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Eigenstrains in nonlinear elastic solids are created
through defects, growth, or other anelastic effects.
These eigenstrains are known to be important as
they can generate residual stresses and alter the
overall response of the solid. Here, we study the
residual stress fields generated by finite torsional
or shear eigenstrains. This problem is addressed by
considering a cylindrical bar made of an incompressible
isotropic solid with an axisymmetric distribution
of shear eigenstrains. As particular examples, we
consider a cylindrical inhomogeneity and a double
inhomogeneity with finite shear eigenstrains and
study the effect of torsional shear eigenstrains on
the axial and torsional stiffnesses of the circular
cylindrical bar.

1. Introduction
A standard problem in elasticity is to consider the
effect of an inclusion in the response of a solid under
loads. The celebrated work of Eshelby [3] on the stress
field generated by an ellipsoidal inclusion in a linear
elastic material is the paradigm for such problems.
Since this early work, the study of inclusions has
overwhelmingly been restricted to linear elasticity (see
the recent review [27]) with the exception of a handful
of works dedicated to finding exact solutions in finite
deformations. Among these we should mention the
recent 2D solutions for harmonic materials [5–7,14,15].
The authors [24] studied the residual stress fields of finite
radial and circumferential eigenstrains in the case of
spherical balls and (finite and infinite) circular cylindrical
bars made of arbitrary incompressible and isotropic
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Figure 1. The twist-fit problem is the torsional analogue of the shrink-fit problem. A cylindrical bar is removed (Step 1.)

and replaced by a bar of the same height and radius but twisted (Step 2.). When released (Step 3), the composite bar

develops residual stress.

solids. These studies provide exact solutions that can either be used as benchmark for numerical
problems; provide bounds and justification for the approximations performed in a small-strain
theory; or uncover new nonlinear effects absent or invisible in the linear regime [26].

Another important class of eigenstrains are obtained by considering shear strains. These type
of eigenstrains can be easily generated by considering the twist-fit problem, that is the torsional
analogue to the classical shrink-fit problem [1]: First, remove a cylindrical shell from a cylindrical
bar and replace it by a twisted bar with the same height and radius. Then, release the new
composite structure to obtain a new twisted configuration (see Fig. 1). This new structure contains
finite shear eigenstrains, that are referred to as eigentwist, and support, in general, a residual
stress field. The problem is then to compute the residual stress field and understand how it
affects the effective properties of the structure such as its axial or torsional stiffnesses. Despite
their importance, there appears to be no studies in the literature on finite shear eigenstrains. In
this paper we study a generalized version of the torsional shrink-fit problem for a finite circular
cylindrical bar made of an arbitrary isotropic incompressible solid.

In the nonlinear elasticity literature, problems of axial and azimuthal shear have been
thoroughly studied using semi-inverse methods (see [8,11,12,19] and references therein) and an
interesting and unusual application of these methods can be found in [2]. The traditional approach
is to start with an unstressed reference configuration and compute the stresses and deformations
under given external loads and boundary conditions. When considering eigenstrains, the problem
is slightly different: Given a distribution of shear eigenstrains, what is the induced residual stress
field? We obtain general results on the existence of such residual stresses in a circular cylindrical
bar and identify shear eigenstrains that do not induce residual stresses.

In this paper, we consider the problem of a given arbitrary eigentwist distribution ψ(R) in
a circular cylindrical bar. For this problem, we calculate the deformation kinematics and hence
the residual stresses. Kinematics is described by two constants: τ , the angle of twist per unit
length, and λ, the stretch. In the case of traction-free lateral boundary and zero applied axial
forces, these two constants must satisfy a system of nonlinear algebraic equations. As an example,
we solve these equations for neo-Hookean and Mooney-Rivlin solids. In both cases λ is larger
than one, which is consistent with the celebrated Poynting effect [10]. We will further focus on
two particular examples. In the first one a cylindrical bar has a cylindrical inclusion with uniform
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eigentwist. In the second example, the cylindrical inclusion has a cylindrical inclusion and an
outer annular inclusion, both with uniform eigentwists (but possibly different). In this case, we
look at the relation between the two eigentwists so that the bar does not twist. Finally, for both
problems, we study the effect of eigentwists on the axial and torsional stiffnesses of a circular
cylindrical bar.

This paper is organized as follows. In §2 we briefly discuss shear deformations in nonlinear
elasticity and the material manifold of a solid with a distribution of finite shear eigenstrains.
We then find the impotent finite axisymmetric shear eigenstrains in a cylindrical bar. In §3 we
calculate the residual stress field in a circular cylindrical bar made of an incompressible isotropic
solid with an axisymmetric distribution of finite torsional shear eigenstrains. Two particular
examples of a single and a double inclusion are worked out in detail. §4 discusses the effect of
eigentwist on the axial and torsional rigidities of a circular cylindrical bar. §5 concludes the paper
with some remarks.

2. Finite shear eigenstrains in a cylindrical bar
We consider a cylindrical bar of radius Ro. In the reference (undeformed) configuration, we use
the cylindrical coordinates (R,Θ,Z), for which 0 ≤R ≤Ro, 0 ≤Θ ≤ 2π, 0 ≤Z ≤L. Similarly, in the
current configuration we use the cylindrical coordinates (r, θ, z), for which 0 ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤
z ≤ `, where ro and ` are unknowns to be determined. In the following we first look at two types of
shear deformations that have been extensively studied in the literature of nonlinear elasticity. Our
motivation is to understand the corresponding eigenstrains and their induced residual stresses.

