 

et al. (2010) studied nonlinear oscillation of a spherical membrane, and showed that the 

membrane exhibits subharmonic and superharmonic resonance, as well as harmonic resonance.  

 This paper goes beyond spherical and flat membranes, and analyzes a prestretched 

membrane mounted on a rigid ring, inflated by a pressure and a voltage into an axisymmetric 

shape, Fig. 1.  This configuration has been used in experiments by several groups (Ha et al., 

2006, Heydt et al., 2006; Goulbourne et al., 2007; Fox and Goulbourne 2008, 2009). When a 

membrane undergoes deformation of the spherical symmetry, the field is homogeneous, 

governed by an ordinary differential equation.  By contrast, when a membrane undergoes 

deformation of the axisymmetric symmetry as shown in Fig. 1, the field is inhomogeneous (in 
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the longitudinal direction), governed by partial differential equations.  The inhomogeneous 

deformation enables the membrane to resonate at multiple frequencies of excitation, as 

observed in recent experiments (Fox, 2007; Fox and Goulbourne, 2008, 2009).  Furthermore, it 

is interesting to explore subharmonic and superharmonic resonance besides harmonic 

resonance when the deformation is inhomogeneous. 

 This paper is planned as follows.  Section 2 derives the equations of motion for an 

axisymmetric membrane, subject to a pressure and a voltage, undergoing dynamic and finite 

deformation.  Section 3 analyzes stability of states of equilibrium when the pressure and voltage 

are static.  For a given prestretch, a membrane can attain a stable state of equilibrium when the 

pressure and voltage stay below certain critical conditions.  Section 4 studies a membrane 

oscillating around a state of equilibrium, and shows that the natural frequencies can be tuned by 

changing the prestretch, pressure, or voltage.  Section 5 shows that sinusoidal pressure or 

voltage can excite superharmonic, harmonic, and subharmonic responses.  Section 6 compares 

the theoretical results with available experimental observations. 

 

2.  Equations of motion 

 This section derives the equations of motion for an axisymmetric membrane of a 

dielectric elastomer subject to a pressure and a voltage.  Similar equations of motion have been 

derived on the basis of the Maxwell stress (e.g., Fox and Goulbourne, 2009).  Here we derive the 

equations of motion in an approach such that the equations can be readily modified even if the 

Maxwell stress is not valid (Suo et al., 2008).    

 Fig. 1 illustrates the cross section of a membrane of a dielectric elastomer, sandwiched 

between two compliant electrodes.  In the absence of any applied load, the membrane is of a 

circular shape, thickness H and radius A.  This state is taken to be the state of reference, in 

which we mark a material particle by its distance R from the center O.  When the membrane is 
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prestretched and attached to a rigid circular ring of radius a, the particle R moves to the place a 

distance r from the center.  The membrane is then inflated by a time-dependent pressure  tp  

and a voltage  t .  At time t, the membrane is assumed to deform into an axisymmetric shape, 

and the particle R moves to a place with coordinates r  and z.  The two fields,  tRr ,  and  tRz , , 

specify the time-dependent deformation of the membrane. 

 Consider a differential element between two particles R  and dRR . At time t, one 

particle occupies the place of coordinates  tRr ,  and  tRz , , and the other particle occupies the 

place of coordinates  tdRRr ,  and  tdRRz , .  Let  tRl ,  be the arclength between the 

element and the center of the membrane, and  tR,  be the slope of the element.  Consequently, 

    dltRrtdRRr cos,,   and     dltRztdRRz sin,,  .  The longitudinal stretch is 

defined by the length of the element at time t divided by the length of the element in the state of 

reference, Rl  /1 , namely, 
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Next consider the circle of material particles, of perimeter R2  in the state of reference.  At time 

t, the circle is of perimeter r2 .  The latitudinal stretch is 
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The volume enclosed by the membrane is given by 
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All integrals in this paper are taken with respect to R over the interval (0, A). 

 Define the nominal electric displacement  tRD ,
~

 by the electric charge on an element of 

an electrode at time t divided by the area of the element in the state of reference.  Consequently, 

the total charge on the electrode is   
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   RdRDQ
~

2 . (4) 

 

 The actuator is a thermodynamic system, taken to be held at a constant temperature.  

Let W  be the Helmholtz free energy of an element of the dielectric at time t divided by the 

volume of the element in the state of reference.  The elastomer is taken to be incompressible, so 

that the thermodynamic state of an element of the membrane is described by two stretches, 1  

and 2 , as well as the nominal electric displacement D
~

.  A material model of the membrane is 

specified by a free-energy function  

   DWW
~

,, 21  . (5)   

For small variations in the kinematic variables, the free-energy density varies by  

  DEssW
~~

2211   , (6) 

where 1s  and 2s  are the nominal stresses, and E
~

 is the nominal electric field.  Equation (6) 

relates these nominal quantities to partial differential coefficients of the free-energy function: 
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Once a free-energy function  DW
~

,, 21   is prescribed for a material, (7)-(9) constitute the 

equations of state. 

