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Abstract 

An electronic device integrates diverse materials, and inevitably contains sharp features, 

such as interfaces and corners.  When the device is subject to thermal and mechanical loads, the 

corners develop intense stress and are vulnerable sites to initiate failure.  This paper analyzes 

stress fields at corners in flip-chip packages.  The stress at a corner is a linear superposition of 

two modes of singular fields, with one mode being more singular than the other.  The amplitudes 

of the two modes are represented by two stress intensity factors of dissimilar dimensions.  To 

determine the stress intensity factors, we analyze the flip-chip structures under two loading 

conditions:  stretching of the substrate and bending of the substrate.  We show that the less 

singular mode may prevail over the more singular mode for some stretching-bending 

combinations.  The relative significance of the two modes of stress fields also varies with 

materials, and with the substrate to chip thickness ratio.  
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1. Introduction 

 In a flip-chip package, a silicon chip is flipped, with the face containing active devices 

connected to a substrate by solder bumps and underfill. The silicon chip is about 1 cm wide and 

0.7 mm thick.  The substrate has a width of several centimetres and a thickness of several 

millimetres.  The material of the substrate can be either a ceramic or an organic.  For example, in 

the mid-1990s ceramic substrates were replaced by organic laminates like FR4 (Flame Retardant 

4) or BT (Bismaleimide and Triazine) resin. These organic substrates have a lower dielectric 

constant, have smaller thermal mismatch with the mother board, and are easier to process 

metallization. [1] Nevertheless, the organic substrates have several disadvantages, such as 

adsorption of moisture, large thermal mismatch with the silicon chip, severe warpage during 

assembly. [2, 3] As a result, novel ceramic substrates have also been developed; for example, 

Low Temperature Co-fired Ceramic (LTCC), a ceramic-glass composite with elastic and thermal 

properties comparable to those of silicon, is a potential choice for the substrate. LTCC is fired at 

sufficiently low temperature so that copper can be used in the metallization. The ceramic 

substrate also offers superior hermetic and mechanical stability to protect the chip. [4] Table 1 

lists the properties of silicon and the two materials for the substrate.  

 A structure like a flip-chip package contains diverse materials and sharp features such as 

interfaces and corners.  When the structure is subject to thermal and mechanical loads, the stress 

field intensifies at the corners, making them vulnerable sites to initiate failure. [3, 5-13]  A 

challenge to analyze stress in flip-chip packages is the large variation in length scales, from the 

chip-substrate level of several centimetres down to the smallest transistors of several nanometres. 

To fully capture the chip-substrate behaviour, a multi-scale finite element method, known as 

global-local submodeling, is widely adopted. [9, 11, 14] Simulations of this kind, however, are 
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tedious and expensive.  Improved understandings of significant features in such structures are 

valuable.  

 This paper focuses on chip-substrate corners shown in Fig. 1(a).  As discussed in the next 

section, we will apply the concept of split singularities to analyze the stress field at the corners.  

While the mechanics of split singularities at corners has been studied, here we apply the 

approach to an engineering structure to elucidate the relative significance of the two modes of 

singular stress fields.  The paper is organized as follows. Section 2 summarizes the concept of 

split singularities. Section 3 shows how to calculate the two stress intensity factors and the mode 

angle under combined stretching and bending of the substrate. In Section 4, we investigate the 

relative contributions of the two singular modes for two substrate materials: FR4 and LTCC. 

Section 5 studies the significance of each mode for various chip-substrate geometries. 

 

2. Split singularities 

 For a linearly elastic bimaterial with traction prescribed on the boundary, Dundurs [15] 

demonstrated that the stress field depends on elastic constants through two dimensionless 

parameters: 
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where E is Young’s modulus, and ν  Poisson’s ratio. The subscripts “c” and “s” refer to the chip 

and the substrate, respectively. By requiring  and0>E 5.00 ≤≤ν , the Dundurs parameters are 

confined within a parallelogram in the ( )βα ,  plane, with vertices at ( )0,1 , ,  and 

. 