(a) Helical shear
The kinematics of helical shear is fully described as follows [4]:

r =R, θ =Θ + φ(R), z =Z +w(R). (2.1)

If φ(R) ≡ 0, helical shear reduces to axial shear and when w(R) ≡ 0, it reduces to circular (or
azimuthal) shear [4]. In this case, Rφ′(R) is the amount of local pure shear in the plane normal to
ez [12]. The deformation gradient for helical shear is

F(X) =F(R) =
⎛
⎜⎜
⎝

1 0 0

φ′(R) 1 0

w′(R) 0 1

⎞
⎟⎟
⎠
. (2.2)

The choice of cylindrical coordinates in both the reference and the ambient space induce the (flat)
metrics G0 and g: G0 =diag{1,R2,1}, g =diag{1, r2,1}. The right Cauchy-Green strain C =FTF

with components CAB =FaAF bBgab in matrix form reads

C(X) =C(R) =
⎛
⎜⎜
⎝

1 + r2φ′(R)2 +w′(R)2 r2φ′(R) w′(R)
r2φ′(R) r2 0

w′(R) 0 1

⎞
⎟⎟
⎠
. (2.3)

(b) Torsional shear
Torsional shear is the deformation that corresponds to the intuitive notion of twisting a cylinder
shell along its axis. Its kinematics is described by

r =R, θ =Θ + ψZ, z =Z, (2.4)

where ψ is the angle of twist per unit length (a constant) [12]. The deformation gradient for this
deformation reads

F(X) =
⎛
⎜⎜
⎝

1 0 0

0 1 ψ

0 0 1

⎞
⎟⎟
⎠
, (2.5)
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and the associated metric tensor is

C(X) =C(R) =
⎛
⎜⎜
⎝

1 0 0

0 R2 ψR2

0 ψR2 1 + ψ2R2

⎞
⎟⎟
⎠
. (2.6)

(c) Material manifold of a cylinder with an axisymmetric distribution of
finite shear eigenstrains

In a typical analysis of the stress-induced through shear, one assumes the kinematics (2.1)
or (2.4), and by using the governing equations and boundary conditions one determines the
unknown functions (φ(R) and w(R)) or constant (Ψ ). In an eigenstrain analysis, we assume
that a distribution of shear eigenstrains is given and is part of the internal description of the
structure. These eigenstrains, similar to the ones discussed in our previous works [24,26] on
radial and circumferential eigenstrains, change the stress-free configuration of the body in the
form of an eigenstrain-dependent material metric. That is, the material metric associated with the
eigenstrains is no longer flat.

In a series of papers [13,17,20–26] we have demonstrated that a nonlinear anelasticity problem,
i.e. a problem of deformation of a solid with some source of residual stresses, can be transformed
to a nonlinear elasticity problem provided that one uses an appropriate material manifold, in
which the body is stress free by construction. The geometry of the material manifold (here the
Riemannian metric) explicitly depends on the source of residual stresses. We use the formalism
introduced in these papers and briefly review its key features.

We start with a stress-free bodyBwithout eigenstrains lying in the Euclidean space with metric
G0. That is, the initial body is a Riemannian manifold (B,G0). The effect of the eigenstrains is to
transform, locally, a line element dX0 to dX =KdX0. Note that

⟪dX0, dX0⟫G0
= ⟪dX, dX⟫G, (2.7)

where G =K∗G0 (K∗ is push forward by K) and ⟪,⟫G0
and ⟪,⟫G are the inner products induced

by G0 and G, respectively. In the Riemannian manifold (B,G) the body is stress-free as the
distances have not changed compared to the initial stress-free configuration (B,G0). However,
note that this manifold may not be flat. In components, GAB =Kα

AK
β
B(G0)αβ , where we

have assumed the coordinate charts {X̄α} and {XA} in the initial and distorted reference
configurations, respectively.

We illustrate this construction for the simple problem of a torsional eigenstrain (eigentwist) for
a cylindrical bar. In this case, we choose G0 to be the metric associated with the usual cylindrical
coordinates and K to have the same functional form as the deformation gradient given by (2.5) but
with ψ =ψ(R). Since ψ is a function of R, K is not, in general, the gradient of a deformation but
defines a local transformation of the metric on the material manifold. The metric of the material
manifold is then

G(R) =
⎛
⎜⎜
⎝

1 0 0

0 R2 ψ(R)R2

0 ψ(R)R2 1 + ψ2R2

⎞
⎟⎟
⎠
. (2.8)

Similarly, in the case of helical eigenstrains using (2.2), the material manifold in cylindrical
coordinates has the following representation