 For an arbitrary variation of the system, the change in the Helmholtz free energy of the 

membrane equals the work done by the pressure, voltage, and inertial forces, namely, 
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where   is the mass density of the elastomer.  Regarding r , z  and D
~

  as independent 

variations, we obtain from the standard calculus of variation that  
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  EH
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. (13) 

The equations of motion, (11) and (12), can also be obtained by considering the membrane 

between R and dRR , and balancing forces at time t in the directions of z and r, respectively.  

Equation (13) recovers the definition of the nominal electric field. 

 The above equations are valid for an arbitrary material model specified by the free-

energy function,  DW
~

,, 21  .  In what follows, we adopt a material model known as the ideal 

dielectric elastomer (Zhao et al., 2007), where the dielectric behavior of the elastomer is taken to 

be liquid-like, unaffected by deformation.  Specifically, the true electric displacement is linear in 

the true electric field, and the permittivity is independent of deformation.  This material model 

seems to describe some experimental data (Kofod et al., 2003), but is inconsistent with other 

experimental data (Wissler and Mazza, 2007).  Nevertheless, this model has been used almost 

exclusively in previous analyses of dielectric elastomers.  See Zhao and Suo (2008a) for a model 

of nonideal dielectric elastomers, and Bustamante et al., (2009) for a more general description 

of electromechanical interaction. 

  The elastomer is assumed to be incompressible, so that the stretch in the thickness 

direction of the membrane, 3 , relates to the stretches in the surface of the membrane as 

 213 /1   .  The thickness of the membrane is H in the undeformed state, and is 

 213 /  HH   in the deformed state.  By definition, the true electric field E is the voltage 

divided by the thickness of the membrane in the deformed state, so that EHE
~

/ 2121   .  
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The true electric displacement D is defined as the charge in the deformed state divided by the 

area of the membrane in the deformed state, so that  21/
~

DD  .   

 For the ideal dielectric elastomer, following Zhao et al. (2007), we assume that the 

Helmholtz free energy takes the form   
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The first term is the elastic energy, where   is the small strain shear modulus. The second term 

is the dielectric energy, where   is the permittivity.  The elastomer is taken to be a network of 

long polymers obeying the Gaussian statistics, so that the elastic behavior of the elastomer is 

neo-Hookean.  For an ideal dielectric elastomer, the dielectric energy per unit volume is 2/2D , 

and the permittivity   is a constant independent of deformation.  In (14) the dielectric energy 

has been expressed in terms of the nominal electric displacement D
~

, a variable required by the 

function  DW
~

,, 21  .  

 Inserting (14) into (7)-(9), we obtain the equations of state: 
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Recall that the true stresses 1  and 2  relate to the nominal stresses as 111 s   and 222 s  .  

We rewrite (15)-(17) in terms of the true quantities: 
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These equations are readily interpreted.  For example, the first term in (18) is the contribution to 

the stress due to the change of entropy associated with the stretch of the polymer network, and 

the second term is due to the applied voltage.  Equations (18-20) in various forms has been used 

in previous analyses (e.g., Pelrine et al., 2000; Wissler and Mazza, 2005; Goulbourne et al., 

2005). 

 

3. State of equilibrium and critical condition 

 When the pressure p  and voltage   are static, the membrane may reach a state of 

equilibrium.  The state of equilibrium is described by time-independent functions  Rr0  and 

 Rz0 , governed by the equations in Section 2, setting  22 / tz 0 and  22 / tr 0.  We solve 

these equations by using MATLAB.  We normalize the coordinates by A, the pressure by 

 AH / , and the voltage by   /H . Unless otherwise stated, we fix the prestretch 

3/0  Aa . 

 Fig. 2 plots the deformed shapes of the membrane subject to various pressures and 

voltages.  As expected, the displacement of the membrane increases with the pressure and 

voltage. Our simulation shows (e.g., Fig. 2a) that the shape of the membrane differs from a 

spherical cap, especially when the voltage is large. 

              Fig. 3 plots the distribution of the stretches 1  and 2  when the membrane is subject to 

a fixed pressure and several values of voltage. The deformation of the membrane is 

inhomogeneous. At a fixed pressure and voltage, both 1  and 2  are largest at the center of the 

membrane, and monotonically reduces to the smallest value at the outer end.  As a result, the 

center point of the membrane is the weakest point for mechanical failure. At the ring, the 

latitudinal stretch remains fixed by the pre-stretch,   02  A . 
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Fig. 4 plots the pressure as a function of the volume, when the membrane is subject to a 

constant voltage.  As the membrane inflates, the pressure first increases, reaches a peak, and 

then decreases. The peak pressure corresponds to a critical state. When the applied pressure is 

above the peak, the membrane cannot reach a state of equilibrium. When the applied pressure is 

below the peak, corresponding to each value of pressure are two values of volume.  The value of 

volume on the rising part of the pressure-volume curve corresponds to a stable state, while the 

value of volume on the descending part corresponds to an unstable state. Also plotted in Fig. 4 is 

the fundamental natural frequency as a function of the volume.  When the pressure reaches the 

peak, the fundamental natural frequency vanishes. The method to calculate natural frequencies 

is described in the next section.  