( )5.0,1 ( 0,1− )

( )5.0,1 −−
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 Figure 1(b) magnifies the bimaterial corner.  A system of polar coordinates ( )θ,r  is 

attached, with the origin coinciding with the intersection of the edge of the chip and the surface 

of the substrate. The two materials are bonded along the interface . The chip occupies the 

quarter space, , and the substrate occupies the half space, . Both the 

chip and the substrate are taken to be linearly elastic and isotropic. All edges and interfaces are 

assumed to be perfectly sharp.  

0=θ

−900 ≤≤ θ 0180 ≤≤θ

 We next summarize the main results of the singular stress fields around the corner. [16-

19]  Each component of the stress takes the form of , where λσ −rij ~ λ  is the exponent of the 

singular field.  This singular stress field is determined by an eigenvalue problem. [16-23]  The 

exponent is commonly restricted in the interval ( ) 1Re0 << λ , with justifications critiqued by Hui 

and Ruina [24] and Labossiere and Dunn [25].  

 For many combinations of materials, two unequal and real exponents are found, which 

are labeled such that 21 λλ > .  This paper focuses on this case.  The stress around the corner is a 

linear superposition of the two modes of singular fields:  

 ( )
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The angular functions,  and ( )θ1
ijΣ ( )θ2

ijΣ , are normalized such that ( ) ( ) 100 21 =Σ=Σ θθ rr , and their 

full expressions are listed in Appendix A.  and  are called the stress intensity factors, 

analogous to the stress intensity factors KI and KII for a crack. 

1k 2k

 The singular stress field, Eq. (3), is only valid within an annulus, as highlighted in Fig. 

1(b). Within the process zone, where Λ<r , there may be nonlinear behavior of materials and 

geometric perturbations.  Material defects and interfacial flaws may also appear.  On the other 

hand, an outer boundary for the validity of Eq. (3) also exists. Because at a length scale close to 
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the chip thickness h , the external boundary conditions will distort the radial variance of stresses 

characterized by Eq. (3). Therefore as long as the process zone is significantly smaller than the 

macroscopic chip height, i.e. , the singular stress field governed by Eq. (3) will prevail 

within an annulus, known as the k-annulus. In the following discussion we will mainly focus on 

the singular stress field within the k-annulus. 

h<<Λ

 In fracture mechanics, so long as the square-root singular fields prevail in an annulus, the 

stress intensities, KI and KII, are the only parameters that link external loadings to the material 

response inside the process zone.  Consequently, the stress intensity factors can be used to 

formulate critical conditions for crack extension.  In the same spirit,  and  may be used to 

formulate critical conditions to initiate failure. [24, 26, 27]  

1k 2k

 Equation (3) indicates that, in general, two singular modes, Mode 1 and Mode 2, govern 

the stress field in the k-annulus. For example, consider a homogeneous body with a sharp notch 

(Fig. 2).  We use dash-dot-dash line to highlight the axis of symmetry of the body. Any external 

loading condition can be decomposed into a symmetric mode (Mode 1) as shown in Fig. 2(a) and 

an anti-symmetric mode (Mode 2) as shown in Fig. 2(b). Mode 1 corresponds to pure tension and 

Mode 2 represents pure shear with respect to the symmetric axis. 

 For a bimaterial corner, however, no such axis of symmetry exists, so that no simple 

geometric interpretation of the two singular modes is available.  If we fix the opening angle 

 as shown in Fig. 1(b) but vary the elastic constants of the two materials, the singular 

exponents will change accordingly. Solving the eigenvalue problem, we plot 

90=ϕ

1λ  and 2λ  as 

functions of the Dundurs parameter, α , in Fig. 3, with β  fixed to be zero. The plot shows that, 

while 1λ  is always close to 0.5, 2λ  varies substantially with the elastic mismatch. When 1−→α  

i.e. , 0→s/cE E 2λ  goes to zero. When 1→α , namely ∞→sc EE / , 2λ  approaches 0.5.  
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Indicated in Fig. 3 are the singular components for two combinations of materials:  Si/LTCC and 

Si/FR4. 