G(R) =
⎛
⎜⎜
⎝

1 +R2A2(R) +B2(R) R2A(R) B(R)
R2A(R) R2 0

B(R) 0 1

⎞
⎟⎟
⎠
, (2.9)

where A(R) =φ′(R) and B(R) =w′(R).
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(d) Zero-stress axial, azimuthal, and torsional eigenstrains
Before studying the residual stresses induced from finite shear eigenstrains we need to identify
the non-trivial ones. In other words, we need to first find those shear eigenstrains that do not
lead to residual stresses, i.e. zero-stress (impotent) shear eigenstrains. We use the method of
Cartan’s moving frames in cylindrical coordinates suitable for the geometry of our problem. To
summarize this approach, one starts with a frame field {e1,e2,e3}, or equivalently a coframe field
{ϑ1, ϑ2, ϑ3}. This frame field is a set of three linearly independent vectors that span the tangent
space of the material manifold at every point. The coframe field will depend on R through the
distribution of shear eigensrains. What is not known a priori is the connection ∇ of the material
manifold that can be represented by three connection 1-forms (assuming vanishing non-metricity)
{ω1

2, ω
2
3, ω

3
1}. The first structural equations relate the torsion 2-forms to the coframe field and

the connection 1-forms and (in the absence of dislocations) read T α = dϑα + ωαβ ∧ ϑβ = 0. This set
of equations uniquely determine the connection 1-forms. Note that as we have assumed that
the metric is compatible with the connection (vanishing non-metricity) this connection is the
Levi-Civita connection. Now the Riemannian curvature 2-forms are calculated using the second
structural equationsRαβ = dωαβ + ωαγ ∧ ωγβ . A shear eigenstrain field is impotent if and only if
all the curvature 2-forms vanish. For more details on Cartan calculations see [18] and our previous
work.

We start with an arbitrary distribution of axial shear eigenstrains (corresponding to A(R) = 0

and an arbitrary function B(R)). We assume that the moving coframe field is orthonormal. That
is G =ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2 + ϑ3 ⊗ ϑ3, with

ϑ1 = dR, ϑ2 =RdΘ, ϑ3 =B(R)dR + dZ. (2.10)

The material manifold is described by the above moving coframe field. Assuming that the
material manifold is metric-compatible there are three connection 1-forms {ω1

2, ω
2
3, ω

3
1}. We

know that the material manifold is torsion-free and from Cartan’s first structural equations
T α = dϑα + ωαβ ∧ ϑβ we obtain the connection 1-forms to be

ω1
2 =−

1

R
ϑ2, ω2

3 =ω3
1 = 0. (2.11)

The curvature 2-forms are calculated from Cartan’s second structural equations Rαβ = dωαβ +
ωαγ ∧ ωγβ . It is straightforward to show that all the curvature 2-forms identically vanish.
Therefore, any distribution of axial shear eigenstrains is stress-free.

Next, we consider an arbitrary distribution of azimuthal shear eigenstrains (corresponding to
B(R) = 0 and an arbitrary function A(R)). It is described by the orthonormal moving coframe
field

ϑ1 = dR, ϑ2 =RA(R)dR +RdΘ, ϑ3 = dZ. (2.12)

One can easily show that the above moving coframe field defines a flat manifold for any choice
of A(R). Therefore, any distribution of azimuthal shear eigenstrains is stress-free as well. We
conclude that helical shear eigenstrains are always impotent, which is consistent with the fact
that there exists a motion compatible with any choice of functions A and B.

We now turn our attention to the case of a cylindrical bar with torsional eigenstrain
distribution. It is described by the following orthonormal moving coframe field:

ϑ1 = dR, ϑ2 =RdΘ +Rψ(R)dZ, ϑ3 = dZ, (2.13)

where ψ(R) is the radial density of the angle of twist per unit length of the bar. We know, by
construction, that the case ψ(R) constant is impotent since it corresponds to the classical torsion
problem. Using Cartan’s first structural equations the connection 1-forms are

ω1
2 =−

1

R
ϑ2 − R

2
ψ′(R)ϑ3, ω2

3 =−
R

2
ψ′(R)ϑ1, ω3

1 =
R

2
ψ′(R)ϑ2. (2.14)
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Cartan’s second structural equations give us the following torsion 2-forms:

R1
2 =

1

4
[Rψ′(R)]2 ϑ1 ∧ ϑ2, (2.15)

R2
3 =

1

4
[Rψ′(R)]2 ϑ2 ∧ ϑ3, (2.16)

R3
1 = [R

2
ψ′′(R) + ψ′(R)]ϑ1 ∧ ϑ2 − 3

4
[Rψ′(R)]2 ϑ3 ∧ ϑ1. (2.17)

This manifold is flat if and only if ψ′(R) = 0 or ψ(R) =ψ0 is a constant. Therefore, any nonuniform
distribution of torsional shear eigenstrains induces residual stresses.

Remark 2.1. In the case of combined helical and torsional eigenstrains one has the following moving
coframe field

ϑ1 = dR, ϑ2 =RA(R)dR +RdΘ +Rψ(R)dZ, ϑ3 =B(R)dR + dZ. (2.18)

One can show that again the material manifold in this case is flat if and only if ψ′(R) = 0. In other
words, axial and azimuthal shear eigenstrains are always impotent even in combination with torsional
shear eigenstrains. For this reason, in what follows we consider a bar with a distribution of only torsional
shear eigenstrains.

