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ABSTRACT

An account is given of the author's involvement with the development of non-

linear continuum mechanics. The manner in which the formulation of a phenom-

i enological theory for finite elastic deformations of rubber-like materials led |

l naturally to the development of phenomenclogical theories for the deformation i
of viscoelastic solids and fluids is described. This in turn led to the i

! development of a general theory for the formulation of non-linear constitutive i

equations.
i
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1. INTRODUCTION

It is almost exactly forty years since I first became interested in non-
linear continuum mechanics - in October 1944. I came to the subject with
almost complete ignorance of contintum mechanics of any kind. This resulted
in a certain amount of re-discovery. On the other hand it meant that I was I
able to approach the subject without the prejudices of accepted wisdom. b

In this talk I shall attempt to review that part of my own involvement in the ‘
field which has contributed to the evolution of my understanding of the prin-
ciples governing the formulation of continuum-mechanical theories. The fact
that I so restrict myself must not be taken as a lack of recognition of the
importance of the contributions of others, even when they have not had a major
impact on my own thinking.

The major objective of any theory in continuum mechanics is the development of
a formalism which enables one, at any rate i{n principle and one hopes in
practice, to solve problems of the following type. Given a body, whether
solid or fluid, we wish to calculate the deformation or flow which results
from the application to it of specified forces - the direct probtlem - or,
conversely, the forces necessary to produce in \the body a specified deforma-
| tion - the inverse problem. \
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The solution to these problems for elastic materials which undergo infinitesi-
mal deformations and for Newtonian viscous fluids were fully developed in the
nineteenth century. In both cases the equations of the theory consist of
field equations, which express the validity of Newton's laws of motion for
elements of the material, and a constitutive equation, which expresses in an
intrinsic fashion the response of the material to. applied forces.

If we wish to extend these theories so that they are applicable to other
materials, the constitutive equation must be changed. Provided that the
deformation of the body can be completely described, as in the classical
theories, by the time depend\gnce of the first spatial derivatives of the
displacement, the field equations need not be changed. However, the form in
which it is most convenient to express them may depend on the class of
materials considered and on the type of problem under discussion.

On the other hand, if in order to describe fully the deformation in the body
other fields than the displacement gradient field must be specified, then the
field equations must also be changed in an appropriate fashion. Most of this
paper will be concerned with situations in which this is not the case.

2. NEO-HOOKEAN ELASTICITY

Shortly after I joined, in August 1944, an organization known as the British
Rubber Producers' Research Association (BRPRA) which still exists under the-
name "Malaysian Rubber Producers' Research Association”, I embarked on the
task of constructing a theory which would play the same role for vulcanized
rubber, which may undergo very large deformations, as does classical elas-
ticity theory for metals and other materials in which the elastic deformations
are necessarily small, i{.e. which would enable one to calculate, at least in
principle, the forces necessary to produce in a body specified deformations,
and the deformations produced in it by specified applied forces. (I may say
that many of the pundits assured me at the time that this was an impossible
task. An exception was G.I. Taylor who was very encouraging of my efforts.)

In my initial attempt to construct such a theory I drew on the predictions of
the molecular model for vulcanized rubber which had been developed in the
preceding few years. In 1942 Guth and James and Flory had obtained, on the
basis of a highly idealized model, the tensile force necessary to extend a rod
of vulcanized rubber to i, say, times its initial length, and the shearing
force necessary to produce in a block of the rubber a shear of amount K, say.
They did this by calculating from the model the change in the Helmholtz free-
energy per unit volume when the rubber undergoes such isothermal deformations.
In 1944 my colleague at the BRPRA, L. R. G. Treloar, extended their work by
calculating the Helmholtz free-energy W associated with isothermal deformation
of a unit cube of the rubber into a rectangular block with-edge lengths i,,1,,
Ay. (Since rubber i{s substantially incompressible, we may take, as he did,
A Azdy = 1, without significznt error.) Treloar found (see, for example, [1])

W = WKT(A} + 237 + 2} - 3), 214

where N {s the number of polymeric chain segments per unit volume, T is the
absolute temperature, k is Boltzmann's constant, and v is a constant which
depends on the detaiis of the assumed molecular model. 1In view of the incom-
pressibility of the material, the forces which must be applied to the faces of
the block in order to maintain the deformation considered by Treloar are
undetermined to the extent of an arbitrary hydrostatic pressure, here denoted
p. It these forces are denoted by f,,f,,f,, then

2
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£, - -2 (1 =1,2,3). (2.2)
i ax A
i i
Denoting the corresponding forces, measured per unit deformed area, by ¢, =
f X, , we have i
11
W
o = liﬂxi P (i =1,2,3). (2.3)

From (2.1) and (2.2), or (2.1) and (2.3), it is easy to recover the result of
Guth and James aqd Flory for the tensile force f necessary to extend a rod of
unit cross-section to A times its initial length:

£ = 2WKT(X - A-2). } (2.4)

Since a shearing deformation may be considered to be a pure homogeneous defor-
mation (i.e. a deformation of the type considered by Treloar) followed by a
rotation, it {s also easy to obtain the expression for the shearing force per
unit area, ¢ say, necessary to maintain a simple shear of amount K:

o = 2WKkTK. (2.5)

The shapes of typical experimentally determined f vs. A and ¢ vs. K curves
show reasonably good agreement with (2.4) and (2.5) over rairly—farge ranges
of values of A and K. Moreover, the departures which occur at large values of
A and K can be readily understood, at any rate qualitatively, in terms of the
mathematical simplifications which were introduced in exploiting the molecular
model. Furthermore, measurements of the manner in which f changes with tem-
perature in tensile measurements at fixed values of A showed good agreement
with (2.4). These fagts led to a good deal of confidence in the model.
However, it will be seen later that this agreement {s to some extent illusory.

The deformations considered by Guth and James, by Flory, and by Treloar were
all homogeneous deformations. If more general deformations of vulcanized
rubbers are to be considered the result of Treloar has to be extended. That
it contains sufficient physical information for our purpose follows from a
theorem concerning defoéormations, which is essentially a theorem in matrix
algebra - the Polar Decamposition Theorem.

We describe the deformation of a body in the following manner. Let X be the
vector position of a particle of the body in some reference configuration.
Let x be its vector position at time t. Then, if the dependence of x on X and
t is known the deformation is completely described. (For static deformations,
we need consider only the dependence of x on X.) The Polar Decomposition
Theorem tells us that if we look at an infinitesimal volume element of the
body each particle in it could be taken from its initial position to its
position at time t by subjecting the element to a translation followed by a
pure homogeneous deformation and a rigid rotation. Of course the values of
the 1's, {.e. the principal extension ratios, have to be appropriately chosen,
as do the three perpendicular directions for these, and both will, in general,
vary from infinitesimal element to infinitesimal element of the body. The
expression A? + A% + A2 which occurs in Treloar's formula can be expressed in
terms of the so-called deformation gradient matrix g defined by

g = ax/3X. (2.6)
Thus
A2 + 22+l - trgfg. (2.7)
3
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where the dagger denotes the transpose. This leads to a specific free-energy
of deformation (or strain-energy function as we call it in mechanics) of the

form

W= C(trg?g - 3), (2.8)

where C is a constant. I called [2] this form for the strain-energy function
the neo-Hookean form. _

Now it can be shown quite easily that for any dependence of W on g in an
incompressible material,

W = W(K). (2.0)

the Piola-Kirchhoff stress matrix M (or engineering stress) and the Cauchy
stress matrix ¢ (or true stress) are given by

W

I=%3g" p(g-') (2.10)

and
L 8 (2.11)
TR e

where § is the unit matrix. p is an arbitrary hydrostatic pressure. Tts
presence results from the fact, already noted, that the application to an
incompressible material of a hydrostatic pressure leaves the deformation
unaltered. The physical content of the passage from (2.8) to (2.10) or (2.11)
is the following: the work done by the forces exerted on an infinitesimal
material element of the body by the surrounding material in an infinitesimal
virtual deformation is equal to the resulting change in W. (The contribution
of the change in kinetic energy to this balance is of a higher degree in the
dimensions of the element and can, accordingly, be omitted in the limiting
case as the dimensions of the element tend to zero.)

The difference in the expressions for I and ¢ merely reflects the different
choices of the area elements used in defining them.

For a compressible material the corresponding expressions are

L 1 oW 1
- — - 2. 17
I 2’ o detg 285 ° (2.12)
(Note that detg is the ratio between the volume of a materi{al element in its
deformed and undeformed configurations.)

For example, for the strain-energy function (2.8) we obtain, from (2.11),

o = 2Cc - p§, (2.13)
where ¢, known as the Finger strain matrix, is defined by
c-gg. (2.14)

Equation (2.13) is the constitutive equation for the Cauchy stress matrix in a
neo-Hookean elastic material.