 When 21 λλ ≠

) 1λ

2 /k

, according to Eq, (3),  and  have different dimensions, 

 and ( ) , respectively. Hence the ratio of Mode 2 to Mode 1 stress 

can be written as ( , where r can be an arbitrary length. [18] Labossiere et al. [28] 

have used this mode mixity in describing their experimental data. A similar approach was taken 

to describe the split singularities around a bimaterial interfacial crack tip. [29] 

1k 2k

( )(lenghstress ( ) 2lenghstress λ

) 21
1

λλ −rk

  To quantify the mode mixity we fix the arbitrary length scale to be the process zone size 

.  Thus, a mode angle, Λ ψ , is defined as 

 
21

1

2tan λλψ −Λ=
k
k

. (4) 

When the stress state at Λ=r  is pure Mode 1, 0=ψ ; when it is pure Mode 2, 90=ψ .  

 Mode 2 has often been neglected due to the fact that the Mode 2 stress field is always less 

singular than Mode 1, as indicated in Fig. 3. [6, 30, 31] Moreover, it is much simpler to use one 

stress intensity factor to implement a fracture initiation criterion at the bimaterial interface corner. 

However, whether Mode 2 is negligible or not depends on its relative significance compared to 

Mode 1, which is captured by the mode angle. In the following, we will calculate the mode 

angles for chip-substrate systems with different substrate materials or geometries under various 

loading conditions. Our results provide insights into situations when Mode 2 can be significant.  

 

3. Calculation of stress intensity factors 

   The two stress intensity factors  and  are determined by solving boundary-value 

problems.  As depicted in Fig. 4, we will solve boundary value problems under two loading 

1k 2k
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conditions: stretching of the substrate and bending of the substrate.  During processing, the 

substrate is also subject to a change in temperature, leading to stress concentration around chip-

substrate corners (Fig. 5).  As shown in Appendix B, the change in temperature and the 

stretching stress give rise to the same stress intensity factors at the corner, provided the stretching 

stress is identified as 

 ( ) ( )[ ] TEp ccsss Δ+−+= αναν 11 , (5) 

where cα  and sα  are the respective coefficients of thermal expansion, ( )21/ sss EE ν−=  is the 

plane strain modulus of the substrate and TΔ  the change in temperature. 

 Let P be the stretching force, and M be the bending moment per unit thickness.  

Dimensional analysis dictates that the stress intensity factors,  and , relate to the loading 

parameters, P and M, through 

1k 2k

 21211
1
1 h

Mb
h
Pb

h
k

⋅+⋅=λ   (6) 

 22221
2
2 h

Mb
h
Pb

h
k

⋅+⋅=λ  (7)  

Because the boundary-value problems are linear, the b coefficients are independent of the 

loading parameters, but depend on material properties and various dimensionless ratios, 

including  , , , and . sc EE / hH / hL / hS /

 We solve the two boundary-value problems by using the commercial finite element 

method (FEM) code ABAQUS 6.7. Plane strain conditions are assumed. For each boundary 

value problem, the stress field along  as a function of r, for example 0=θ ( 0, = )θτ θ rr

rh310− <<

, can be 

extracted from the FEM results. To make sure it falls in the k-annulus, we take .  h210−
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According to Eq. (3) and the way we normalize the angular functions, the stress field along the 

interface is given by 

 
( )

( ) ( ) 21 22
0, 21
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r
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r
krr +==  (8) 

The two stress intensity factors are determined by fitting the stress ( )0, =θτ θ rr  calculated from 

the FEM to Eq. (8).  The boundary-value problem of stretching ( )0,1 == MP  determines the 

coefficients  and . The boundary-value problem of bending 11b 21b ( )1,0 == MP  determines the 

coefficients  and . 12b 22b

Once the b coefficients are determined, Eqs. (6) and (7) can be used to calculate the stress 

intensity factors under any combined loads of stretching, bending and change in temperature. 