(e) Constitutive laws
So far the discussion has been purely geometric. We showed that helical shear eigenstrains are
always compatible and that torsional eigenstrains are incompatible, hence can create residual
stresses. In order to compute these stresses, we need constitutive laws. We restrict our attention
to hyperelastic, isotropic incompressible solids. Therefore, we can use the classical representation
formulae of Cauchy stress in terms of invariants by assuming the existence of a strain-energy
density function W .

Let us assume that the ambient space is a Riemannian manifold (S,g). Motion is a mapping ϕ ∶
B→S. The left Cauchy-Green deformation tensor is defined as B♯ =ϕ∗(g♯) and has components
BAB = (F−1)Aa(F−1)Bb gab, where gab are components of g♯. The spatial analogues of C♭ and

B♯ are c♭ =ϕ∗(G), cab = (F−1)A a (F−1)
B
b GAB and

b♯ =ϕ∗(G♯), bab =FaAF bBGAB . (2.19)

The tensor b♯ is called the Finger deformation tensor. C and b have the same principal invariants
that are denoted by I1, I2, and I3 [12]. For an isotropic material the strain energy function W

depends only on the principal invariants of b. It is known that for an incompressible and isotropic
hyperelastic material with strain-energy density function W =W (I1, I2), the Cauchy stress has
the following representation [16]

σ = (−p + 2I2
∂W

∂I2
)g♯ + 2

∂W

∂I1
b♯ − 2

∂W

∂I2
b−1, (2.20)

where p is an arbitrary function of X.

3. Residual stress field in a circular cylindrical bar with
eigenstwist

Consider a cylindrical bar of initial length L and radius Ro made of an isotropic and
incompressible material with an energy function W =W (I1, I2). We assume that an eigentwist
per unit length ψ(R) is given and our objective is to calculate the resulting residual stress
field. We use the cylindrical coordinates (r, θ, z) for the Euclidean ambient space with the flat
metric g =diag{1, r2,1}. The material metric depends on ψ(R) and is given, in the cylindrical
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coordinates (R,Θ,Z) by (2.8). The computation of the residual stress amounts to finding a
suitable embedding of the material manifold into the ambient space. This embedding can be
accomplished by the semi-inverse method that suggests an ansatz of the form:

r = r(R), θ =Θ + τZ, z =λ2Z, (3.1)

where τ and λ are some unknown constants to be determined. Physically, we are looking for
realization of our body as a stretched and twisted cylinder. The deformation gradient for this
problem is

F =
⎛
⎜⎜
⎝

r′(R) 0 0

0 1 τ

0 0 λ2

⎞
⎟⎟
⎠
, (3.2)

and we observe that the incompressibility condition is given by

J =
√

detg

detG
detF = λ

2r(R)r′(R)
R

= 1. (3.3)

This condition, together with r(0) = 0, imply that r(R) =R/λ.
According to (2.19), the Finger tensor is given by

b♯ =
⎛
⎜⎜
⎝

1
λ2 0 0

0 1
R2 + (τ − ψ(R))2 λ2(τ − ψ(R))

0 λ2(τ − ψ(R)) λ4

⎞
⎟⎟
⎠
. (3.4)

The principal invariants of b are

I1 =
2 + λ6 +R2(τ − ψ(R))2

λ2
, I2 =

1 + 2λ6 +R2(τ − ψ(R))2
λ4

. (3.5)

Note that (b−1)ab = cab = gamgbncmn and hence

b−1 =
⎛
⎜⎜⎜
⎝

λ2 0 0

0 λ4

R2 ψ(R) − τ
0 ψ(R) − τ 1+R2

(τ−ψ(R))2

λ4

⎞
⎟⎟⎟
⎠
. (3.6)

We know that σ = (−p + I2β)g♯ + αb♯ − βb−1, where α = 2∂W∂I1 and β = 2∂W∂I2 . Therefore, the
Cauchy stress has the following representation

σ =
⎛
⎜⎜⎜
⎝

−p + 1
λ2α + 1+λ6

λ4 β + 1
λ4R

2β(τ − ψ)2 0 0

0
λ2
(α(1+R2

(τ−ψ)2)−λ2p)+β(1+λ6
+R2

(τ−ψ)2)

R2λ2 (αλ2 + β) (τ − ψ)
0 (αλ2 + β) (τ − ψ) αλ4 + 2βλ2 − p

⎞
⎟⎟⎟
⎠
.

(3.7)
The circumferential and axial equilibrium equations imply that p = p(R) and the radial
equilibrium equation reads

∂σrr

∂r
+ 1

r
σrr − rσθθ = 0, (3.8)

which can be written explicitly as

dσrr

dR
− αR(τ − ψ)2

λ2
= 0. (3.9)

Substitution of σrr given by (3.7), gives

p′(R) = k(R), (3.10)

where

k(R) = d

dR
[ 1

λ2
α(R) + 1 + λ6

λ4
β(R) + 1

λ4
R2β(R)(τ − ψ(R))2] − 1

λ2
Rα(R) (τ − ψ(R))2 . (3.11)
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We assume that the cylindrical boundary of the bar is traction free. In terms

of the first Piola-Kirchhoff stress PaA = Jσab (F−1)A b this reads P rR∣Ro
= 0. Note that

P rR = 1
λ3 [λ2 (α − λ2p) + β (1 + λ6 +R2(τ − ψ)2)]. Let αo =α(Ro), βo = β(Ro), and ψo =ψ(Ro).

