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1. Introduction 

We are doctoral candidates in Department of Mechanical Engineering, McMaster University, 
Canada. We have found a contradiction between the semi analytical solution and the simulated 
results in the case of simple shear by using ABAQUS. We are interested to communicate our 
results with SIMULIA to share our findings and get a closer attention and feedback to the 
deviation that would help us solve further problems involving shear deformation. A detailed 
description of the solution procedure is included in this report. 

As we know, shear is a typical deformation involving rotation of the material. Many processes 
such as deep drawing, equal channel angle extrusion, differential speed rolling, metal cutting etc. 
involve large shear. Therefore, it is important to accurately simulate large shear to have a reliable 
model for the complex shear deformation processes. In this report, we have tried to simulate 
simple shear using ABAQUS and compared it with the analytical solution. To our surprise, even 
though the equivalent stress and strain matched perfectly, the component stress and strain had a 
large deviation between the semi analytical and ABAQUS methods. The zero components in the 
analytical model were calculated to be non-zero in the results of ABAQUS. This paradox could 
not be understood clearly as whether it is a case of software deficiency or conceptual error.   

 

2. Notations 

 Analysis Abaqus  

 ),,( ZYXR   Initial coordinates 
 ),,( zyxr   Current coordinates 
 V   Velocity   
 F   Deformation gradient 
 l   Velocity gradient 
 ijd ,d   Strain rate 

 e
ij

e d,d   Elastic strain rate 



 p
ij

p d,d   Plastic strain rate 

 p
ed   Equivalent plastic strain rate 

 ijw,w   Spin 
 ijε,ε  LE. LEij True strain 

 p
eε  PEEQ Equivalent plastic strain 

 ijσ,σ  S. Sij Cauchy stress 

 ∇σ   Jaumann rate of Cauchy stress 
 eσ  S. Mises von Mises stress 
 τ , 12σ  S12 Shear stress 
 γ   Engineering shear strain 
 λµ,   Lamè constants 
 E   Young's modulus 
 ν   Poisson's ratio 
 δ   Krokener delta 
 0σ   Yielding stress 
 n   Plastic working hardening exponent 

 

 

3. Analysis Procedure 

3.1 Formulation of simple shear 

 

Consider a body that undergoes a simple shear with a shear stress τ acting as shown in Fig.1. The 
undeformed body is a 1 X 1 square. 

τ

γ

 



Figure 1. Schematic of simple shear 

The boundary conditions assigned are, restriction of horizontal and vertical displacement 
of the bottom edge and vertical displacement of top edge. By this the top edge is free to move in 
horizontal direction. 

The deformation is characterized by the deformation gradient tensor F  and velocity 
gradient tensor l : 
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where ),,( ZYXR  is the initial coordinate of a point in the reference configuration; ),,( zyxr  is 
the current coordinate of the point in the deformed configuration; V  is the velocity of point r  in 
the deformed configuration. For the case of simple shear, according to the boundary conditions 
assigned, the relation between ),,( zyxr  and ),,( ZYXR  are: 
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And the velocity V  is: 
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Therefore the deformation gradient tensor F  is obtained: 
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And velocity gradient tensor l : 
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The velocity gradient can be decomposed into symmetric part d (strain rate) and 
asymmetrical part w  (spin): 
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Because the plasticity are rate independent, the non-zero strain rate and spin can be 
assigned as 22112 γ== dd , 22112 γ=−= ww .  

The strain rate ijd  is decomposed to the elastic and plastic parts, p
ij

e
ijij ddd += . In order 

to consider large deformation, the large deformation constitutive equation is defined by:  

 δddddσdσ )(tr)(2)(tr pp −+−=+∇ λµ  (1) 

which is also used by ABAQUS for isotropic materials at large deformation, where 
)21)(1( νννλ −+= E  and )1(2/ νµ += E  are the Lamè constants in terms of the Young's 

modulus E  and the Poisson's ratio ν , δ  is the Kronecker’s delta and ∇σ is the Jaumann rate of the 
Cauchy stress tensor based on the spin w : 

 wσσwσσ ⋅+⋅−=∇   (2) 

The plastic strain rate p
ijd  is proportional to the the deviatoric stress ijσ ′ (= ijkkij δσσ

3
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− ) as in the 

conventional 2J -flow theory of plasticity. The plastic strain rate can otherwise be expressed as, 

 ij
e

p
ep

ij
d

d σ
σ

′=
2
3

 (3) 

where ijije σσσ ′′=
2
3  is the von Mises effective stress and p
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plastic strain rate. The material hardening is defined by  
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where Yσ and 0σ  are the flow stress and yielding stress, respectively. p
eε  is the equivalent plastic 

strain defined as ∫= dtd p
e

p
eε . 