Substituting Eqs. (6) and (7) into Eq. (4), we find that the mode angle ψ  is given by 
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This equation relates the mode angle to the loading parameters P and M. We will use this method 

to investigate the effects of substrate material and chip-substrate geometry on the relative 

significance of the two singular modes in the following sections. 

 The process zone size is set to be  in all the following calculations.  Since 

 and 

310/ −=Λ h

1/0 <<Λ< h 021 >−λλ , a larger value of h/Λ  yields a larger value of ( , and 

hence a larger absolute value of 

) 21/ λλ −Λ h

ψ . However, so long as we keep a consistent choice of the 

process zone size, the trends discussed below are valid. 

 

4. Effect of the substrate material 
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A simplified 2D chip-substrate structure is sketched in Fig. 1(a).  The chip is of Si, and 

the substrate can be of either FR4 or LTCC.  The Dundurs parameter for Si/FR4 and Si/LTCC 

systems are 70.0≈α  (large elastic mismatch) and 03.0≈α  (small elastic mismatch), 

respectively.  The singular exponents of the two systems are also provided in Table 2 and 

highlighted in Fig. 3.  

Figure 6 plots the mode angle ψ  as a function of the dimensionless ratio of the loading 

parameters, M/(Ph).  Both structures, Si/FR4 and Si/LTCC, are considered.  The general trends 

are noted below. 

(a) Mode 2 ( 90=ψ ) dominates at a small absolute value of M/(Ph), where stretching 

prevails over bending. 

(b) Mode 1 ( 0=ψ ) dominates at a large absolute value of M/(Ph), where bending prevails 

over stretching. 

(c) Under most loading conditions, the larger elastic mismatch between the chip and the 

substrate, e.g. Si/FR4, has a larger Mode 2 component. 

To understand these trends, we examine Eq. (9). Observe that ψ  =  when 

. This is the point where 

90

( ) 1211 // bbPhM −= 01 =k  according to Eq. (6). Referring to the b 

coefficients listed in Table 2 we note that 1478.012/11 −=− bb  for Si/FR4 and 

 for Si/LTCC. Consequently, within a narrow band of M/(Ph) where pure 

stretching (or thermal loading) is dominant, Mode 2 can prevail over Mode 1.  

2384.0/ 1211 −=− bb

When the external loading is bending dominant, i.e. PhM >> , Eq. (9) shows that the 

mode angle ψ  approaches a constant 
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which is calculated to be 1.49o for Si/FR4 and 1.36o for Si/LTCC. Therefore we conclude that 

when the chip-substrate is under pure bending or bending overwhelms stretching, the singular 

stress field is almost pure Mode 1.  

The major difference between the two curves is the decay rate of the mode angle, from 

 to almost . If we take 90 0 45>ψ  to be the criterion for Mode 2 dominance, substitute Eq. (9) 

in and solve the inequality we can determine the range of ( )PhM/  for Mode 2 to be 

overwhelming: 
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Using the values of λ  and b listed in Table 2, we find that when , ( ) 23202440 .<-Ph< M/.-

45>ψ  for Si/LTCC. For Si/FR4, the band for 45>ψ  widens to be ( ) 0820 2100 .-PhM/.- << . 