From equation (2.13) the results previously given for simple extension and for
shear were easily recovered. However, two interesting new results emerged.

4
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I found that the Cauchy stress associated with a simple shear of amount K,
say, had a shear component 2CK and three unequal normal ‘components acting in i
mutually perpendicular directions determined by the direction of shear and the I
normal to the plane of shear. Each of .these components was, apart from the ;
arbitrary hydrostatic pressure, proportional to K?. I then showed 3] that .
this implied that if we wish to produce in a cylinder of radius a a torsion of !
amount ¢ per unit length, it is not sufficient to exert over its ends tangen- L
tial tractions in the circumferential direction of amount 2Cyr per unit area, '
at a radial distance r from the cylinder axis. It is also necessary to exert {
normal forces of amount | {

/-

-Cy2(a? - r2) - (2.15) i' i
-

per unit area. This is a thrust which takes its maximum value at r = O and i
the value zero at the edge. The arbitrary hydrostatic pressure disappears
here because the curved surface of the cylinder is assumed to be free cf M

i

traction.

The tangential forces have as their resultant a couple M given by

M = #xCya®* (2.16) ;1‘

i}

and the normal. forces have resultant thrust N given by Il
N = -ixCya®. (2.17) .

Evidently if the force N is not applied the cylinder will elongate.

If a tube, rather than a cylinder, 1s subjected to the torsion, we find that il
if the outer curved surface is force-free tangential and normal force dis- :
tributions must be applied to the ends, but in addition a thrust P per unit

area, given by

P = iCy2(a? - b?) (2.18)

must be applied to the inner surface of the tube. In this formula a and b
denote the outer and inner radii of the tube. We see that even if the ends of
the tube are maintained at a constant separation, the tube will contract in
radius unless the thrust P is applied to its inner surface.

After I had obtained these results it was drawn to my attention that the |
association of normal stresses with shear of an elastic material -had been
conjectured much earlier, in 1909, by Poynting on the basis of the existence
of - a radiation pressure when light is propagated in space, which he regarded
as a luminiferous aether endowed with elastic properties. He verified this
t conjecture by torsion experiments on a steel wire and on a rubber rod. Ac-
cordingly, effects which arise from this normal stress are called Poynting

|
effects. i
|

3. THE GENERAL PHENOMENOLOGICAL THEORY OF RUBBER-LIKE ELASTICITY

At this point it occured to me that instead of drawing on the conclusions of i
the admittedly highly-idealized molecular model for vulcanized rubber in order i
to derive an appropriate strain-energy function, it should be possible to |
proceed in a much more general manner and one which is more in keeping with {
the spirit of the classical field theories. I argued [4] that for an elastic

5

2787

R R s



material which i{s {sotropic in its undeformed state, W must depend symmetri-
cally on the three extension ratios 1,,\,,A,. Since these are positive, it
must equally depend symmetrically on A},1%,1} and accordingly be expressible
in terms of the three quantities I,,I,,I, defined by

= 4} + 2% =23, I, =aBF + AR} +AE, I, -ahnl, (3.1)

I

These can, in turn, be expressed in terms of the deformation gradient matrix g
by )

I, =trC, I, = :[(trC)? - trc?], I, = detc, (3.2)
where C is the Cauchy strain matrix defined by

C = gfg. (313)
We thus have

W= W(I,,I,,I,). (3.4)

Since, as has already been noted, detg = 1 if the material is incompressible,
it follows from (3.2), and (3.3) that
I, =1 (3.5)

and accordingly

W =Ww(,,I,). (2.6)
By introducing (3.:4) or (3.6) into the appropriate expressions for che Piola-
Kirchhoff stress.and Cauchy stress matrices, and using the chain rule, we can
obtain canonical expressions for them. For example, in the case when the
material is compressible we obtain from (2.12), the following expression for
the Cauchy stress matrix:

=
o = 2I,% {(W, + I,W,)c - W,c? + I,W,8}, (2.7
where W, and W, are given by
L L EL
W, = — - —, W, =—. (3-8)
Ao ¥a I, 3 aI,
For an incompressible material we obtain from (2.11)
(3.9)

o = 2((W, + I,W,)c - W,c?} - p&.

The neo-Hookean material for which W is given by (2.8) is, of course, the
special case of (3.6):

W o= (L, = 3). (3.10)
On the basis of the constitutive equation (3.9) it is easy to calculate the
edge forces T,,T, required to deform a thin square sheet of vulcanized rubber,
which initially has unit edge and thickness h, into a rectangle with edges
A1,2,. These are given by
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T] - Zh(AX 2 A_’A— )(Hl * Ang)v
1=2

1
A2k,

(3.11)

T, = 2h(}, - YW, + A2W,).

Of course, so far W remains an unknown function of I,,I,, which are given in
terms of A,,A, by

1
o

1
Iz-—+1—

MBI A32; (3.12)

I, =i +27 +

If T, and T, are measured for some specified valﬁes of 1, and i,, we can use
equations (3.11) to calculate W, and W, for the values of I, and I, which,
through (3.12), correspond to these specified values. In this way Saunders
and I [5] were able to determine experimentally the dependence of W, and W,,
and hence of W, on I, and I, over some range of values of the latter. Unfor-
tunately the values so determined become rather inaccurate for low values of
I, -3 and I, - 3, i.e. when the deformation is small. For vulcanized rubbers
which show little hysteresis (and consequently satisfy the assumption that
they are elastic) we found a dependence of W on

I, and I, of the form

W= C(I, -3) + (I, -3), (3.13)

where C is a constant and f is a monotonically decreasing function of T,-3
over the range considered.

These results showed a significant departure from the neo-Hookean form for W
(i.e. from the predictions of the molecular theory as it then existed).
Moreover, it is seen that this departure is associated with the dependence of
W on I,-3. This fact was confirmed by further ‘experiments, involving other
types of deformation, which were carried out with Saunders [5] and with Gent

[617].

The technique which Saunders and I used in the experiments on biaxial deforma-
tion of a sheet was essentially the same as that which had been used earlier
by Treloar. Since our experiments many attempts have been made to refine this
technique in order to obtain values for W, and W, from equations (3.11) which
are accurate for smaller deformations. However, the results obtained by
different workers for small deformations do not agree.

Experiments of this type have also been used, notably by Fung and co-workers

_ (see, for example [8]) to obtain expressions for W(I,,I,) which characterize

various biologicél tissues that behave substantially elastically.

An important special case of the relations (3.11) is that in which one of the
forces T, and T, is zero. This gives us the result for simple extension of
the material. Applied to a rod, or strip, of the material of {nitial cross-
sectional area A, we obtain

1 1
T = 24(x - ;1)(wl . ;Wz). (3.14)
where I, and I, are given by
2 1
I, =A%+ 2’ I, = & + 22 L

and X i{s the extension ratio in the direction of extension.
\

7

2789

P R e e e e



On the basis of the expression (3.9) for the stress, I was able to solve
(4,9,10] a number of simple problems in which the deformation is inhomogene-
ous, without making further assumptions about W beyond those which result in
the conclusion, expressed in (3.6), that W is a function of I, and I,. For
example, if a cylinder of radius a is subjected to a torsion of amount y per
unit length and the curved surface of the cylinder is force-free, then the -
force system which must be applied to its plane ends consists of a distribu- £
tion of tangential forces in the circumferential direction and a distribution |2
of normal forces. These have\ as their resultant a couple M and a tensile

force N given by

M = BrySori(Hy + Wy)dr,

a (3.16)
N = -2vwzfor’(w, + 2W,)dr, r
where W1 and W, afe functions of I‘ and I, which are given by B
I, =I, =3+ y2r2, 3+ 17)

The problem is an inverse problem and can be solved with this degree of gener- e
ality because the deformation throughout the cylinder is determined kinemat- 3
ically.

About the same time I solved a number of further problems of this kind. e
Deformations, such as these, which can be produced by surface forces only and =
for which explicit expressions for these surface forces can be obtained for :
arbitrary dependence of W on I, and I, are known as controllable deformations. =
Subsequently further controllable deformations were presented by other work- E

ers.

In 1940 Mooney [11] had published a paper in which he considered a unit cube
of vulcanized rubber to be deformed homogeneously into a rectangular block
with edges 1,,1,,1,. He then assumed, approximately in accord with experimen-
tal observation, that when the block is subjected to a shear the shearing
force is proportional to the amount of shear. He deduced from this that W

must be given by

W=C (A2 +2a2+22-3)+C,(1/A2 + 1/A] + 1/A7 - 3), (3.18)

where C, and C, are constants. He also stated that if the shearing force is
not proportional to the amount of shear, then W must be expressible in the
form

- 21 21 21 21 21 21
- = . = Wee Zanl .
W % Loy (a5 = g # Ag 3) + o, 7 #2,7 + AT -3)] (3.19)

where the a's are constants. This i{s not, in fact, correct.