When the pressure and voltage are small, the system will oscillate around a stable state 

of equilibrium. When the pressure or voltage reaches a critical value at the peak, the natural 

frequency vanishes, and it takes an infinite time for the system to return to the state of 

equilibrium. In other words, the state of equilibrium becomes unstable. Indeed, for many 

mechanical systems a vanishing natural frequency indicates instability or buckling (Zhu et al., 

2008; Hwang and Perkins, 1994). 

Fig. 5 plots the critical values of p and   at several levels of prestretch 0 . At a fixed 

prestretch 0 , when the pressure and voltage fall above the corresponding curve, the membrane 

cannot reach a state of equilibrium. However, when the pressure and voltage fall below the 

curve, the membrane can reach a state of equilibrium. For the membranes with the same 

original radius and thickness A and H, as indicated in Fig. 5, the critical values of p and   for 

instability decrease with the prestretch. When the prestretch is fixed, the critical value of p (or 

 ) decreases with   (or p). 

For a neo-Hookean material, when the pressure or voltage reaches the peak, we assume 

that the deformation of the membrane may go to infinity, which leads to electrical breakdown. 
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However, elastomers used in practice may exhibit strain-stiffening due to the finite contour 

length of polymer chains. This phenomenon cannot be described by a neo-Hookean model, but 

can be described by other stress-strain models (e.g., Arruda and Boyce, 1993). For an Arruda-

Boyce material, when the pressure or voltage reaches a critical value, the membrane may 

undergo snap-through instability and jump to a state of equilibrium at a larger stretch. In this 

paper, we focus on electromechanical instability of a membrane of a dielectric elastomer. For 

example, Fig. 5 shows the effect of the prestretch on the critical state for electromechanical 

instability. However, for dielectric elastomers, how to survive snap-through instability and 

achieve a larger deformation of actuation is an interesting and important issue and deserves 

further studies (Suo and Zhu, 2009; Zhao and Suo, 2010). 

              

4.  Oscillation around a state of equilibrium 

 As discussed in the previous section, a membrane subject to a constant pressure and 

voltage may reach a state of equilibrium.  Around the state of equilibrium, the membrane can 

oscillate.  We now analyze oscillation of small amplitude.  When the membrane oscillates 

around the state of equilibrium, )(0 Rr  and )(0 Rz , we write a mode of oscillation as 

        tRrRrtRr sinˆ, 0  , (21) 

        tRzRztRz sinˆ, 0  . (22)  

Thus, the mode of oscillation has the natural frequency  , and has the field of amplitude  Rr̂  

and  Rẑ .  Using the finite difference method, we divide the domain [0, A] into N elements (say, 

N = 1000). Substituting (21) and (22) into (11) and (12), we obtain the equations for each 

element and then expand them into the power series of  r̂  and ẑ .  The resulting equations are 

lengthy and are not listed here.  For oscillation of small amplitude, we retain terms linear in r̂  

and ẑ , and assemble the equations of the entire system as  
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                                                                              xKx 2                                                                         (23) 

where x                  T
ˆˆ/ˆ/ˆ.../ˆ/ˆ0ˆ0ˆ AzArNAAzNAArNAzNArzr   is the 

amplitude vector, and K is a stiffness matrix with each element ijK  dependent on the state of 

equilibrium )(0 Rr  and )(0 Rz . The procedure leads to an eigenvalue problem, with 2  being the 

eigenvalue, and x being the eigenfunction.  The lengths of the eigenfunctions are normalized by 

A, such that 1/ Ax ), and the frequencies are normalized by  /1A .   

 When 
H

pA


=0.1 and 

2

2

H


=0.01, the normalized natural frequencies of the first seven 

modes are 1 2.3, 2 3.7, 3 5.2, 4 6.7, 5 8.2, 6 9.7, and 7 11.2. Fig. 6 plots the 

shape and the longitudinal and latitudinal stretches of the 1st, 3rd, 5th, and 7th modes, while Fig. 7 

plots those of the 2nd, 4th, and 6th modes.  For the even modes, the shapes of different modes are 

nearly indistinguishable (Fig. 7a), but the stretches of different modes are quite different (Figs. 

7b,c).  The significance of these modes will be discussed in Section 6 in connection to parametric 

excitation.  

 

5.  Tuning natural frequencies 

              Many devices require that natural frequencies be tuned.  Examples include MEMS-

based oscillators used in sensing (Ekinci et al., 2004), timing, and frequency reference (Nguyen, 

2007). As another example, the natural frequency of an energy harvester is often tuned into the 

spectrum where most of the energy is available (Anton and Sodano, 2007). For many systems, 

however, natural frequencies are set by materials and geometries, and are often difficult to tune 

(Cottone et al, 2009).  By contrast, the natural frequency of a dielectric elastomer is easily varied 

by varying the prestretch during fabrication, and by varying the pressure or voltage during 

operation (Dubois et al., 2008). 
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                Fig.8 plots the fundamental frequency as a function of the prestretch, while the 

pressure and voltage are held at several constant levels.  It is well known that, in the absence of 

pressure and voltage, the frequency of a membrane increases with the prestretch (Den Hartog, 

1985).  By contrast, when the membrane is subject to a constant pressure and voltage, as the 

prestretch increases, the frequency first increases, reaches a peak, and then decreases. This 

trend is understood as follows.  When the prestretch is small, the stress in the membrane 

increases with prestretch, and the frequency increases.  For a given prestretch, the membrane 

reaches the critical state at certain levels of pressure and voltage (Fig.5), and the frequency 

becomes zero.    