Therefore

p(Ro) =
αo
λ2

+ βo
λ4

[1 + λ6 +R2
o(τ − ψo)2] . (3.12)

Integrating (3.10) from R to Ro and using (3.12) the pressure field is calculated and reads

p(R) = 1

λ2
α(R) + 1 + λ6

λ4
β(R) + 1

λ4
R2β(R)(τ − ψ(R))2 + 1

λ2 ∫
Ro

R
ξα(ξ)(τ − ψ(ξ))2dξ. (3.13)

As we are interested in residual stresses we assume that at the two ends of the bar Z = 0, L, the
axial force and torque are zero, i.e. F = 0, M = 0, where

F = 2π∫
Ro

0
P zZ(R)RdR, M = 2π∫

Ro

0
P̄ θZ(R)R2dR, (3.14)

and P̄ θZ = rP θZ is the physical θZ component of the first Piola-Kirchhoff stress. Note that

P zZ(R) =λ2α(R) + 2β(R) − 1

λ2
p(R), P θZ(R) = 1

λ2
(λ2α(R) + β(R)) (τ − ψ(R)) . (3.15)

Explicitly, (3.14)2 reads

λ2τ ∫
Ro

0
R3α(R)dR − λ2 ∫

Ro

0
R3α(R)ψ(R)dR + τ ∫

Ro

0
R3β(R)dR =∫

Ro

0
R3β(R)ψ(R)dR.

(3.16)
Whereas, Eq. (3.14)1 gives

− ∫
Ro

0
Rp(R)dR + λ4 ∫

Ro

0
Rα(R)dR + 2λ2 ∫

Ro

0
Rβ(R)dR = 0. (3.17)

The last expression can be further simplified to read

λ8 ∫
Ro

0
Rα(R)dR + λ6 ∫

Ro

0
Rβ(R)dR − λ2 (∫

Ro

0
Rα(R)dR + ∫

Ro

0
R∫

Ro

R
ξα(ξ)ψ2(ξ)dξdR)

− τ2λ2 ∫
Ro

0
R∫

Ro

R
ξα(ξ)dξdR + 2τλ2 ∫

Ro

0
R∫

Ro

R
ξα(ξ)ψ(ξ)dξdR − τ2 ∫

Ro

0
R3β(R)dR

+ 2τ ∫
Ro

0
R3β(R)ψ(R)dR =∫

Ro

0
Rβ(R)dR + ∫

Ro

0
R3β(R)ψ2(R)dR.

(3.18)
The unknown constants λ and τ are solutions of the nonlinear system of equations (3.16) and
(3.18).

For neo-Hookean solids α(R) =µ(R) > 0 and β(R) = 0. In this case we can find λ and τ

analytically. Eq. (3.16) gives us

τ = ∫
Ro

0 R3µ(R)ψ(R)dR

∫
Ro

0 R3µ(R)dR
. (3.19)

Note that the residual twist will be zero if

∫
Ro

0
R3µ(R)ψ(R)dR = 0. (3.20)

In this configuration the residual stretch is

λ = 1 + ∫
Ro

0 R ∫
Ro

R ξµ(ξ)ψ2(ξ)dξdR

∫
Ro

0 Rµ(R)dR
> 1. (3.21)

(a) A circular cylindrical inclusion with eigentwist
In this example we study a bar with a cylindrical inhomogeneity with uniform eigentwist.
Physically, it corresponds to removing the core of a cylinder and replacing it with a core of
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Figure 2. In these figures we have considered a cylindrical shaft with torsional shear eigenstrains for which k = 0.5,

m = π. (a) Variation of stretch λ as a function of s ∈ [0, 1] for three choices of parameters a and b. Note that a = b =
1 corresponds to an inclusion. (b) Variation of twist per unit length τ as a function of s ∈ [0, 1] for three choices of

parameters a and b.

the same material and of the same height but twisted uniformly. We solve the problem for both
Mooney-Rivlin and neo-Hookean solids. Consider a cylindrical inhomogeneity with a region of
eigenstrain with radius Ri given by a uniform eigentwist ψi, i.e.

ψ(R) =
⎧⎪⎪⎨⎪⎪⎩

ψi 0 ≤R <Ri
0 Ri <R ≤Ro

. (3.22)

We assume that α and β are piecewise constants (Mooney-Rivlin material), i.e.

α(R) =
⎧⎪⎪⎨⎪⎪⎩

αi 0 ≤R <Ri
α0 Ri <R ≤Ro

, β(R) =
⎧⎪⎪⎨⎪⎪⎩

βi 0 ≤R <Ri
β0 Ri <R ≤Ro

. (3.23)

We introduce the following dimensionless parameters.

s = Ri
Ro

< 1, k = β0
α0
, a = αi

α0
, b = βi

β0
, χ =Roτ, m =Roψi. (3.24)

Equations (3.16) and (3.18), written in terms of λ and χ read

[1 + (a − 1)s4]λ2χ − (ams4)λ2 + k [1 + (b − 1)s4]χ = bkms4,

[1 + (a − 1)s2]λ8 + k [1 + (b − 1)s2]λ6 − [1 + (a − 1)s2 + 1

4
am2s4]λ2 − 1

4
[1 + (a − 1)s4]λ2χ2

+ (1

2
ams4)λ2χ − 1

2
k [1 + (b − 1)s4]χ2 + (bkms4)χ = k {[1 + (b − 1)s2] + 1

2
bm2s4} .