&
3

With the notation (3.1), the expression (3.18) for W can be rewritten as

W=C (I, -3)+Cy(I,-3), (3.20)

and can then be applied co arbitrary deformations by using the expressions
(3.2) for I, and I,. It has become known as the Mooney-Rivlin form for the
strain-energy function. ) :
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With this form for the strain-energy function, the theory I have outlined has
been widely used in the stress analysis of rubber components. In such prob-
lems one is faced with the necessity for solving non-linear partial differen-
tial equations. It was this fact which, when I originally formulated the
theory, led some people to comment that it was quite useless, because only
very simple problems could be solved. However, with the advent of high-speed |
digital computers this criticism, whatever merit it may have had, ceased to be i
valid, and there now exist packaged computer programs for the solution of such f
stress analysis problems. For example, the widely used MARC General Purpose ‘U
Finite Element Program provides for the solution og static, three-dimensional, “[
large deformation problems. The input capability of the program includes not \
only the Mooney-Rivlin strain-energy function, but also a more general one ‘
which {s a five term polynomial in I, and I,. The latter is particularly |

useful when very large strains are involved.

In the MARC program the non-linear partial differential equations are solved j
i by an iterative procedure based essentially on equations, equivalent to those i
[ mentioned Iin the next section, for the calculation of an infinitesimal unknown
! deformation superposed on a finite known deformation. With similar equations
as a basis the program also allows for the analysis of small vibrations of
statically-loaded rubber components.

4. APPROXIMATE ELASTICITY THEORIES |

Once the form of the strain-energy function - and therefore of the constitu-
! tive equation for the stress - is known, whether for an isotropic or an aniso-
{ tropic material, it is an easy matter to make a wide variety of approximations

-i which are appropriate to various types of problem:

{ For example, one may suppose that the displacement gradients are small and
f systematically neglect in the strain-energy function terms of third.degree and
; in the constitutive equation for the stress terms of second degree. One then
} arrives at the constitutive equation of classical linear elasticity theory. .
! Again, one may retain in the strain-energy function and the stress terms of
' third and second degree respectively. Higher order theories,-valid for
increasingly large values of the displacement gradients, may be similarly
obtained. I have called such theories incomplete theories. From a physical
standpoint they express the fact that the extensions undergone in the deforma-
! tion by line elements of the body are small and, in addition, the rotations
undergone by volume elements are also small. One can also obtain constitutive
equations which express the first of these assumptions, while allowing the
rotations to be arbitrarily large. I have called such theories complete
theories. An example of such a theory is the second-order theory for a com-
pressible isotropic material published by Murnaghan (12] in 1937. The neo-
Hookean and Mooney-Rivlin strain-energy functions are appropriate to first and
second order complete theories respectively in the incompressible case. In
deriving such theories for an incompressib'e material one has to bear in mind
that, as a result of the constant volume :ondition detg = 1, tr(g - &) is of
second order in the displacement gradient matrix g - &, rather than of first
] order as might at first sight appear [13].

Another type of apprdximation which leads to linear boundary-value problems
and has wide applicability arises in situations in which there is superposed
on a known large deformation an infinitesimal deformation in terms of which
the various relations of finite elasticity theory can be linearized. A formal
theory for such i{nitial-value problems was publ‘ished by Green, Shield, and
myself in 1950 [14]. )

<)
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Theories of this type have a wide range of applicability. They are particu-
larly useful in discussing bifurcation problems, such as those which arise in
connection with the buckling of rods and plates under thrust (see, for ex-
ample, [15]). They have been used extensively in the last few years in the
discussion of the so-called material stability conditions for compressible and
incompressible materials (see, for example, [16,17,18,19]). The problem here
is to derive conditions on the strain-energy function analogous to the well-
known necessary and sufficient restrictions in classical elasticity theory
that the shear modulus and Young's modulus be positive. It is made very much
more difficult than the corresponding problem in classical elasticity theory
due to the fact that most of the physical requirements which are necessary for
material stability - such as the requirement that the stored-energy be posi-
tive when the body is deformed, or that if we increase the load the deforma-
tion increases - coalesce in the case of classical elasticity theory, while
they do not in the case of the finite theory.

5. THE MOONEY-RIVLIN PLOT

Apart from its use in stress analysis .the Mooney-Rivlin strain-energy function
has also had wide use in the characterization of elastomers. The reason for
this probably lies in its simplicity and that the constants C, and C, in it
can be readily measured by simple extension experiments. By introducing the
expression (3.20) into (3.14) we see that, for the Mooney-Rivlin strain-energy
function, the force T vs. extension ratio A relation for simple extension of a
test-piece with initial cross-sectional area A becomes

T = 2000 - 1)(C, * 7€) (5.1)
If T/[2A() - A-2] is plotted against 1/) for a material for which the Mooney-
Rlvlin strain-energy function is valid, we obtain a straight line. C, # C,; 1is
given by its intercept on the line =1 and C, by its slope. This type of
plot, which has become known as the Mooney-Rivlin plot,appears to have been
used for the first time in my paper with Saunders [51. We found that in
practice it takes the form shown in Fig. 1.

[}
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Fig. 1. Typical Mooney-Rivlin plot.
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The portion of the curve on the left-hand side of the ordinate corresponds to
extension and that on the right-hand side to compression. (The latter portion
of the curve was, in fact, obtained from measurements on the equibiaxial
extension of a thin sheet, which, since the material is substantially incom-
pressible, is equivalent to compression in the thickness direction.) Tt is
seen that for a substantial range of extensions the linearity required by the
Mooney-Rivlin strain-energy function i{s obtained. However, it was shown in
[5] that within experimental error this linearity is also predicted by =2
strain-energy function of the form (3.13), which we had found from experiments
on the biaxial deformation of a thin sheet, with the additional merit that the
observed behavior for A>1, i.e. for compression, is also predicted and agree-
ment is obtained with experimental results for other types of deformation.

It appears that the form of Mooney-Rivlin plot shown in Fig. 1 is typical.
This is evidenced i{n the experiments of Saunders and myself [20] in which such
plots were obtained for various natural rubber vulcanizates covering a wide
range of hardnesses and in those of Gumbrell, Mullins and myself 211 in which
plots were obtained for various natural and synthetic rubber vulcanizates
swollen to various degrees with a variety of organic solvents. In the latter
experiments It was found that the apparent values of C, obtained from the
linear parts of the Mooney-Rivlin plots decreased as the volume fraction of
solvent increased becoming approximately zero at high degrees of swelling.

6. ANISOTROPIC ELASTICITY

In 1952-53 I spent about sixteen months at the Naval Research Laboratory in
Washington. I was asked to head a small group which consisted of three people
- Ericksen, Toupin, and one other who was working on general relativity theory
and with whom I had very little interaction. Ericksen had very recently
received a Ph.D. degree from Indiana University where his thesis adviser was
T. Y. Thomas. However, he had attended a course by Truesdell on non-linear
continuum mechanics. Toupin was writing a thesis on a problem in solid-state
physics under the direction of M. Lax of Syracuse University.

In the case when an elastic material is isotroplic the strain-energy function
depends on the Cauchy strain matrix C through the three strain invariants
I,,I,,I,.defined in (3.2). When the material is incompressible the dependence
on I, can be-omitted. Ericksen and I considered the case when the elastic
material is not isotropic, but rather has fiber symmetry. We found 7227 that
in this case, with the 3-direction as the fiber direction, the strain-energy
must be a function of I,,I,,I,,C,, and CZ, + C2,. If the material is incom-
pressible I, can again be omitted. When I moved to Brown University in 1952,
I embarked on a broad program of work on the effect of material symmetry in
determining the canonical form for non-linear constitutive equations. As part
of this program I worked out with G. F. Smith, in explicit terms, the manner
in which the dependence of the strain-energy {unction on the Cauchy strain
matrix is restricted by the symmetry appropriate to each of the 32 crystal
classes. This work was published 23] in 1956.