Fig.9 plots the fundamental frequency as a function of the pressure at several levels of 

voltage.  When the prestretch is small ( 1.10  ), as the pressure increases, the fundamental 

frequency first increases, reaches a peak, and then decreases. When the prestretch is large 

( 30  ), the fundamental frequency decreases as the pressure increases.  

 

6. Parametric excitation 

When the pressure or the voltage varies with time, the behavior of the membrane can 

be very complex.  To illustrate the complexity, we prescribe a static pressure p and a sinusoidal 

voltage: 

   tt acdc  sin , (24) 

where dc  is the dc voltage, ac  the amplitude of ac voltage, and   the frequency of excitation.  

As shown in Section 2, the AC voltage appears as a time-varying coefficient in the partial 

differential equations.  Phenomena of this type are known as parametric excitation (Jordan and 

Smith, 1987; Nayfeh and Mook, 1979). 

 The nonlinear theory described in Section 2 has been embedded in the finite element 

software ABAQUS with a user-supplied subroutine (Zhao and Suo, 2008b).  We use this code to 
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simulate the following process. First, the membrane is uniformly prestretched in the radial 

direction, and then fixed along the edge. Second, the membrane is subject to a static pressure. 

Finally, a sinusoidal voltage is applied, which causes the membrane to oscillate. Fig. 10 plots the 

amplitudes of displacement and stretch, at the center of the membrane, as functions of the 

frequency of excitation.  Here the amplitude is defined as the difference between the highest and 

lowest values of displacement or stretch.  As we know, the actuation for a dielectric elastomer is 

related to 2 .  When the voltage is sinusoidal (24), note that 

   tt acacdcdc  2222 sinsin2 . (25)  

The ac voltage with the frequency   leads to excitations with two different frequencies, namely,  

)sin(2 tacdc  and tac  2cos(5.0 2 ). In this numerical example, we have set 1.0/  dcac , so 

that the excitation of the frequency of 2  may be neglected in the discussion.   

 When the frequency of excitation is close to one of the natural frequencies, the 

corresponding natural vibration mode is induced.  The even modes have small amplitude of 

displacement, but large amplitude of stretch.  Thus, we may think the even modes are related to 

in-plane vibration, while the odd modes are related to out-of-plane vibration.  The existing 

literature on dynamic behavior of membrane focused on out-of-plane oscillation, but did not 

report in-plane oscillation (e.g., Goncalves et al., 2009; Fox, 2007; Fox and Goulbourne, 2008, 

2009). The shapes of the out-of-plane modes reported in the literature are similar to our results 

shown in Fig. 6. 

 Besides the harmonic resonance, our analysis shows that the membrane also resonates 

when 12 , which is known as subharmonic resonance (Nayfeh and Mook, 1979). In addition, 

the membrane resonates when 2/1 , which is known as superharmonic resonance.  Fig. 11 

plots the displacement at the center of the membrane as a function of time.  The membrane is 

driven at several frequencies of excitation.  When 1 , the membrane oscillates at a 

frequency close to the frequency of excitation, indicative of the harmonic resonance of the 
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fundamental mode.  When 3 , the membrane oscillates at a frequency close to the 

frequency of excitation, indicative of the harmonic response of the third mode.  When 2/1 , 

the membrane oscillates at the frequency 1 , which doubles the frequency of excitation, 

indicative of superharmonic resonance.  When 12 , the membrane oscillates at the 

frequency 1 , which is half of the frequency of excitation, indicative of subharmonic resonance. 

Subharmonic and superharmonic responses are common phenomena in nonlinear oscillations 

due to parametric excitation (Turner et al., 1998; De and Aluru, 2005).  

 When designing a loudspeaker of a dielectric elastomer (Heydt et al., 2006; Chiba et al, 

2007), one wishes that the frequency of output vibration is the same as that of input signal. Fig. 

11 shows that in some ranges of frequency, for example, when   is close to 1 /2 or 2 1 , the 

membrane oscillates at a frequency different from the frequency of excitation.  This 

phenomenon will distort sound.  To avoid this distortion, one should tune the natural frequency 

of a dielectric elastomer far away from half and double the frequency of excitation.  

 

7. Comparison with experimental observations 

 Recently, Fox and Goulbourne studied dynamics of dielectric elastomer membranes 

experimentally (Fox, 2007; Fox and Goulbourne, 2008, 2009). The membrane VHB 4905 or 

VHB 4910 with a diameter of 3.5” is prestretched mechanically first (with 30  ), and then fixed 

by a rigid frame (Fox and Goulbourne, 2008). Carbon grease, spread on both sides of the 

membrane, serves as the electrodes.  The membrane deforms under a pressure and a voltage. 