For the case of simple shear (Fig. 1), the non-zero strain rate and spin are 22112 γ== dd , 



22112 γ=−= ww . From Eqs. (1), (3) and considering dkk=0, the stress rates are obtained as, 
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From Eqs. (5a-c), it can be derived that 33σ  is always zero and 2211 σσ −= . Therefore, Eq. (5) can be 
rewritten as: 
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If the material is in elastic region, p
ed  is zero. This implies, γσσ  1211 =  and γσµσ  )( 1112 −= . If the 

material is in plastic region, the consistency condition, Ye σσ  = , requires that )('/ 0
p

ee
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e fd εσσ= . 

For simple shear, )(3 2
12

2
11 σσσ +=e , ee σσσσσσ )(3 12121111  += . Therefore, the equivalent plastic 

strain rate can be written as: 
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Then Eq. (6) can be rewritten as: 
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By denoting
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The material constants are assumed as: E=500, ν=0.33, σ0=1 and n=0.2. Substituting these 
constants in eq. (10), the solution can be obtained semi-analytically. The same problem was 
simulated with ABAQUS. The boundary conditions assigned are, restriction of horizontal and 
vertical displacement of the bottom edge and vertical displacement of top edge. By this the top 
edge is free to move in horizontal direction. In order to avoid the interaction between the 
elements, only one element (element type is CPE4R) is considered for calculation. The 
corresponding input file codes, <shear.inp> is included in the appendix. 

 

 

4. Comparison between the results by semi-analytical solution and ABAQUS methods. 

Fig.2 shows the calculated Von Mises stress versus equivalent plastic strain curves obtained 
through semi-analytical and ABAQUS methods. Both curves are found to be in close agreement. 
Similar agreement is found with the shear stress versus equivalent plastic strain and normal stress 
component versus equivalent plastic strain as shown in Fig.3 and Fig.4 respectively.  However, if 
the stress values are compared against the individual strain components, there is a considerable 
difference between the semi-analytical and ABAQUS methods. Fig. 5, 6 and 7 show the Von 
Mises stress, shear stress and component normal stress plotted against the component shear strain 
explaining this paradox. Secondly, the normal strain component is overestimated by ABAQUS 
which is obviously zero as obtained by analytical method (Fig.8).  

 

5. Conclusion 

Provided the correctness of semi analytical solution, there exists a lacuna in obtaining effective 
stress and strain for a simple shear deformation through ABAQUS simulation. We have counter 
checked the simulation in various versions of ABAQUS, namely 6.5-4, 6.7-1, 6.8-3 versions and 
also in different processors. Other element types such as, CPS4, CPS4R, CPE4, CPE4RH, CPE8I, 
and CPE8R have been also tried. The results are found to be consistently same in all the cases. 
Therefore, we decided to write this report and communicate it to SIMULIA to obtain a clearer 
understanding of the contradiction. We have also communicated our results to other academic 
experts in the field to get their opinion on this situation. We request for your kind attention to 



this problem and give us your valuable feedback that would help us solve further problems in 
plasticity involving complex shear deformation. Your support in this matter is well appreciated. 
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Figure 2. Plot of Von Mises stress versus equivalent plastic strain. 
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Figure 3. Plot of shear stress versus equivalent plastic strain. 
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 Figure 4. Plot of normal stress component versus equivalent plastic strain. 
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Figure 5. Plot of Von Mises stress versus shear strain component 
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Figure 6. Plot of shear stress versus shear strain component 
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Figure 7. Plot of normal stress component versus shear strain component. 
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Figure 8. Plot of normal strain component and shear strain component. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 

 

<Shear.inp> 

 
*Heading 
** Job name: shear Model name: abq67_shear 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=Part-1 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=Part-1-1, part=Part-1 
*Node 
      1,          0.5,         -0.5 
      2,         -0.5,         -0.5 
      3,          0.5,          0.5 
      4,         -0.5,          0.5 