Ericksen and I realized that the problem we had solved was essentially the
following. Given that W is a function of a second-order symmetric tensor (the
Cauchy strain tensor C) and a unit vector: (in the fiber direction), how is
this function restricted by the consideration that it is fnvariant with re-
spect to the full orthogonal group. We therefore suggested to Toupin that he
develop a continuum-mechanical theory for electrostriction in isotropic mater-
fals on the basis of a strain-energy function 'which depends on C and the
electric polarization vector P. His develooment of this idea, together with

1
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his injection of many other ideas, resulted in an important paper 247 which '3
has been much quoted.
At the time Adkins was writing his thesis with me, mainly on the deformation
1 of elastic membranes [25], we also did some calculations on some simple sys-
tems consisting of vulcanized rubber reinforced by inextensible cords l261.
In my paper with Ericksen [22] we discussed in general terms the manner in
which kinematic constraints could be introduced into the constitutive equa-
tions of elasticity theory.' The mechanics of materials with one or more
directions of inextensibilit)& has been extensively studied since that time,
the main contributors being Adkins, Pipkin, Rogers and Spencer fsee, for
example, the book by Spencer [21]). Apart from its evident interest in con-
nection with the mechanics of fiber-reinforced materials, it has a number of
interesting features from a mathematical point-of-view. Unlike the usual
situation in elasticity theory, the governing equations are no longer ellip-
tic, the directions of inextensibility forming characteristics [28]. Accord-
ingly, the passage from a material with a direction of inextensibility to one
with a direction of near inextensibility involves singular perturbations.

7. THE NORMAL STRESS EFFECT IN FLUIDS AND THE REINER-RIVLIN THEORY

At the time when I was developing the continuum-mechanical theory for rubber-
like materials and had already realized that non-hydrostatic normal stresses,
in addition to shearing stresses, are associated with finite shear of a rubber
block, we were visited at the BRPRA by Weissenberg. He told us about some
experiments he had carried out at Imperial College on flame-thrower fuels.

A

If a rod is rotated in such a fluid, the fluid is observed to climb up the rod
to a considerable extent even at quite low rates of shear. Again, if the
fluid is contained between two coaxial cups with flat disc-like bases, and the
outer cup is rotated with constant angular velocity while the inner one is
held stationary, forces are exerted normally to the plane bases of the cups.
These are observed by introducing into the base of the inner cup, at various
radial positions, vertical tubes which communicate with the fluid through
small holes in the base. On rotating the outer cup, the fluid is seen to rise
in the tubes by an amount which depends on the angular velocity and on the
radial position of the tube, being a maximum at the center. Similar effects
were observed to varying degrees in many liquids. Such effects are often
called Weissenberg effects. Their recognition was in fact due to Garner and
Nissan. However, Weissenberg was I believe the first person to attribute them
to the association of non-hydrostatic normal stresses with steady shear flow.

T SO R ¥ i s

o A 5 R A

R

Shortly afterwards I published a theory of these effects which was based on
the evidently valid assumptions that the fluid is substantially incompressible
and isotropic. I assumed further that for steady viscometric flows, the
stress matrix o depends on the flow field v only through its spatial gradient
matrix Vv. From these assumptions, together with the consideration that the
superposition on the assumed flow field of an arbitrary time-dependent rota-
tion causes the stress to be rotated by the amount of this rotation at the
time t, say, at which the stress is measured, I was able to show that o must

be expressible in the form: :

(7.1) r

SRR W B

14y G AR B

o = 8,A, + B,A? - p§,

where A‘ is the usual strain-velocity of classical hydrodynamics defined by

A, = H(wv o+ (VV)T} (7.2)
12
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and B, and B, are functions of trA} and trA}. p is an arbitrary hydrostatic
pressure which, as in the elasticity theory discussed earlier, reflects the
fact that the material is incompressible. The constitutive equation (7.1) has
become known,; for reasons which will shortly appear, as the Reiner-Rivlin

equation.

When the paper containing these calculations was nearly ready for publication,
my attention was drawn to a paper by Reiner [29] which had appeared a few
years earlier. 1In it he proposed a theory for dilatancy - the increase in
volume, and consequent apparent drying, of water-logged sand when one walks on
it. He developed an equation for the stress which is the analog for a com-

pressible material of (7.1):

o = Bo8 + BA, + B,A}, (7.2)

where the B8's are functions of triA , trAf, trA: and p, the density of the
material. (tr‘A1 = 0 if the material is incompressible so that its volume

cannot change.)

In deriving this equation Reiner started with the assumption that ¢ is a
symmetric matrix polynomial in A,, thus:

4 {
o= B A (7.4)
i

where the g's are functions of the density p. The Hamilton-Cayley theorem

then allows us to express ¢ in the form (7.3).

8. NORMAL STRESS MEASUREMENTS

Having arrived at the constitutive equation (7.1) it was natural, following
the path I had followed in finite elasticity theory, to solve a number of

simple flow problems [30,31]: torsional flow between parallel plates (with the

neglect of inertial forces ), Couette flow, Poiseuille flow.

Early in 1947 I embarked on experiments to measure the normal stress effects.
At the time I was spending a year at the Bureau of Standards in Washington. " I
became involved in a program of research at the Mellon Tnstitute in Pitts-
burgh, which was funded by the Office of the Rubber Reserve. I set up a
torsional flow arrangement of the type mentioned earlier, with the normal
stresses measured by means of pressure taps. Such measurements had been
carried out earlier by Russell [32], but they were obviously only of qualita-
tive significance I quickly discovered that it was no easy matter to obtain
good reproducible results and recognized that a much more carefully engineered
apparatus would be necessary to do so. Accordingly, shortly after my return
to England in the Fall of 1947, I constructed with Greensmith 331 an ap-
paratus which was, in principle, similar to that which I had left behind at
the Mellon Institute, but was capable of yielding much more reproducible
results. This involved careful control of the parallelism of the discs be-
tween which the torsional flow took place, of the speed of rotation, and of
the temperature. It also involved careful choice of the working fluid to
ensure its stability and freedom from bubbles. Care was also taken to correct
for the (small) effect of inertial forces and to ensure that the pressure taps
did not interfere with each other. Their diameter was made small enough so
that no appreciable change in the measurements would result by decreasing it

further.
\
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Just prior to my return to England from the United States I was offered a
permanent appointment at the Mellon Institute. When J did not accept it, they
appointed DeWitt (in 1948) and Markowitz (in 1949) to continue the work I had
started there. At his request I sent the latter blueprints of the apparatus
we were constructing in England. DeWitt and Markowitz carried out an exten-
sive experimental program using a torsional flow configuration, a Couette
configuration, and a configuration in which the fluid was contained between a
stationary cone and a coaxial rotating disc. (A cone-and-plate arrangement was
also used by Roberts [34] in England.) In all of these arrangements pressure
taps were used to measure the normal forces.

Starting in 1953, Lodge and his co-workers also carried out, first in England
and later at the University of Wisconsin in Madison, an extensive program of
normal stress measurements, which has extended over many years to the present
time. In attempting to correlate results obtained from different flow con-
figurations they found [35] discrepancies which led them to question whether
pressure taps could, even in principle, provide reasonably accurate measure-
ments of the normal stresses. They argued that the mere presence of the
pressure tap entry, no matter how small its diameter, introduced a systematic
error in the pressure measurements. Calculations by Pipkin and Tanner 367
provided a sound mathematical basis for this insight. However, Lodge has been
able to salvage the use of pressure taps as a means of finding the normal i
stresses associated with shear flows im viscoelastic fluids by applying em- :
pirical corrections to the measured pressures. Nevertheless, the difficulties
associated with the pressure tap method and the absence of a more convenient
alternative remain a great handicap in experimental non-Newtonian fluid mech-
anics. The development of a simple procedure for. making normal stress mea-
surements would be an extremely important contribution to the subject.

e T e

9. KINETIC THEORY OF NORMAL STRESS EFFECTS

At the time when the normal stress effects in fluids were discovered, it was.
I.think generally realized that the effects arose from the fact that the
fluids in which they are observed possess elasticity. The prototypical fluid
is accordingly a polymer solution. I therefore attempted to obtain an es-
timate of the magnitude of the effects on the basis of a molecular model for
such a solution. The dissolved polymer molecules were modeled as chains of
weightless, ideally thin, rigid links at the junctions of which there are
massive "beads". The links were assumed to be capable of free rotation rela-
tive to their neighbors. This is the "pearl necklace" model which had been
previously used by Kramers in 1944 to calculate the intrinsic viscosity of a

polymer solution.

When the fluid undergoes an irrotational flow, the distributions of link
orientations and of polymer chain end-to-end distances ceases to be isotropic
and the tensions in the chains cutting unit areas normal to the principal flow
directions result in a non-hydrostatic normal stress.

If the irrotational flow has velocity gradients x,,x:,x, in the principal flow
directions, the Reiner-Rivlin equation ylields the following expression for the

normal components o (i=1,2,3) of the stress:
(9.1)

0y = By ¥ BZK; - p.

1

The shear components of the stress are, of course, zero.
sufficiently slow so that terms of third degree in the x's can be neglected,
8, and B8, in (9.1) are constants.