This observation indicates that the larger the elastic mismatch between chip and substrate, the 

bigger range of  for Mode 2 component to be significant.   (Ph)

)

M/

In summary, Fig. 6 illustrates the relative contribution of the two singular modes at 

arbitrary combinations of  for two substrate materials, FR4 and LTCC. In both cases, 

when M/(Ph) approaches  from either side, the mode angle 

(PhM/

1211 / bb− ψ  increases drastically until 

pure Mode 2 is reached. When M/(Ph) remains far from 1211 / bb− , the mode angle ψ  stays close 

to  which means the singular stress field is Mode 1 dominant. A significant difference between 

two substrate materials lies in the decay rate of the mode angle: when the substrate material is 

0
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FR4, i.e. when there is a large elastic mismatch between chip and substrate, ψ  decays slowly 

from 90o to almost 0o. As a result, Mode 2 remains significant over a bigger range of ( )PhM/ . 

 

5. Geometric effects 

The geometry of the chip-substrate structure can also play an important role in 

determining the behavior of the singular stress field.  We first vary the length of the chip, L, from 

6 mm to 20 mm, while keeping the other lengths fixed at h = 0.7 mm, H = 1.4 mm, and S = 40 

mm. The b coefficients for different lengths of the chip remain unchanged.  This conclusion 

recovers a previous result [32]: the stress intensity factor reaches a plateau when L/h is greater 

than 10.  That is, when the length of the chip exceeds several times the thickness of the chip, the 

stress field near one edge of the chip can no longer be affected by the presence of the other edge. 

Therefore, further increase in L cannot alter the singular stress field at the chip-substrate corner. 

We study the effect of the size of the substrate by fixing h = 0.7 mm, L = 10 mm, and H = 

1.4 mm, but varying S from 15 mm to 60 mm. The b coefficients also remain constants when S 

changes. That is, as long as the substrate is wide enough compared to the chip, regardless of how 

much further S increases, the same boundary conditions on the two edges of the substrate will 

result in the same local stress field around the chip-substrate corner. 

By contrast, the thickness of the substrate, H, significantly affects the behavior of the 

singular stress field.  Table 3 and Fig. 7 shows the b coefficients as functions of H/h. When H/h 

is large, all the b coefficients approach zero, indicating loadings on the edges of the substrate can 

no longer cause negligible singular stress around the chip-package corner. Individually, b11 stays 

close to zero, indicating stretching makes little contribution to .  Stretching does contribute to 

 because b21 can be greater than 1 when H/h is small; as H/h increases, b12 and b22 decay to 

1k

2k
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zero from much greater values than that of b21, implying that the contribution from bending is 

much more sensitive to the change of the substrate thickness. 

If we substitute the b coefficients listed in Table 3 into Eq. (9), a plot of mode angle ψ  as 

a function of M/(Ph) can be obtained as shown in Fig. 8. As we discussed before, ψ  approaches 

90o as M/(Ph) goes to 12b11 /b− , which is also listed in Table 3. Since b11 remains close to zero 

but b12 rises quickly as the substrate thickness decreases, the value of 1211 / bb−  shifts gradually 

from -  to almost 0 as the substrate gets thinner. When M/(Ph) is large, the value of 0.4529 ψ  

increases slightly as the substrate gets thicker. The decay rate of the mode angle with respect to 

M/(Ph) is also affected by the substrate thickness: the thicker the substrate, the wider band of 

M/(Ph) where Mode 2 is significant. 

  

6. Concluding remarks 

 In summary, we study singular stress field at corners in flip-chip packages, when the 

substrate is subject to a combination of bending and stretching. The singular stress field is a 

superposition of two modes, of dissimilar exponents, 21 λλ > .  We compared the contributions of 

the two modes to the magnitude of the stress field at a length characteristic of the process zone 

size, .  We demonstrated that Mode 2 can contribute significantly when  approaches 

. When the loading is bending dominant, however, the Mode 2 component is always 

very small. At most loading conditions, Mode 2 component is more significant in a chip-

substrate system with larger elastic mismatch. While the lengths of the chip and the substrate 

have little effects on the singular stress field, the substrate-to-chip thickness ratio has a great 

influence. Thicker substrate shows larger range of M/(Ph) for Mode 2 to dominate over Mode 1. 