Fox measured the dynamic responses of the membrane due to i) a time-varying pressure and a 

fixed DC voltage, and ii) a time-varying AC voltage and a fixed pressure. For the time-varying 

pressure input, they tested several small values of the frequency (say, 1 to 5.5 Hz), and found 

that the amplitude of the oscillation increases with the frequency of the pressure. For the time-

varying AC voltage input, they observed the phenomena of multiple resonance peaks and 
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different vibration modes. These dynamic phenomena of dielectric elastomers have not been 

explained theoretically. We will compare our theoretical results with their experimental data. 

 Fig. 12a plots the pressure as a function of the volume for a VHB 4910 membrane in the 

absence of voltage.  The experimental data in figure 18 of Fox (2007) match well with our 

theoretical curve once the shear modulus is set to be 25.1 kPa. The average error is 4%.  The 

difference between the experimental data and theoretical prediction becomes large when the 

stretch is large, possibly because the neo-Hookean model becomes inaccurate at larger stretches. 

 When the membrane is subject to two levels of dc voltage, as shown in Figs. 12b and 12c, 

the experimental data of Fox (2007) match well with our theoretical curve once the dielectric 

constant is set to be 4.55, a value reported by Kofod et al. (2003). The difference between the 

experimental data and theoretical curves becomes large at large stretches.  In addition to the 

possible inaccuracy of the neo-Hookean model, a recent experiment indicates that the dielectric 

constant may decrease when the elastomer undergoes large deformation (Wissler and Mazza, 

2007).  In the remainder of this section we will use the shear modulus of 25.1 kPa and dielectric 

constant 4.55 to calculate theoretical results. 

 Fox (2007) and Fox and Goulbourne (2008, 2009) analyzed natural frequencies and 

vibration modes of the VHB 4905 membrane. They tuned the frequency of the AC voltage and 

recorded the amplitude of the oscillation. For example, when the pressure is 80 Pa, dc =0, and 

ac =1.5 kV, the natural frequencies of out-of-plane oscillation are 70 Hz, 130 Hz and 205 Hz, 

respectively (Fox 2007, Fox and Goulbourne 2009). Based on the method described in Section 4, 

our theoretical results of natural frequencies are 58.7 Hz, 135.1 Hz, 211.9 Hz for the 1st, 3th, and 

5th out-of plane oscillation, and the average error is about 8%. In analyzing the natural 

frequencies, we consider the effect of the electrodes, and add the mass of the electrodes to that 

of the membrane. With a large prestretch (say, 30  ), the membrane is very thin and light 

(even thinner and lighter than the electrodes). For example, in the Fox’s experiment, 0.5 ml 
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carbon grease is used, and the mass of the electrodes is about four times that of the membrane 

itself. The electrodes may significantly decrease natural frequencies of an actuator, especially 

when the dielectric elastomer is subject to a large prestretch. 

 Fig. 13 plots superharmonic, harmonic, and subharmonic responses of the VHB 4905 

membrane when p=80pa, dc =0KV, ac =1.5 kV. As stated before, the actual excitation is 2 . 

When dc =0, the frequency of actual excitation is double that of ac voltage. When the frequency 

of ac voltage is 29 Hz, as shown in Fig. 13a, the frequency of actual excitation is 58 Hz which is 

close to the first natural frequency (58.7 Hz) as described above. It is seen from Fig. 13a that the 

frequency of oscillation is about double that of ac voltage (and close to that of actual excitation). 

This is a harmonic response, similar to the subfigure in figure 70 of Fox (2007) where the 

frequency of ac voltage is 35 Hz, the frequency of actual excitation is 70 Hz, and that of 

oscillation is about 70Hz. Fig. 13c is another harmonic response, where the frequency of ac 

voltage is 66 Hz, the frequency of actual excitation is 132 Hz (which is close to the third natural 

frequency 135.1 Hz), and the frequency of oscillation is about 132 Hz. This response is similar to 

another subfigure in figure 70 of (Fox, 2007) where the frequency of ac voltage is 65 Hz.  The 

predicted amplitudes are about ten times those reported in Fox (2007). These large discrepancies 

are possibly due to that the damping effect is ignored in the current analysis. How dissipation due 

to viscosity and leakage affects dynamic responses of dielectric elastomer deserves further studies. 

In addition, our present analysis shows superharmonic and subharmonic responses, but these 

responses are not reported in the experimental data. When the frequency of ac voltage is 14 Hz, 

as shown in Fig.13b, the frequency of actual excitation is 28 Hz (which is close to half of the first 

natural frequency), the frequency of oscillation is about double that of excitation and four times 

that of ac voltage. This is a superharmonic response. Fig. 13d shows a subharmonic response. 

When the frequency of ac voltage is 56 Hz, the frequency of actual excitation is 112 Hz (which is 
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close to double the first natural frequency), the frequency of oscillation is about half of that of 

excitation, and this is a subharmonic response. 