For flows which are

14
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In 1949 I obtained [37] expressions for 8, and B8, on the basis of a very
simple model of the type which I have just described, with the assumption that
the solution is sufficiently dilute so that no tension i{s transmitted from one
polymer molecule to another. B8, and 8, are then proportional to the number n
of polymer molecules per unit volume. I obtained the result
tL3N2n g2L“N°n

Bv =735 B2 " Tgyokt ¢ (9-2)
where N is the (large) number of links per polymer molecule, -¢v is the drag
on a bead moving with velocity v relative to the fluid and L is the length of
a link. T is the absolute temperature and k is Boltzmann's constant. From
(9.2) we obtain ’

282
= Sl )
82 S5kTn" (9.3

From about 1955 onwards Giesekus and from about 1968 Bird and his co-workers

have made extensive calculations of various rheological constants for the
pearl necklace model and a wide number of variants of it - dumbbells, branched
configurations of massive beads connected by rjgid links or elastic springs.
It is interesting to note that Bird's co-worker Hassager [39] obtained in 1974
an extension of the result (9.1) to the case when N is not necessarily large.
His results agree with (9.2) for large N. Their results up to about 1977 are
collected in [38]. Thé methods used by Giesekus and by Bird are substantially
different from that which I used and are not limited to irrotational flows.

From the expression for B, in (9.2) and the experimentally determined intrin-
sic viscosity for a dilute polymer solution, I calculated the value of gL2NZ.
This enabled me to obtain a numerical value for B,, using the value of n
appropriate to a solution sufficiently concentrated to exhibit, in experi-
ments, a measurable normal stress effect. The value of 8, obtained was too

low by several orders of magnitude.

As I have already noted, the formulae (9.2) involve the assumption that the
dissolved polymer molecules are non-interacting. It can be deduced from the
numerical calculation and, indeed, from the concentration of the polymer
solution considered and from the molecular weight of the polymer that this
assumption is invalid. In order to obtain a more realistic value for g, I
therefore assumed that the network of interacting polymer molecules could be
modeled by fewer non-interacting molecules of greater molecular weight. The
measured value of the viscosity (which was, of course, also much greater -than
that predicted from the intrinsic viscosity with the assumption of non-inter-
acting molecules) was used to calculate an effective number of non-interacting
molecules. With this value for n and the measured value of the viscosity
8,72, the relation (9.3) yielded measurable values of 8,.

In [37] I also obtainea corresponding expressions for 8, and 3, when the links
are colinear and incapable of rotation relative to their neighbors. These are
gL2N?n z2L"N°n (9.1

By 36 ' B2 " Tzr60kT
These calculations were done at a time when I thought, incorrectly, that for

viscometric flows the Reiner-Rivlin equation would provide an appropriate
basis for calculation. In terms of the second-order theory discussed in Sec.

14 below (see equation (14.1%))
(9.5)

B = ag, By = 2a, * aj.
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10. OLDROYD'S THEORY

IN 1950 Oldroyd published an important paper [U40] in which he developed a
theory of a more general character than any previously presented.. The ideas
which he advanced applied to both viscoelastic solids and fluids. He imagined
an infinitely fine three-dimensional rectangular cartesian net to be embedded
in the material and to deform with it. As the material is deformed the net
becomes curvilinear. The deformation at any instant is characterized by the
extension ratios of linear elements of the net and by the angles between them
- in the language of tensor analysis by the metric tensor. Oldroyd proposed
that the stress is determined by an integro-differential (tensor) equation
relating the stress and the history of the metric tensor. Against this gene-
ral background he proposed to choose particular cases motivated largely by
models of the spring-and-dashpot type. He solved the problem of Couette flow
in the annular region between two infinite coaxial cylinders' on the basis of
two different relatively simple choices of the constitutive equations.

A wide variety of flow problems have been solved over the years on the basis
of constitutive equations which lie within the framework proposed by 0Oldroyd,
notably by Walters and his collaborators, but also.by many others. The ap-
proximations which have to be made in order to obtain analytic solutions
usually result in their being, in effect, solutions within the framework of
the second-order approximation to the Rivlin-Ericksen constitutive equation,
which will be discussed later. This has been pointed out by Pipkin [417 and
by Walters [42]. In such cases it is altogether simpler and physically clear-
er to adopt the second-order equation as the basis for solving the problems.

Since constitutive equations of the Oldroyd type are integro-differential - or
at least differential - equations for the stress, the existence of solutions

to them is not, in general, evident.

Oldroyd pointed out the important conclusion from his theory that the assump-
tion underlying the Reiner-Rivlin constitutive equation, that for viscometric
flows the stress matrix is, apart from a hydrostatic pressure, a function of
the velocity gradient matrix only, is not generally valid for viscoelastic
fluids. It took me some time to appreciate this point. l

11. RIVLIN-ERICKSEN THEORY

By this time I was beginning my stay at the Naval Research Laboratory and,
with Ericksen, I constructed a theory which, while conceptually similar to the
Reiner-Rivlin theory, was not open to Oldroyd's criticism. We took as our
starting point the assumption that in a viscoelastic material, not distin-
guishing for the moment between solids and fluids, the stress matrix depends
on the deformation gradient matrix, the velocity gradient matrix, the ac-
celeration gradient matrix, etc.. This assumption was motivated by the heur-
istic consideration that if the stress depends on the history of .the deforma-
tion gradient matrix, then, for sufficiently smooth deformations, Taylor's
theorem enables us to express it in terms of the instantaneous values of the
deformation gradient matrix and its time derivatives.

We introduced the consideration that the superposition on the 2ssumed deforma-

tion of a time-dependent rigid rotation rotates the Cauchy stress at time t by

the amount of this rotation at time t. (This assumption has become known,

quite inappropriately, as the "principle of material indifference™.) We also !

introduced the assumption that the materials with which we were concerned are ‘

isotropic. These assumptions led to the conclusion that the stress matrix o
16
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must depend on the deformation gradient matrix g and its time derivatfves
through the Finger strain matrix c and the matrices A ,A,,...defined by:

c-gg, A -iW (W, Ay = A+ (WA + An(-Vv)*, (1.1
where the dot denotes the material time derivative. The matrices R; oAy
have become known as the Rivlin-Ericksen matrices. The dependence of o on the
matrices c¢,A,,A,,... 138, of course, isotropic. In our paper, Ericksen and T
gave an explicit representation for ¢ which expresses this isotropy in the
case when ¢ depends on only two of the kinematic matrices. The corresponding
representation in the more general case when an arbitrary number of kinematic
matrices is taken was obtained much later by Spencer and myself and will be

discussed shortly.

In the case when the material is an incompressible isotropic fluid, we assumed
that o is independent of the deformation gradient matrix g and hence of the
Finger strain c. We then obtained

o = £(A,,A;,...) - D&, (11.2)

where £ 18 an isotropic matrix-valued function of its arguments.
Having recognized the inadequacy of the Reiner-Rivlin equation, I naturally
re-calculated [44] the forces associated with the viscometric flows on the

basis of the constitutive equation (11.2)s

12. A COMMENT ON TRUESDELL'S INFLUENCE

In 1952 there appeared a long article by Truesdell [451 which reviewed the
progress made up to that time and placed it in the perspective of earlier
work, much of which 'was of nineteenth century vintage, but little known. In
connection with this project I had supplied Truesdell with typescripts of some
of my papers which were pending publication. In the article Truesdell drew
atfention to the fact that the constitutive equation (3.7) had, in fact,
already been derived in a paper by Finger, published in 1894 and since forgot-
ten. -

Truesdell's 1952 paper and his subsequent mammoth articles with Toupin and
Noll in the Handbuch der Physik [46,47] have been very valuable in collecting
together earlier work and earlier ideas, much of which would have otherwise
been lost. However, his 1965 article with Noll - "The Non-Linear Field Theor-—
ies of Mechanics"™ - and his voluminous later writings, impressive and ad-
mirable though they be in many respects, are seriously marred by his evident
contempt for physical reasoning and insight and by a tendency to present the
work of his protegés as paradigms, without regard to its originality or its
physical or -mathematical soundness.

In his writings Truesdell evidences a strong taste for the dramatic and sv
there has been created a fantasy world in which various savants produce a
stream of principles, fundamental theorems, capital results, and work of
unusual depth. No matter that, on examination and stripped of the, often
irrelevant, mathematical verbiage with which they are surrounded, they fre-
quently turn out to be known results in disguise, or trivial, or physical’y
unacceptable,or mathematically unsound, or some combination of these. None-
theless, they have been widely and uncritically reproduced in the extensive

\
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secondary literature and have provided the starting point for many, corres-
pondingly flawed, theses and papers.