(3.25)
Note that in the above system of equations when m→−m we have {λ,χ}→ {λ,−χ}. Once m and
χ are known, the residual stress is easily obtained from (3.13) and (3.7).

Figures 2(a) and (b) show the variation of stretch λ and twist τ for a shaft with an
inhomogeneity for which k = 0.5 and eigenstwist m = π for different values of the pair (a, b). Note
that s = 0 corresponds to a bar without eigenstrain and hence (λ, τ) = (1,0). When s = 1, the entire
bar has a uniform eigentwist m. This corresponds to (λ, τ) = (1,m) as expected. Note that in this
extreme case the shear eigenstrain distribution is stress-free as was discussed earlier.

In the case of neo-Hookean solids we have

χ = ams4

1 + (a − 1)s4 , λ6 = 1 + am2s4(1 − s4)
4 [1 + (a − 1)s2] [1 + (a − 1)s4] . (3.26)
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For illustrative purposes, if the bar is made out of a uniform material (a = 1), the only non-zero
shear stress σ̄θz has the following distribution:

σ̄θz =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µλψi [(Ri
Ro

)
4
− 1]R 0 ≤R <Ri

µλψi (Ri
Ro

)
4
R Ri <R ≤Ro

, (3.27)

where λ = [1 + 1
4m

2s4(1 − s4)]
1
6 . The radial stress has the following distribution:

σ̄rr =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−µψ
2
i

2λ2 (Ri
Ro

)
8
(R2

o −R2
i ) +

µψ2
i

2λ2 [(Ri
Ro

)
4
− 1]

2

(R2
i −R2) 0 ≤R <Ri

−µψ
2
i

2λ2 (Ri
Ro

)
8
(R2

o −R2) Ri <R ≤Ro
. (3.28)

It is seen that when s = 1, stresses are identically zero as expected.

(i) Comparison with the linear elasticity solution

For small m =Roψi one has

σ̄θz =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µψi [(Ri
Ro

)
4
− 1]R +O(m3) 0 ≤R <Ri

µψi (Ri
Ro

)
4
R +O(m3) Ri <R ≤Ro

, (3.29)

while the other stress components are of order O(m2) and hence can be neglected for small m.
It is instructive to compare this solution with the classical linear solution for a twist inclusion in
circular shafts. For a bar of radiusRi inside a hollow shaft of inner radiusRi and outer radiusRo,
the eigenstrain distribution (3.22) implies that the inner shaft tends to twist by ψi per unit length
if it is detached from the hollow shaft. To construct this configuration in the Euclidean ambient
space we first apply a torque Mi to the inner shaft to twist it (per unit length) by −ψi (loading).
Note that

− ψi =
Mi

µJi
, (3.30)

where Ji = π2R
4
i is the torsional rigidity of the inner shaft (when detached from the hollow shaft).

Removing this torque, the shaft would twist (per unit length) by ψi. In the unloading stage we
imagine gluing the inner shaft to the hollow shaft and applying −Mi to the whole system. The
residual twist (per unit length) τ is calculated as follows

τ = −Mi

µJ
= Ji
J
ψi = (Ri

Ro
)
4

ψi, (3.31)

where J = π2R
4
o is the torsional rigidity of the cylindrical bar. Note that this is identical to (3.26)1.

To calculate the residual stress distribution we use superposition. In the loading stage, the stress
is non-zero only for R ≤Ri and the only non-zero stress component reads

σ̄θzloading(R) = MiR

Ji
=−µψiR. (3.32)

In the unloading stage, throughout the shaft the only non-zero stress component is

σ̄θzunloading(R) = −MiR

J
=µψi (

Ri
Ro

)
4

R. (3.33)

By the principle of linear superposition, we can add the stresses in the loading and unloading
stages to obtain

σ̄θzlinear =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µψi [(Ri
Ro

)
4
− 1]R 0 ≤R <Ri

µψi (Ri
Ro

)
4
R Ri <R ≤Ro

, (3.34)

which is identical to (3.29) to first order in m.
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(b) A double cylindrical inhomogeneity with eigentwist
In this example we consider a cylindrical bar with a cylindrical double inhomogeneity with
shear eigenstrains. Consider a cylindrical inhomogeneity of radius Ri covered by an annular
inhomogeneity of outer radius Ra with the following distribution of eigenstrains.

ψ(R) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψi 0 ≤R <Ri
ψa Ri <R ≤Ra
0 Ra <R <Ro

. (3.35)

We assume that (Mooney-Rivlin material)

α(R) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αi 0 ≤R <Ri
αa Ri <R ≤Ra
α0 Ra <R <Ro

, β(R) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

βi 0 ≤R <Ri
βa Ri <R ≤Ra
β0 Ra <R <Ro

. (3.36)

As before, we introduce the dimensionless parameters.

si =
Ri
Ro

, sa =
Ra
Ro

, k = β0
α0
, ai =

αi
α0
, aa =

αa
α0
, bi =

βi
β0
, ba =

βa
β0
, χ =Roτ, mi =Roψi, ma =Roψa.