 Dubois et al. reported on the active tuning of the fundamental natural frequencies of 

dielectric elastomer membranes made of PDMS Sylgard 184 and 186 (Dubois et al., 2008).  The 

membranes were prestretched by the fabricated process, and were fixed to a rigid frame. Subject 

to no pressure, the membranes remained flat, and deformed homogenously. Their natural 

frequencies were tuned by applying dc voltages through the thickness of the membranes to 

reduce their internal stress. With the method described in Section 2 and the material, geometry, 

and loading parameters used in Dubois et al., (2008), we can analyze the natural frequencies of 

these dielectric elastomer membranes. Fig. 14 compares our theoretical results with Dubois’s 

experimental data. For the 2-mm-diameter Sylgard 186 membrane, the average error of our 

theoretical results is 7.5%. For the 4-mm-diameter Sylgard 184 membrane, the average error of 

our results is 2.3%. Because this experiment induces homogeneous deformation in the 

membrane, the theory and model employed in Dubois et al., (2008) is relative simple. Our 

theory, however, is also applicable when the membrane undergoes inhomogeneous 

deformations. In many potential commercial applications (say, Universal Muscle Actuators in 

AMI), the dielectric elastomers have inhomogeneous deformations (Bonwit et al., 2006; Carpi et 

al., 2008, He et al., 2009). 

 

8. Concluding remarks 

This paper studies nonlinear dynamics of a membrane of a dielectric elastomer.  When 

subject to a static pressure and voltage, the membrane reaches a state of equilibrium. We 

analyze instability of states of equilibrium, natural frequencies, and vibration modes. When the 

fundamental natural frequency vanishes, the state of equilibrium becomes unstable. We show 

that the natural frequencies of dielectric elastomers are tunable by varying the prestretch, 
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pressure, or voltage. When driven by a sinusoidal voltage, the membrane resonates at multiple 

values of the frequency of excitation, showing different vibration modes. Meanwhile, 

superharmonic, harmonic and subharmonic responses are found in the present analysis.  Our 

results, e.g. multiple resonance peaks and out-of-plane vibration modes, are consistent with 

experimental data. We hope that our theoretical predictions, e.g. in-plane vibration modes, 

superharmonic and subharmonic parametric responses, can be ascertained by future 

experimental observations. 

 

Acknowledgements 

 This work is supported by the National Science Foundation through a grant (CMMI-

0800161) and by the Kavli Institute at Harvard University.  J.Z. acknowledges the support of 

NSERC postdoctoral fellowship of Canada. 



2010-9-4 19 

References 

Anton, S.R., Sodano, H.A., 2007.  A review of power harvesting using piezoelectric materials 

(2003–2006), Smart Mater. Struct. 16, R1–R21. 

Arruda, E.M., Boyce, M., 1993. A three-dimensional constitutive model for the large stretch 

behavior of rubber elastic materials, J. Mech. Phys. Solids 41, 389–412. 

Bonwit, N., Heim, J., Rosenthal, M., Duncheon, C., Beavers, A., 2006. Design of commercial       

applications of EPAM technology, Proceedings of the SPIE 6168, 39-48. 

Bustamante, R., Dorfmann, A., Ogden, R., 2009. Nonlinear electroelastostatics: A variational 

framework, Z. angew. Math. Phys. 60, 154–177.  

Carpi, F., Rossi, D.D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., 2008. Dielectric Elastomers 

as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and 

Applications of an Emerging Electroactive Polymer Technology. Elsevier, UK.  

Chiba, S., Waki, M., Kornbluh, R., Pelrine, R., 2007. Extending applications of dielectric 

elastomer artificial muscle In: Proceedings of the SPIE 6524, 652424. 

Cottone, F., Vocca, H., Gammaitoni, L., 2009. Nonlinear energy harvesting, Phys. Rev. Lett. 102, 

080601. 

Den Hartog, J.P., 1985.  Mechanical Vibrations.  Dover Publications, Inc. New York.  

De, S.K., Aluru, N.R., 2005. Complex oscillations and chaos in electrostatic 

microelectromechanical systems under superharmonic excitations, Phys. Rev. Lett. 94, 

204101. 

Dubois, P., Rosset, S., Niklaus, M., Dadras, M., Shea, H., 2008. Voltage control of the resonance 

frequency of dielectric electroactive polymer (DEAP) membranes, J. Microelectromech. Syst. 

17, 1072-1081.  

Ekinci, K.L., Huang, X.M.H., Roukes, M.L., 2004. Ultrasensitive nanoelectromechanical mass 

detection, Appl. Phys. Lett. 84, 4469–4471.  

Farlow, S.J., 1993. Partial Differential Equations for Scientists and Engineers, Dover 

Publications, New York. 

Fox, J.W., 2007. Electromechanical Characterization of the Static and Dynamic Response of 

Dielectric Elastomer Membranes, Master thesis, Virginia Polytechnic Institute and State 

University.  

Fox, J.W., Goulbourne, N.C., 2008. On the dynamic electromechanical loading of dielectric 

elastomer membranes, J. Mech. Phys. Solids 56 , 2669–2686. 

Fox, J.W., Goulbourne, N.C., 2009. Electric field induced surface transformations and 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Waki,+M&fullauthor=Waki,%20Mikio&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Kornbluh,+R&fullauthor=Kornbluh,%20Roy&charset=UTF-8&db_key=PHY


2010-9-4 20 

experimental dynamic characteristics of dielectric elastomer membranes. J. Mech. Phys. 