Λ

12/ b

(PhM / )

11b−
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Appendix A. Stress components in polar coordinates  

 The singular stress field Eq. (3) is solved by the methods outlined in Ref. [10, 5]. The 

eigenfunctions ( )θijΣ  associated with the eigenvalue λ  are expressed in polar coordinates ( )θ,r  

as  

 ( ) ( ) ( ) ( ) ( )[ ] ( )[ ]{ }λθλθλθλθλλλθ cossin22cos2sin21 DCBArr +++−+−−−−=Σ , (A.1) 

 ( ) ( )( ) ( ) ( )[ ]λθλθθλθλλλθθθ cossin2cos2sin21 DCBA ++−+−−−=Σ ,  (A.2) 

 ( ) ( ) ( ) ( ) ( )[ ] [ ]{ }λθλθλθλθλλλθθ sincos2sin2cos21 DCBAr −+−−−−−=Σ , (A.3) 

 ( ) ( )[ ]λθλθλνθ cossin14 DCzz +−−=Σ , (A.4) 

 0=Σ=Σ zrz θ . (A.5) 

The two eigenvalues 1λ  and 2λ  and the coefficients A, B, C, and D in both the chip and the 

substrate are determined by solving the eigenvalue problem. The values of A, B, C and D are 

listed in Table A1. 

 

Appendix B.  Representing thermal loading by uniform stretch on substrates 

 As depicted in Fig. 5, FEM simulations of a 2D plane strain finite element model show 

that when the flip-chip package is subject to a temperature change, e.g. , the singular 0<ΔT
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stress fields at chip-substrate corners can be completely counteracted by a uniform uniaxial 

tensile stress  p exerting on the substrate. This appendix derives the relation between p and TΔ .  

 Firstly, assume the chip and the substrate are separated and become freestanding. Both 

the chip and the substrate are subject to thermal loading TΔ  but the substrate has to be uniaxially 

stretched to cancel its strain mismatch with the chip. Then if the chip and the substrate are put 

together, no singular stress will be developed around the bimaterial interface corner, as shown in 

the middle configuration of Fig. 5. Referring to the coordinate shown in Fig. 5, plane strain 

condition requires 0=zε .  

 In the chip 

 ( ) 0=Δ+−−= T
EEE c

c

y
c

c

x
c

c

zc
z α

σ
νσνσε   (B1) 

No traction is applied to the chip, hence 0== yx σσ , solving Eq. (B1) gives 

 TE ccz Δ−= ασ  (B2) 

Hence 

 ( ) ( ) TT
EEE ccc

c

z
c

c

y
c

c

xc
x Δ+=Δ+−−= ανασν

σ
νσε 1  (B3) 

On the substrate, 0 , == yx p σσ  

Plane strain condition requires 

 ( ) 0=Δ+−−= T
EEE s

s

y
s

s

x
s

s

zs
z α

σ
νσνσε  (B4) 

and zσ  can be expressed in terms of p 

 TEp sssz Δ−= ανσ   (B5) 

Therefore 
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No mismatch between chip and substrate requires ( ) ( )s
x

c
x εε = . Solving the equation yields  

 ( ) ( ) ( )[ TEp sscc
s

s Δ+−+
−

= αναν
ν

11
1 2 ]  (B7) 

If a 3D configuration is considered, an equivalent biaxial tensile stress p3D can be derived 

in a similar way: 

 ( ) ( ) TEp sc
s

s
D Δ−

−
= αα

ν13  (B8) 
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Table 1 Material properties for chip and substrates used in calculation 

 E (GPa) ν  C)(ppm/ CET
Silicon 130 0.28 3.3 

FR4 23 0.3 15 
LTCC 120 0.3 5.8 

 
Table 2 Dunders parameters, singular exponents and b coefficients for two chip-package systems 
with fixed geometry: h = 0.7 mm, L = 10 mm, H = 1.4 mm, and S = 20 mm, as shown in Fig. 
1(a). 
 