13. MATERIALS WITH MEMORY

The next stage in the development of my ideas came in a paper written in
collaboration with A. E. Green (48] and published in 1957. In it we made a
different constitutive assumption from that on which the Rivlin-Ericksen
theory was based. We assumed that. the stress o at time t depends on the
history of the deformation gradient matrix for all times up to and including
t, i.e. that o is a functional of g(t):

o = #{g(x)} = < TS t. (13.1)

We assumed that ¢ is a continuous functional of its argument function in the
sense of the supremum norm; i.e. if o, and o, are the stress matrices cor-
responding to two histories g,(r) and g,(t), then tr(o, - 9,)2 » O as
sup{tr(g, (1) - gz(r)szT = 'g:(r)]} + 0. It is not generally realized that
this continuity requirement is not, from a physical standpoint, an assumption.
If it were not satisfied it would not be possible to perform any meaningful
experiment on the material.

We used the "principle of material indifference™ to show that ¢ must be ex-
pressible in the form

o = glt)elci)ig () =& 3K b (13.2)

where C(t) is the.Cauchy strain at time 1 defined by

c(o) = g (0)gln). (13.3)

In deriving this result we assumed that in (13.1) the functional dependence 1s
polynomial, but it is a trivial matter to remove this limitation. 1In later
papers we extended this result to the case when o is assumed to depend not
only on the history g(t), but also on the instantaneous values at time t of
the deformation gradient matrix-and its time derivatives. The motivation for
this was to generate a theory in which the dependence of ¢ on past history is
smooth while allowing for instantaneous elastic response, instantaneous vis-

cous response, and so on.

In the case when the material is incompressible, the constitutive assumption
(13.1) is replaced by

o = #{g(x)} - ps, (13.4)

where p is an arbitrary hydroutatic pressure, and equation (13.2) is replaced
by

g = S(t)QIC(r)}K?(t) - pé -= ¢ TS t. (13.5)

Some eighteen months after the publication of my paper with Green, Noll [49]
published a paper in which, with proper acknowledgement, he re-derived equa-
tions (13.2) and (13.5) by a different procedure from ours, which, while
apparently more elegant, is open to certain objections.
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Noll also sought to make a clear distinction between solids and fluids in
terms of an invariance condition. He called materials for which the constitu-
tive assumption (13.1) is valid simple materials. He defined a simple mater-
ial as a material for which the matrix functional # in (13.1) or (13.4) satis-
fies the relation ‘

e(g(x)} = #{g(7)u} (12.6)

for all unimodular U, {i.e. for all matrices U for which detO = 1. It can,
however, be shown that this assumption, and the conclusions he draws from it,
are unacceptable on both mathematical and physical grounds.

In our 1957 paper, Green and I showed that the constitutive functional ¢ may,
in principle, be approximated by a series of multiple integrals. Apart from
the first term which has multiplicity zero, i.e. is a function of C(t), a
typical term in the series is

n p.q 1

{4 €
j ...I £ (t,T,s---,1_)C (t,)...C (r_)drt,...dt . (13.7)
-o in1q1...pnqn ! 171 Ppdp : n

Corresponding representations were given in later papers for the cases when
the constitutive assumption allows for instantaneous elastic response, instan-

taneous viscous response, and so on.
With the definition

E(t) = C(<) - 8, (13.8)

we may rewrite the series of multiple integrals as a series in which a typical
term has the form

t g
sadll £ (8T, sovept JE (T Yo olB (2 )de, . ~dx < (13.9)
I_, I_, iypyqq---pPpq, ! npq gt Ppdp n 1 n

Since E(t1) = O when the material is undeformed, this representation has the

merit that for small deformations the successive terms are of successlvely
higher order of smallness in E(r). Of course, if a polynomial assumption is
made initially, i.e. we assume that ¢ is a polynomial functional of C{(t), or
equivalently of E(t), then its expression as series of multiple integrals is
exact.

It may be remarked here that the assumption that & is n times Frechet dif-
ferentiable is by definition nothing more than a statement that it can’ be
approximated by a polynomial functional of E(t) with an error which is of
order n in E(1).

Hereditary materials are materials for which the result of an experiment is
independent of the actual time (i.e. hour, or year) at which the experiment is
carries out. This is, of course, the situation in which we are usually inter-—
ested in rheology. In this case the multiple integral (13.9) takes the form

t L
J ---[ r (t=%_,se:5t=T )E (5. )is:E (t )dt,...dt . (13,10}
i il ' 4 n 1 n

== e Jp}ql pnqn ! " p]q 1 ! nqn

In [48] we also established the relation between the functional constitutive
equation of the form (13.2) and the Rivlin-Ericksen constitutive equation
(11.2). This was done by expanding C(t) as a Taylor series about the time t
at which the stress is measured, thus: &
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H a
cx) -] L LEH -0 ag, (13.11)
a=o0 a- d'l'a i ¢ u .’

where the remainder Ru is 0(t - t)u*1, and noting that

‘ d%c(q)
’ d<®
Of course the passage from the functional constitutive equation (13.2) or 1

(13.5) to the Rivlin-Ericksen constitutive equation Is only valid for the
class of deformations which is sufficiently smooth so that the expansion

(13.11) is valid. l

- 38" (OR (D8], (12.12)

tiple integral representation appropriate to an incompressible fluid by taking
as our reference configuration in (13.10) the configuration at time t and
insisting that the kernels do not introduce any other time than the time t in
i a preferred manner. Such a procedure would have paralleled that which
[ Ericksen and I adopted in our 1955 paper [43] and would have been in accord
|
|

’ Although Green and I did not say this in our paper, we could render the mul-
\
|
|

with a distinction between a solid and a fluid proposed by.Oldroyd 407 in
1950. (However, it is easy to show, by example, that there exist constitutive
equations which clearly describe fluid-like behavior but do involve a prefer-
‘ red configuration other than that at time t. Accordingly, the proposed proce-
3 dure does not define all incompressible isotropic fluids, but merely an inter-
! esting class of fluids.) A typical term in the representation for the Stress
’ 0 at time t as the sum of a series of multiple integrals would then take the
form, in the hereditary case,

t t
E=T. 5 esent—T.)E ..-E (v )dt,...dt_,(13.1
J_w I_,riJDIQ1---ann( T, rn) P 511) b, rn) . 7,0 (13 3)
where
gl te) ~ i) - (13.14)
E (1) = "qu (O] = c.(x § = g (1)g (t § :

and g (1) is the history of the deformation gradient matrix referred to the
configuration at time .t, rather than to a fixed reference configuration.
However, a better conriguration which is nearly, but not quite, equivalent
would have as its typical term

t t )
I f e (. t-7 EE) (e ). ESY) (oydr,.de, (13.15)
el W £} 7 TN I Wl n"p,q 1 Py R n

where the dot denotes differentiation with respect to t.

Of course, if the configuration at time t is taken as the reference configura-
tion, then, since gt(t) = &, the expression (13.5) for the stress becomes

o - #(C ()] - ps. (13.16) |

Also it follows from (13.12) that
. . "
St(t) - Ct(t) - %[gt(r)A‘(r)gt(r)]. (13.17) 1

Usually one would like the kernels in the multiple integral representations, |
whether for a solid or a fluid, to be smooth decaying functions of the lapsed ¢

time, the decay expressing the fading memory of the materials considered.
20 |
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A virtually endless number of modifications of the integral representations
presented can be easily developed to express particular features of the mater-
ial behavior. An early example was given by Green, Spencer, and myself
[50,51] in which we introduced explicitly the dependence of the stress at time
t on the instantaneous value of the deformation gradieht matrix and its time
derivatives at time t. This allows us to maintain the smoothness of the
dependence of the kernels on time, while allowing the material to have instan-
taneous elasticity or instantaneous viscosity. It should be noted that even
ir the material does not possess instantaneous elasticity, in the expression
(13.2) or (13.5) for the stress the functional & must depend on the instan-
taneous value at time t of C(t), and hence of g(t), in order to properly
account for the effect of a superposed rigid rotation on the stress g.

In each of the multiple integral representations, the restrictions which
result from material symmetry can be introduced by using the relevant result
of the general theory discussed in Secs. 15 and 16 below.

14. CLASSES OF DEFORMATIONS AND APPROXIMATE THEORIES

Just as in finite elasticity theory we can, from the rather general results so
far discussed, write down more tractable constitutive equations which reflect
special assumptions regarding the deformation or flow. These are of two
kinds: those which reflect its character [52] and those which reflect a limit-
ation on its magnitude. It may, of course, be useful in certain situations to
make both types of specialization simultaneously.

As examples of the first kind I mention the restriction of the deforma-
tion to two dimensions - in the case of solids to plane strain or plane stress
and in the case of fluids to two-dimensional flow.

Again in the case of solids we may consider the restriction of the class of
deformations to stress relaxation experiments, i.e. experiments in which the
body is deformed at some time, t = 0 say, and then held in this state of

deformation. I showed that in this case, with the assumption that the body is.

initially isotropic and incompressible, the constitutive equation for the
stress ¢ at times t > O takes the form

°"G°c’axcz-p61 (1}4.1)

where ¢ is the Finger strain defined in (2.14) and the a's depend on trc,
trc?, and t. We note the similarity to the constitutive equation (3.9) for

the stress in an incompressible isotropic elastic material.