Solids57, 1417-1435. 

Goncalves, P.B., Soares, R.M., Pamplona, D., 2009. Nonlinear vibrations of a radially stretched 

circular hyperelastic membrane, J. Sound Vibration 327, 231-248.    

Goulbourne, N.C., Mockensturm, E.M., Frecker, M., 2005. A nonlinear model for dielectric 

elastomer membranes. ASME J. Appl. Mech. 72, 899-906. 

Goulbourne, N.C., Mockensturm, E.M., Frecker, M.I., 2007. Electro-elastomers: large 

deformation analysis of silicone membranes, Int. J. Solids and Struct. 44 ,  2609-2626. 

Ha S.M., Yuan W., Pei Q.B., and Pelrine R., 2006. Interpenetrating polymer networks for high-

performance electroelastomer artificial muscles, Adv. Mater. 18, 887-891. 

He, T.H., Zhao X.H. and Suo, Z.G., 2009. Dielectric elastomer membranes undergoing 

inhomogeneous deformation . J. Appl. Phys. 106, 083522.   

Heydt, R., Kornbluh, R., Eckerle, J., Pelrine, R., 2006. Sound radiation properties of dielectric 

elastomer electroactive polymer loudspeakers, In: Proceedings of SPIE 6168, 61681M.  

Heydt, R., Pelrine, R., Joseph, J., Eckerle, J., Kornbluh, R., 2000. Acoustical performance of an 

electrostrictive polymer film loudspeakers, J. Acoust. Soc. Am. 107, 833-839. 

Hwang, S.J., Perkins, N.C., 1994. High speed stability of coupled band/wheel systems: theory 

and experiment, J. Sound Vibration 169, 459-483. 

Jordan, D.W., Smith, P., 1987. Nonlinear Ordinary Differential Equations, Clarendon Press, 

Oxford. 

Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R., 2003. Actuation response of 

polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14, 787-793. 

Mockensturm, E.M., Goulbourne, N.C., 2006. Dynamic response of dielectric elastomers, Int. J. 

Non-Linear Mech. 41, 388-395.  

Nayfeh, A.H., Mook, D.T., 1979. Nonlinear Oscillation, Wiley, New York. 

Nguyen, C., 2007. MEMS technology for timing and frequency control, IEEE Trans. Ultrason. 

Ferroelectr. Freq. Control 54, 251–270.  

Pelrine, R., Kornbluh, R., Pei, Q. B., Joseph, J., 2000. High-speed electrically actuated 

elastomers with strain greater than 100%, Science 287, 836-839. 

Suo, Z.G., Zhao, X.H. and Greene, W.H., 2008.  A nonlinear field theory of deformable 

dielectrics . J. Mech. Phys. Solids 56, 467-486. 

Suo, Z.G., Zhu, J., 2009. Dielectric elastomers of interpenetrating networks. Appl. Phys. Lett. 95, 

232909. 

Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G., 1998, 

http://apps.isiknowledge.com.login.ezproxy.library.ualberta.ca/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=2Ak@3bOhO9f4HMhEciC&page=1&doc=1&cacheurlFromRightClick=no
http://apps.isiknowledge.com.login.ezproxy.library.ualberta.ca/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=2Ak@3bOhO9f4HMhEciC&page=1&doc=1&cacheurlFromRightClick=no
http://www.seas.harvard.edu/suo/papers/224.pdf
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=1F2EI7lpb7nI9F79i6l&Func=OneClickSearch&field=AU&val=Turner+KL&ut=000077013300046&auloc=1&curr_doc=40/1&Form=FullRecordPage&doc=40/1
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=1F2EI7lpb7nI9F79i6l&Func=OneClickSearch&field=AU&val=Miller+SA&ut=000077013300046&auloc=2&curr_doc=40/1&Form=FullRecordPage&doc=40/1
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=1F2EI7lpb7nI9F79i6l&Func=OneClickSearch&field=AU&val=Hartwell+PG&ut=000077013300046&auloc=3&curr_doc=40/1&Form=FullRecordPage&doc=40/1
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=1F2EI7lpb7nI9F79i6l&Func=OneClickSearch&field=AU&val=MacDonald+NC&ut=000077013300046&auloc=4&curr_doc=40/1&Form=FullRecordPage&doc=40/1
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=1F2EI7lpb7nI9F79i6l&Func=OneClickSearch&field=AU&val=Strogatz+SH&ut=000077013300046&auloc=5&curr_doc=40/1&Form=FullRecordPage&doc=40/1
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=1F2EI7lpb7nI9F79i6l&Func=OneClickSearch&field=AU&val=Adams+SG&ut=000077013300046&auloc=6&curr_doc=40/1&Form=FullRecordPage&doc=40/1


2010-9-4 21 

Five parametric resonances in a microelectromechanical system, Nature 396, 149-152.  

Wissler, M., Mazza, E., 2005. Modeling and simulation of dielectric elastomer actuators, Smart 

Mater. Struct. 14, 1396-1402 . 