(3.37)
The unknowns λ and χ must satisfy the following system of nonlinear equations:

[ais4i + aa(s4a − s4i ) + 1 − s4a]λ2χ − [aimis
4
i + aama(s4a − s4i )]λ2 + k [bis4i + ba(s4a − s4i ) + 1 − s4a]χ

= k [bimis
4
i + bama(s4a − s4i )] ,

(3.38)
and

[ais2i + aa(s2a − s2i ) + 1 − s2a]λ8 + k [bis2i + ba(s2a − s2i ) + 1 − s2a]λ6

− [ais2i + aa(s2a − s2i ) + 1 − s2a +
1

4
aim

2
i s

4
i +

1

4
aam

2
a(s4a − s4i )]λ2

− 1

4
[ais4i + aa(s4a − s4i ) + 1 − s4a]λ2χ2 + k [bimis

4
i + bama(s4a − s4i )]χ

+ 1

2
[aimis

4
i + aama(s4a − s4i )]λ2χ −

1

2
k [bis4i + ba(s4a − s4i ) + 1 − s4a]χ2

= k [bis2i + ba(s2a − s2i ) + 1 − s2a +
1

2
bim

2
i s

4
i +

1

2
bam

2
a(s4a − s4i )] .

(3.39)

If the inhomogeneities and the matrix are all made of neo-Hookean solids we have

χ = aimis
4
i + aama(s4a − s4i )

ais
4
i + aa(s4a − s4i ) + 1 − s4a

. (3.40)

If the bar is made of the same material (the case of a double inclusion) this is further simplified to
read

τ =ψi (
Ri
Ro

)
4

+ ψa [(
Ra
Ro

)
4

− (Ri
Ro

)
4

] . (3.41)

In this case we have the following expression for stretch.

λ6 = 1 + R
2
o

4
{ψ2

i (
Ri
Ro

)
4

+ ψ2
a [(

Ra
Ro

)
4

− (Ri
Ro

)
4

]} − R
2
o

4
{ψi (

Ri
Ro

)
4

+ ψa [(
Ra
Ro

)
4

− (Ri
Ro

)
4

]}
2

.

(3.42)
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Example 3.1. Note that the residual twist τ vanishes when

ψi =− [(Ra
Ri

)
4

− 1]ψa. (3.43)

In this case

λ = [1 + 1

4

ψ2
aR

4
a

R2
o

(R
4
a

R4
i

− 1)]
1
6

> 1. (3.44)

The only non-vanishing shear stress has the following distribution

σ̄θz(R) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−µλψiR 0 ≤R <Ri
−µλψaR Ri <R ≤Ra
0 Ra <R <Ro

. (3.45)

The radial stress has the following distribution

σ̄rr(R) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− µ
2λ2 [ψ2

i (R2
i −R2) + ψ2

a(R2
a −R2

i )] 0 ≤R <Ri
− µ
2λ2ψ

2
a(R2

a −R2) Ri <R ≤Ra
0 Ra <R <Ro

. (3.46)

Note that the stress in the matrix is not identically zero; the axial stress has the constant value µ(λ6 − 1)/λ2
in the matrix.

4. The effective stiffnesses of a cylindrical bar with eigentwist
The eigentwist distribution considered so far maintains the cylindrical geometry. It is therefore
natural to compare the response of a cylinder with eigentwist to a stress-free cylinder. To do so,
we compute the effective axial and torsional stiffnesses of a cylinder with eigentwist. We consider
both a simple and double inhomogeneity with eigenstrain and assume, for simplicity, that they
are neo-Hookean solids. For an arbitrary strain-energy density function the effective stiffnesses
must be obtained numerically.

(a) Effect of a cylindrical inclusion with eigentwist
We consider a circular cylindrical bar of radius Ro with a cylindrical inhomogeneity of radius
Ri. We assume that both the inhomogeneity and the matrix are made of the same incompressible
neo-Hookean material with shear modulus µ and assume an eigenstrain distribution given by
(3.22).

Effective axial stiffness. We assume that the bar is under an axial force F at its two ends while
there is no external torque, i.e. M = 0. We are interested in calculating F as a function of λ. Using
χ =ms4 (3.14)1 gives

F

πR2
oµ

=λ2 − [1 + 1

4
m2s4(1 − s4)]λ−4. (4.1)

We refer to the stretch corresponding to F = 0 as the residual stretch and denote it by λ0 =
[1 + 1

4m
2s4(1 − s4)]

1
6 . Eq.(4.1) can now be written as

F = πR2
oµλ

2
0 [( λ

λ0
)
2

− ( λ
λ0

)
−4

] . (4.2)

Therefore
∂F

∂λ
= 2πR2

oµλ0 [( λ
λ0

) + 2( λ
λ0

)
−5

] . (4.3)
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In particular, we define axial stiffness as

Ka(m) ∶= ∂F
∂λ

RRRRRRRRRRRλ=λ0

= 6µπR2
oλ0. (4.4)

Hence
Ka(m)
Ka(0)

=λ0 = [1 + 1

4
m2s4(1 − s4)]

1
6

> 1. (4.5)

We observe that an inclusion with eigentwist always increases the axial stiffness.