*Element, type=CPE4R 
1, 4, 2, 1, 3 
*Nset, nset=_PickedSet2, internal, generate 
 1,  4,  1 
*Elset, elset=_PickedSet2, internal 
 1, 
** Section: Section-1 
*Solid Section, elset=_PickedSet2, material=MATERIAL-1 
1., 
*End Instance 
**   
*Nset, nset=_PickedSet10, internal, instance=Part-1-1 
 1, 2 
*Elset, elset=_PickedSet10, internal, instance=Part-1-1 
 1, 
*Nset, nset=_PickedSet15, internal, instance=Part-1-1 
 1, 2 
*Elset, elset=_PickedSet15, internal, instance=Part-1-1 
 1, 
*Nset, nset=_PickedSet16, internal, instance=Part-1-1 
 3, 4 
*Elset, elset=_PickedSet16, internal, instance=Part-1-1 
 1, 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name=MATERIAL-1 
*Elastic 
500., 0.33 
*Plastic 
      1.,   0. 
 1.43097, 0.01 
 1.61539, 0.02 
  1.7411, 0.03 
 1.83842, 0.04 
 1.91865, 0.05 
 1.98734, 0.06 
 2.04767, 0.07 
 2.10163, 0.08 
 2.15056, 0.09 
  2.1954,  0.1 
 2.23685, 0.11 
 2.27544, 0.12 
 2.31158, 0.13 
 2.34559, 0.14 
 2.37773, 0.15 
 2.40822, 0.16 
 2.43725, 0.17 
 2.46495, 0.18 
 2.49146, 0.19 



 2.51689,  0.2 
 2.54133, 0.21 
 2.56487, 0.22 
 2.58757, 0.23 
  2.6095, 0.24 
 2.63072, 0.25 
 2.65127, 0.26 
 2.67121, 0.27 
 2.69057, 0.28 
 2.70938, 0.29 
 2.72769,  0.3 
 2.74552, 0.31 
  2.7629, 0.32 
 2.77985, 0.33 
  2.7964, 0.34 
 2.81256, 0.35 
 2.82837, 0.36 
 2.84382, 0.37 
 2.85895, 0.38 
 2.87376, 0.39 
 2.88828,  0.4 
 2.90251, 0.41 
 2.91646, 0.42 
 2.93016, 0.43 
  2.9436, 0.44 
  2.9568, 0.45 
 2.96977, 0.46 
 2.98251, 0.47 
 2.99505, 0.48 
 3.00737, 0.49 
  3.0195,  0.5 
 3.03143, 0.51 
 3.04318, 0.52 
 3.05475, 0.53 
 3.06615, 0.54 
 3.07738, 0.55 
 3.08845, 0.56 
 3.09937, 0.57 
 3.11013, 0.58 
 3.12075, 0.59 
 3.13122,  0.6 
 3.14155, 0.61 
 3.15175, 0.62 
 3.16182, 0.63 
 3.17177, 0.64 
 3.18158, 0.65 
 3.19129, 0.66 
 3.20087, 0.67 
 3.21034, 0.68 
  3.2197, 0.69 
 3.22895,  0.7 



  3.2381, 0.71 
 3.24714, 0.72 
 3.25609, 0.73 
 3.26494, 0.74 
 3.27369, 0.75 
 3.28235, 0.76 
 3.29092, 0.77 
  3.2994, 0.78 
  3.3078, 0.79 
 3.31611,  0.8 
 3.32434, 0.81 
 3.33249, 0.82 
 3.34056, 0.83 
 3.34855, 0.84 
 3.35646, 0.85 
 3.36431, 0.86 
 3.37208, 0.87 
 3.37977, 0.88 
  3.3874, 0.89 
 3.39497,  0.9 
 3.40246, 0.91 
 3.40989, 0.92 
 3.41725, 0.93 
 3.42456, 0.94 
  3.4318, 0.95 
 3.43897, 0.96 
  3.4461, 0.97 
 3.45316, 0.98 
 3.46016, 0.99 
 3.46711,   1. 
** ---------------------------------------------------------------- 
**  
** STEP: Step-1 
**  
*Step, name=Step-1, nlgeom=YES 
*Static 
0.0001, 1., 1e-05, 0.02 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-1 Type: Displacement/Rotation 
*Boundary 
_PickedSet15, 1, 1 
_PickedSet15, 2, 2 
** Name: BC-2 Type: Displacement/Rotation 
*Boundary 
_PickedSet16, 1, 1, 1. 
_PickedSet16, 2, 2 
**  
** OUTPUT REQUESTS 
**  



*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
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