Wissler, M., Mazza, E., 2007. Electromechanical coupling in dielectric elastomer actuators.  Sens. 

Actuators A-Phys. 138, 384-393. 

Zhao, X.H., Hong, W., Suo, Z.G., 2007. Electromechanical coexistent states and hysteresis in 

dielectric elastomers, Phys. Rev. B 76,134113. 

Zhao, X.H., Suo, Z.G., 2008a. Electrostriction in elastic dielectrics undergoing large deformation,  

J. Appl. Phys. 104, 123530.  

Zhao, X.H., Suo, Z.G., 2008b. Method to analyze programmable deformation of dielectric 

elastomer layers,  Appl. Phys. Lett.  93, 251902. 

Zhao, X.H., Suo, Z.G., 2010. Theory of dielectric elastomers capable of giant deformation of 

actuation,  Phys. Rev. Lett. 104, 178302. 

Zhu, J., Cai, S.Q., Suo, Z., 2010. Nonlinear oscillation of a dielectric elastomer balloon, Polym. 

Int. 59, 378-383. 

Zhu, J., Ru, C.Q., Mioduchowski, A., 2008. High-order subharmonic parametric resonance of 

nonlinearly coupled micromechanical oscillators, Eur. Phys. J. B 58, 411-421.  

http://www.seas.harvard.edu/suo/papers/196.pdf
http://www.seas.harvard.edu/suo/papers/196.pdf
http://www.seas.harvard.edu/suo/papers/211.pdf
http://www.seas.harvard.edu/suo/papers/211.pdf
http://www.seas.harvard.edu/suo/papers/228.pdf
http://www.seas.harvard.edu/suo/papers/228.pdf


2010-9-4 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Cross section of a membrane of a dielectric elastomer, sandwiched between two 

compliant electrodes.  (a) In the stress-free state, the elastomer is a circular flat membrane. (b) 

The membrane is prestretched and held by a rigid ring. (c) Subject to a pressure and a voltage, 

the membrane inflates out of the plane, and takes an axisymmetric shape. 
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Fig. 2. Deformed shapes of the membrane subject to (a) a fixed pressure and several values of 

voltage, and (b) a fixed voltage and several values of pressure.  
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Fig. 3. The distributions of the longitudinal stretch and the latitudinal stretch in the membrane 

subject to a fixed pressure and several values of voltage.   
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Fig. 4. The pressure and the fundamental frequency are plotted as functions of the volume 

enclosed by the membrane. When the pressure reaches the peak, the fundamental frequency 

vanishes. 
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Fig. 5. Plotted on the plane of  ,p  are curves of the critical values at several levels of 

prestretch 0 . At a fixed 0 , each point on the corresponding curve represents a critical state of 

the membrane. When the pressure and voltage fall above this curve, the membrane cannot 

reach a state of equilibrium. When the pressure and voltage fall below the curve, the membrane 

can reach a stable state of equilibrium.  
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Fig.6. The 1st, 3rd, 5th, and 7th modes of oscillation around a state of equilibrium (indicated by 

dashed lines).  (a) Shape of the membrane.  (b) Longitudinal stretch. (c) Latitudinal stretch. 

 

1st mode 

3rd mode 
5th mode 

7th mode 

 

1st mode 

3rd mode 5th mode 

7th mode 

 

Equilibrium shape 

1st mode 

3rd mode 5th mode 

7th mode 

(a) 

(b) 

(c) 

H

pA


=0.1, 

2

2

H


=0.01 

 



2010-9-4 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. The 2nd, 4th and 6th modes of oscillation around a state of equilibrium (indicated by dashed 

lines).  (a) Shape of the membrane.  (b) Longitudinal stretch. (c) Latitudinal stretch. 
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Fig. 8. The fundamental frequency is plotted as a function of the prestretch, (a) when the 

membrane is subject to a fixed pressure and several values of voltage, or (b) when the 

membrane is subject to a fixed voltage and several values of pressure. 
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Fig. 9. The fundamental frequency is plotted as a function of the pressure at several values of 

voltage. (a) 1.10  .  (b) 30  . 
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Fig. 10. Under a static pressure and a sinusoidal voltage, a membrane resonates at several 

frequencies of excitation, which are closely related to natural frequencies of various modes.  (a) 

The amplitude of displacement as a function of the frequency of excitation,   (b) The amplitude 

of stretch as a function of the frequency of excitation.   
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Fig.11 Harmonic (a, c), superharmonic (b), and subharmonic (d) responses of the membrane 

when 
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Fig. 12. The pressure is plotted as functions of the volume enclosed by the VHB 4910 membrane 

at several values of voltage. Our theoretical results are indicated by solid lines, while the 

experimental data (Fox, 2007) are indicated by circle points.  
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Fig. 13. Harmonic (a, c), superharmonic (b), and subharmonic (d) responses of the VHB 4905 

membrane when p=80pa, dc =0KV, ac =1.5 kV.  
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Fig. 14 Tuning the natural frequencies of the Sylgard184 and 186 membranes. Without pressure, 

the membrane is flat and in a homogeneous state.  Changes in the voltage can tune the natural 

frequencies of the membranes.  
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