 α  β  1λ 2λ 11b 12b 21b  22b
Si/FR4 0.6961 0.1959 0.4990 0.3178 0.1117 0.7560 0.1785 0.0689 

Si/LTCC 0.0337 0 0.4571 0.0996 0.1049 0.4401 0.0617 0.1238 
 
Table 3 b coefficients for Si/FR4 chip-package system with various substrate thicknesses, where 
h = 0.7 mm, L = 10 mm, and S = 20 mm are fixed 
 

H/h b11 b12 b21 b22 -b11/b12 
1/3 -0.0193 13.6450 1.2091 -4.2503 0.0014 
1/2 0.0077 6.9809 0.8595 -1.2846 -0.0011 
1 0.0710 2.3352 0.4234 -0.1236 -0.0304 
2 0.1117 0.7560 0.1785 0.0689 -0.1478 
4 0.1085 0.2396 0.0784 0.0524 -0.4529 

 
 
Table A1 Coefficients appearing in eigenfunctions given by Eqs. (A.1) to (A.4) 

 Mode 1 Mode 2 
 A1 B1 C1 D1 A2 B2 C2 D2 

Si 0.5752 -0.8429 -2.2700 1.9937 0.9989 0.2841 -0.9955 0.8666 
FR4 0.0010 -1.7404 -4.6075 0.7720 0.6337 -0.6262 -1.2579 -0.3421 
Si 0.9937 0.3675 -0.6756 1.8257 0.9889 0.3764 -0.6915 1.8169 

LTCC 0.1349 -1.9634 -8.5779 -0.5894 0.1623 -1.8439 -8.0551 -0.7089 
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Figure 1 (a) Simplified 2D chip-substrate model with materials listed in Table 1. Plane strain 

conditions are assumed. (b) Blown up chip-substrate interface corner highlighted in Fig. 1(a) 

with process zone of radius  and the k-annulus. A system of polar coordinates (Λ )θ,r  is defined. 

5/21/2009 7:16:46 PM 19 



 

 

Figure 2 Geometric interpretations of two modes in a homogeneous body with a sharp notch. The 

symmetric axis of the structure is highlighted by the dot-dash-dot line. Any external loading can 

be decomposed into (a) the symmetric mode (Mode 1) and (b) the anti-symmetric mode (Mode 

2). 
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Figure 3 Split singularities at orthogonal interface corner as functions of elastic mismatch, 

denoted by Dundurs parameter α , with β  fixed to be zero. Stars highlight the singular 

exponents when Chip = Si and Substrate = LTCC.  Crosses show the singular exponents for Chip 

= Si and Substrate = FR4. Since β  is not exactly zero in this case, the points are slightly off the 

curves.  
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Figure 4 Two linearly independent loading conditions: (a) stretching force P applied on the 

substrate; (b) bending moment M applied on the substrate.  
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Figure 5 Equivalent singular stress fields around chip-substrate corners can be generated by 

either thermal loading TΔ  on the chip-substrate system or uniform uniaxial tension 

( ) ( s ) s[ ]ccs TEp ανν α +−+Δ= 11  on the substrate, as derived in Appendix B. All pictures are 

direct outputs from ABAQUS results. 

5/21/2009 7:16:46 PM 23 



 

Figure 6 Mode angle as a function of the proportion of bending to stretching for two different 

substrate materials: FR4 and LTCC. 
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Figure 7 b coefficients as functions of substrate-to-chip thickness ratio with fixed sizes of chip 

and substrate, L = 10 mm and S = 20 mm respectively. 
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Figure 8 Mode angle as a function of the proportion of bending to stretching for Si/FR4 chip-

substrate system with various substrate-to-chip thickness ratios. 
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