I used the constitutive equation (14.1), with the additional assumption that
the deformations are small, but the behavior of the material is nevertheless
non-linear, as the basis for the interpretation of-a series of experiments,
carried out in collaboration with Bergen and Méssersmith at the Armstrong Cork
Research Laboratories, on stress relaxation in simultaneously extended and
twisted tubes of filled and unfilled PVC - materials of the type used in
flooring.

There are a number of approximations to the Rivlin-Ericksen and Green-Rivlin
constitutive equations which are particularly useful.

For example, Langlois and Rivlin [54] considered constitutive eguations for a
non-Newtonlan fluid of the Rivlin-Ericksen type in which the non-Newtonian
terms are small. Solutions to a boundary-value 'problem can then be obtained
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as a perturbation on the solution to the problem when the fluid is Newtonian.
The first solutions to be obtained for flow problems which are not of the
inverse of semi-inverse type were obtained in this manner in [54].

Another type of approximation to the Rivlin-Ericksen equations for a non-
Newtonian fluid involves the case when the dependence of the stress on the
Rivlin-Ericksen tensors is polynomial and assumes that the flow is slow in the
following sense. We consider a velocity field v given by

v = v(x,t/e), ! (14.2)

where € is a constant. It is evident from the definition of the Rivlin-
Ericksen tensors in (11.1) that

A - o(e™). (14.3) \

It then becomes possible to set up a hierarchy of approximations to the poly-
nomial Rivlin-Ericksen constitutive equations valid for smaller and smaller
values of e. The first-order equation is then that for an incompressible
Newtonian fluid. The second-order equation is

o = ok, + oA, + azA? ~ pé, (14.4)

where the a's are constants. Higher order constitutive equations can be
easily written down by using the results discussed in Secs. 15 and 16 for the
canonical representation of a symmetric second-order tensor polynomial in an
arbitrary number of symmetric second-order tensors. These approximations
. which are called retardation approximations were first suggested by Coleman
:' and Noll [55] and have been much used. I emphasize the fact that they are
merely truncations of the polynomial Rivlin-Ericksen constitutive equation,
since this fact is obscured by Coleman and Noll.

In the case of steady flows, the time derivatives Q3A /3t in the defining
expressions (11.1) for the Rivlin-Ericksen tensors are zero. Accordingly, if
we replace v by ev, where € is a small constant, in the expressions for A_ we
see that -(14.3) is again valid [56]. By retaining.in the Rivlin-EricKsen
relations terms of first, second, etc. degrees in £ we again obtain a hierar-
chy of approximations, valid for faster and faster flows, which are formally
similar to those given by the retardation approximation. If the same proce- i
dure is used in the case when the flow is not steady, the first approximation, |
obtained by neglecting terms of higher degree than the first in g, yields a |
constitutive equation for a linear viscoelastic fluid.

It is evident that analogous approximations may be introduced into the repre- i
sentations for the stress in a non-Newtonian fluid as the sum of a series of l

multiple integrals of the form (13.5).

Approximations may also be made to the Rivlin-Ericksen and Green-Rivlin con-
| stitutive equations for a solid, to express the assumption that the deforma-
; tion is small in some sense, or that the rate of deformation is small in some

sense. !

For viscoelastic solids and non-Newtonian fluids we can also obtain constitu-
tive equations which parallel the constitutive equations for initial stress
problems in finite elasticity, by considering a small deformation or slow flow
to be superposed on a basic.déformation or flow and linearizing in the super- ‘
posed field. This can be done in a variety of ways (see, for example
[(57,581). Lockett and I used such a procedure to calculate the effect of j
|
|

2
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small non-Newtonian terms on the critical Reynolds number and cell aspect
ratio of Taylor cells in Couette flow [59,60].

In view of the great variety of approximations which can be written down under
various assumptions regarding the deformation or flow, and the fact that the
procedures to be adopted in making such approximations are now well under-
stood, it is, I feel, preferable that they be written down in connection with
the solution of particular problems or groups of problems. This would avoid
burdening the literature with a plethora of unattached constitutive equations.

15. THE GENERAL THEORY OF CONSTITUTIVE EQUATIONS

Contemporaneously with the development of the Green-Rivlin theory, I embarked
on the problem of constructing a general .theory for the formulation of con-
stitutive equations, particularly in relation to the manner in which the
restrictions due to material symmetry could be given explicit expression.
This development commenced late in 1953, immediately after Ericksen and I had
written.our joint paper, and involved the collaboration of Spencer, G. F.
Smith, and Pipkin. It occupied my attention to a varying extent until about §
1965 (see, for example, the review articles by Spencer [61] and Rivlin [62]). ’

Suppose that in some phenomenological theory, a tensor T depends on n tensors !
VI....,Vn.- These tensors may, for the moment, be tensors of any order; a’
vector i{s regarded as a tensor of order unity and a scalar as a tensor of
order zero. (In the Rivlin-Ericksen theory all of the tensors are symmetric i
second-order tensors.) Any symmetry which the material may have may be de- i
scribed-by a group of transformations. For an isotropic material this is the i
full orthogonal group (i.e. the group of rotations and reflections) or the g
proper orthogonal group (i.e. the group of reflections) depending on whether |
the material does or does not have a center of symmetry. Again, for a crystal !
the appropriate group is one or other of the 32 finite sub-groups of the full {

orthogonal group.

For economy of notation, let us now denote by '1',V1 5 ...,Vn the sets of com— :

ponents of the tensors in some rectangular cartesian reference system. Let S
be a generic transformation of the symmetry group and let T.V1,...,Vn be the
sets of components into which T,V],...,Vn are transformed by S. Then material
symmetry requires that

(151 i

T(V ---..Vn) = T(V1.---.Vn)

1

for all choices of S. Our task is to make explicit this implicit restric_tion .
on the manner in which T can depend on v1,...,Vn. Results for some simple f

cases have already been given. i

In the case of finite elasticity, we have already seen in Sec. 3 how isotropy
restricts the dependence of a scalar W on the second-order symmetric tensor (of
(the Cauchy strain), and in Sec. 6 we have seen the corresponding restriction
for fider symmetry. Again, in (7.3), we have seen how i{sotropy restricts the
dependence of a second-order symmetric tensor (the Cauchy stress) on a single |
Second-order symmetric tensor (the strain-velocity).

Two different problems are posed by a relation of the form (15.1) accordingly
as we assume that T i{s a single-valued or a polynomial function of the argu-
ment tensors. Most of the work makes the assumption of polynomial dependence.
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It can be easily seen from heuristic reasoning that the canonical representa-
tions for T so obtained will also provide representations in the case of
single-valued function dependence. A formal proof of this was given by Pipkin
and Wineman [63] in 1964.

For example, in the representadation (7.3) for a second-order symmetric tensor
function ¢ of a single second-order symmetric tensor A,, the a's are polyno-
mial or single-valued functions of trA,, trA}, trAj accordingly as the
initially assumed dependence of\ ¢ on A, is of the polynomial or single-valued
function type. In some cases, although not in this one, it may be possible,
when the dependence is of the function type, to omit without loss of general-
ity some of the terms in the canonical expression which cannot be so omitted
in the polynomial formulation. Such a case is that discussed in 1955 by
Ericksen and myself [43] in which a canonical representation was given for an
isotropic second-order symmetric single-valued tensor function of two second-
order symmetric tensors. The corresponding result for polynomial dependence
which I gave in [64] includes additional terms.

The canonical form which is obtained for T as a result of the relation (15.1)
depends, of course, on the orders of the tensors 'l',V1,...,Vn and on the sym- |
|

metry of ‘the group for which the relation (15.1) is valid. If T is a scalar
we shall denote it by T to emphasize the fact. If T is a polynomial in the
argument tensors, it may be expressed as a polynomial in a finite number of
scalar polynomials, each of which is also invariant with respect to the sym-
metry group. Such a set of polynomials is called an integrity basis and if
none of its elements is expressible as a polynomial in the remaining ones, it
is called an irreducible integrity basis. As we have already noted, any
invariant scalar function may be expressed as a function of the elements of
the irreducible integrity basis. We may express this fact by saying that an
integrity basis is also a function basis. However, while none of the elements
of an irreducible integrity basis is expressible as a polynomial in the re-
maining ones, it may be expressible as a function of them, i.e. an trreducible
integrity basis is not necessarily an irreducible function basis.