Effective torsional stiffness. We assume that the bar is under an external torque M at its two
ends while there is no external axial force, i.e. F = 0. We are interested in calculating M as a
function of τ . From (3.14) we have

M = (µπ
2
R3
o)

1

λ
(χ −ms4), λ6 = 1 + 1

4
m2s4 + 1

4
χ2 − 1

2
ms4χ. (4.6)

Let us denote χ0 =ms4, which corresponds to the case of no applied force/moment configuration.
Now M can be rewritten as

M =µπ
2
R3
o

χ − χ0
[1 + 1

4χ
2
0(s−4 − 1) + 1

4(χ − χ0)2]
1
6

=µπ
2
R3
o

χ − χ0
[λ60 +

1
4(χ − χ0)2]

1
6

. (4.7)

The torsional stiffness is defined as

Kt(m) ∶= ∂M
∂χ

RRRRRRRRRRRχ=χ0

= π
2
R3
oµ

1

λ0
. (4.8)

Hence, we have
Kt(m)
Kt(0)

= 1

λ0
= [1 + 1

4
m2s4(1 − s4)]

−
1
6

< 1. (4.9)

We observe that an inclusion with eigentwist always decreases the torsional stiffness.

Remark 4.1. Note that axial and torsional stiffnesses are defined with respect to the relaxed configuration
under no external force and torque, i.e. the configuration (λ0, χ0). Given an external force and torque the
material manifold still has the metric (2.8). This enabled us to find the pair (F,M) as functions of (λ,χ)
and calculate their derivatives evaluated at the (intermediate) configuration (λ0, χ0).

(b) Effect of a double cylindrical inclusion with shear eigenstrains
Next we find the axial and torsional stiffnesses of the bar with a double inclusion. Again,
we can assume different shear moduli for the inhomogeneities and the matrix but as our
goal is to understand the effect of shear eigenstrains will restrict ourselves to inclusions. It is
straightforward to show that the results for a double inhomogeneity are similar to those of a
single inclusion, i.e.

Ka(m)
Ka(0)

=λ0,
Kt(m)
Kt(0)

= 1

λ0
, (4.10)

with the only difference that now, we have

λ0 = 1 + 1

4R2
o
[ψ2
iR

4
i + ψ2

a(R4
a −R4

i )] −
1

4R6
o
[ψiR4

i + ψa(R4
a −R4

i )]
2
. (4.11)

Note that λ0 = 1 + 1
4f(mi,ma), where

f(mi,ma) =m2
i s

4
i +m2

a(s4a − s4i ) − [mis
4
i +ma(s4a − s4i )]

2
. (4.12)
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We think of si and sa as parameters. Looking for extrema of f , the relations ∂f
∂mi

= ∂f
∂ma

= 0 give
us mi =ma = 0. The Hessian matrix at this point reads

H = 2( s4i (1 − s4i ) −s4i (s4a − s4i )
−s4i (s4a − s4i ) s4a − s4i − (s4a − s4i )2

) . (4.13)

Note that detH = 4s4i (1 − s4a)(s4a − s4i ) > 0 and trH = 4s4i (s4a − s4i ) + 2s4a(1 − s4a) > 0. Therefore, H
is positive-definite and hence f(mi,ma) > f(0,0) = 0. Therefore, λ0 > 1. We observe that similar
to a single inclusion, a double inclusion with arbitrary shear eigenstrains always makes the
cylindrical bar axially stiffer but torsionally softer.

5. Concluding remarks
The problem of dilatational eigenstrains, both in small and large deformations, is well
appreciated. The analogue problem for shear eigenstrains has yet to be properly addressed,
despite the known importance of shear stresses in solids. To address this issue, we consider
various distributions of shear eigenstrains in cylindrical geometry where semi-inverse methods
can be combined with differential geometric techniques to obtain exact solutions. We studied
in details, helical and torsional eigenstrains and showed that in a circular cylindrical bar any
axisymmetric distribution of helical shear eigenstrains is impotent (stress-free). We then showed
that any non-uniform axisymmetric distribution of torsional shear eigenstrains (eigentwist)
induces residual stresses.

As illustrative examples of these general results, we studied the residual stress field of an
axially-symmetric distribution of finite eigentwist induced by a single or double inclusion. We
showed that a bar with such inclusions always elongates independently of the value of the
eigentwists. In the case of a single inclusion, we compared the residual stress field with that of
linear elasticity solution using the classical mechanics of materials approach. We finally studied
the effect of these torsional eigenstrains for the effective axial and torsional stiffnesses of a
cylindrical bar. In the case of neo-Hookean solids, we showed that in both cases independent
of the values of the eigenstrains, the bar becomes stiffer axially but torsionally softer.

Eigenstrains can be used to model a host of different effects in mechanical biology (such as
growth, remodelling, and active stresses) and engineering (thermal stresses, defects, magneto-
elastic effects). Their presence in a solid can have a profound effect on the response of a
structure under loads. In finite deformations, these effects can be highly non-trivial as they couple
the nonlinear response of the material, the geometry of the structure, and a combination of
eigenstrains. The geometric framework that we have developed allows for a systematic analysis
of these effects.
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