I showed that even if T in the relation (15.1) is not a scalar, the problem of ‘
finding in explicit form the restrictions on the way in which it depends on I
the argument tensors can be reduced to the problem of finding an integrity [
basis for the argument tensors and an additional arbitrary tensor having the
same properties, i.e. the same order and the same symmetry, as T. For ex-
ample, suppose T and V ,...,Vn are all second-order tensors. Let ¢ be an

1
arbitrary second-order tensor. Then from (15.1) we obtain the scalar equation

(15.2)

trvT(V1,...,Vn) = tr#T(V1,...,Vn) = ¥, say,

where ;,'f',\'rl,....\'rn are the matrices into which-t,‘r,v],...,vn are transformed

by a generic transformation S of the material symmetry group. This relation
says that ¥ is a scalar invariant function of ¢,v1,...,vn, linear in v.

Accordingly, if Kl""'K are the elements of an irreducible integrity basis
M

i for y,v1,...,vn which are linear in ¢ and Il""'Iv are the elements of an
}' irreducible integrity basis for vl""'vn' then ¥ must be expressible in the
form i
¥ = E A K (15.3) |
aa -
a=1 ‘
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and therefore

Ad 3 aKa
T o £_1Aa 5 (15.4)

In (15.3) and (15.4) the A's are functions of I .IV. They are polynomial

10
functions if the initially assumed dependence of T on V1,...,Vn is polynomial.
The problem of determining the canonical form for a tensor function of any
number of tensors is thus reduced to the problem of determining an integrity
basis for an appropriately augmented set of tensors. It might, at first
sight, be thought that the difficulty of doing this would increase as the
number of tensors increases. However, it follows from a theorem in the theory
of invariants, known as Peano's theorem, which is discussed in the next sec-
tion, that this i{s not the case. As an outcome of our program, tables of
typical invariants exist for integrity bases of arbitrary numbers of vectors,
for arbitrary numbers of second-order tensors, and for arbitrary numbers of
second-order tensors and vectors, appropriate to centrosymmetric or non-
centrosymmetric isotropic materials, materials with fiber symmetry, and for
each of the crystal classes (see, for example, the review article by Spencer

[611).

16. PEANO'S THEOREM AND CONSTITUTIVE EQUATIONS OF THE FUNCTIONAL TYPE

It follows from Peano's theorem that when the tensors are all of the same

kind, we can obtain the integrity basis for an arbitrary large number, N say,
from that for a specific number, M say, by substituting in the latter all
combinations of the N tensors taken M at time. The number M, which is provid-
ed by Peano's theorem, depends on the order and symmetry of the tensors and on
the symmetry group involved.

For example, an irreducible integrity basis for N vectors, V1,...,Vn say, with
respect to the full orthogonal group, is obtained from ’

u.u, U.v (16.1)

by substituting each of the vectors V,,...,Vn, in turn, in U.U and each selec-

tion of two vectors from the set in U.V. The list (16.1) is called a table of
typical invariants.

Ir V1 ' ....Vn are symmetric second-order tensors and the symmetry group is the

full orthogonal group, then the table of typical invariants is much more
extensive and consists.of traces of products of the V's. None of the terms
involves more than six of the tensors, nor is of total degree greater than six
in them. )

These examples apply to three-dimensional tensors. For two-dimensional vec-
tors the table of typical invariants remains unchanged, i.e. it is that givgn
in (16.1). However, for two-dimensional symmetric second-order tensors a much
simpler result than that for three-dimensional tensors is obtained.

Somewhat similar considerations apply to integrity bases for sets of tensors
of two or more kinds where the number of tensors of each kind {s large, e.g.
N_ symmetric second-order tensors and N vector‘\s, where N, and N_ are large.

1 2 ' 1 2
It is st{ll possible to construct a table of typical invariants involving a
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limited number of these, from which the desired integrity basis can be ob-
tained by appropriate substitutions.

In many of the cases the table of typical invariants consists of many terms

and appears rather complicated. Where this is the case it i{s doubtful that

the integrity basis will find much use in its entirety in physical or en-

gineering applications. It may, however, be treated as a reference table,

from which desired parts can be read off. For example, although the table of {
typical invariants for an arbitrary number of symmetric second-order tensors,

with respect to the proper or full orthogonal group, involves six tensors, it

contains the integrity bases for one, two, three, etc. tensors.

The tables of typical invariants can be used 65,661 to write the multiple
integral representations for constitutive equations of the functional type in
canonical forms which express the material symmetry. Wineman and Pipkin [67]
have proven a theorem which enables us to obtain canonical forms for func-
tional constitutive equations without first expressing them in multiple in-

tegral form.

17. THEORIES OF THE COSSERAT TYPE

I have already mentioned in Sec. 6 Toupin's theory of the elastic dielectric
published in 1956. This differs from any of the other theories I have so far
discussed in that the field equations have to be modified. This stems from
the fact that in Toupin's theory the independent variables in the constitutive
equations are not only the first spatial derivatives of the displacement
field, but additionally the electric polarization field.

Probably the earliest theory of this type was that published by the brothers
E. and F. Cosserat in 1907, in which it was supposed that there is associated
with each particle of the body a rigid orthonormal triad of unit vectors
(called directors) which move with the particle. This imbues each particle of I
the body with an orientation in space which can be changed independently of ?
its position. However, the Cosserats' work stimulated little interest until b
recently. Physicists have, of course, had a continuing interest in systems k
which lie within the scope of variations on the Cosserat theme, but they have ‘
generally tended to discuss them on an ad hoc basis, rather than as deriva- i
tions from a general continuum theory. It is only since Toupin's 1956 paper

that applied mathematicians and others interested in continuum mechanics have

displayed an interest in theories of the Cosserat type. |

However, since Toupin's paper, there has been a veritable efflorescence of
such theories. Apart from Toupin's own development the earliest of these, and
one of particular significance, is Ericksen's [68,69] theory of nematic liquid
crystals, published in 1960 and 1961 and significantly extended by Leslie. In
this theory the independent constitutive variables are taken to be the veloci- E
ty gradients and a single director of variable length defining the crystallite

orientations and lengths. !

A great number of theories of the Cosserat type have been formulated which |
have as their objective to include within a continuum framework some descrip- |

tion of the microstructure of the material.

For-example, in an isotropic polycrystalline material one could, in principle,
use the classical elasticity theory for anisotropic media to determine the,
displacement field within each crystallite, which results from the application
to a body of the material of specified applied forces. This would require a
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detailed description of the orientations, shapes, and sizes of the crystal-
lites within the body. One would then have to solve a boundary-value problem
in which account i{s taken of the boundary conditions at all the interfaces
between adjacent crystallites. This would, however, be prohibitively diffi-

cult.

An alternative approach, which has been attempted by a number of people, is to
supplement the usual displacement field, which may be interpreted physically
as the average displacement in a domain which contains many crystallites but
{s small compared with the dimensions of the body and with the scale on which
the average displacement field varies, by further vector or tensor fields
which together describe in some approximation the departure of the displace-
ment field in the domain from the average displacement. To each of these
additional fields there correspond conjugate forces and conjugate stress
fields. A complete theory of this type involves equations of motion and
boundary conditions, as well as constitutive equations, for all of the stress
fields involved. A systematic procedure for obtaining these additional equa-
tions of motion and boundary conditions was given by Green and myself [70]1 in

1964.

18. SOME COMMENTS ON CONTINUUM THERMODYNAMICS

In the past twenty years a great deal of attention has been devoted to ther-
momechanical continuum theories based on the application by Coleman 71 of
the Clausius-Duhem inequality to materials with memory. While extravagant
claims are made for the success of the theory, it appears on examination that
the results obtained are either incorrect or are based on the use of the
Clausius-Duhem inequality in the degenerate case when the-thermodynamic pro-
cess involved is reversible, this fact being disguised by a morass of defini-
tions and mathematics which is irrelevant to the result.

The unsatisfactory nature of the theory can be easily demonstrated. The
Clausius-Duhem inequality states that, for a thermomechanical process,

ds Q

S22 5N 18.1)

dt ~ T (
where S is the entropy of the system considered, Q is the rate of heat supply
and T i{s the absolute temperature. In Coleman's theory S is a functional of

the history of the deformation gradient matrix and of the temperature. How-
ever, no prescription s given for determining this functional by thought
experiments or otherwise. Indeed, we are told [72] "temperature and entropy
Join mass place and time as primitive undefined variables ...". One engquires
in vain for the location of the standard of entropy and for a procedure by
which the entrooy of an arbitrary system can be compared with it.

An even more serious difficulty, if this be possible, has been pointed out by
Meixner, who showed by concrete example that the assumption of an entropy
function or functional, defined at each instant of an irreversible process,
leads within the framework of phenomenological theory to a reductio ad absur-
dum.

Of course, for reversible processes the equality sign applies in (18.1) and
the Clausius-Duhem inequality is equivalent, as has been recognized for a long
time, to the Clausius Integral expressing the entropy change in passing re-
versibly from one equilibrium state to another.
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