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Abstract

A 3nite strain generalization of the strain gradient plasticity theory by Fleck and Hutchinson
(J. Mech. Phys. Solids 49 (2001a) 2245) is proposed and used to study size e&ects in plane
strain necking of thin sheets using the 3nite element method. Both sheets with rigid grips at
the ends and specimens with shear free ends are analyzed. The strain gradient plasticity theory
predicts delayed onset of localization when compared to conventional theory, and it depresses
deformation localization in the neck. The sensitivity to imperfections is analyzed as well as
di&erently hardening materials.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The mechanical properties of thin metal 3lms are important to a variety of tech-
nologies, ranging from microelectro-mechanical systems to coatings. For thin sheets or
free standing thin 3lms much work has been devoted to experimental determination
of mechanical properties (see Huang and Spaepen, 2000; Espinosa et al., 2003). This
paper aims at treating the problem of localization of deformation in free standing thin
3lms and sheets using a recent model for plasticity at the micron scale, as well as at
giving theoretical predictions which go beyond experimental results reported so far.
On the micron scale, where 3lms are often used, experiments suggest that conven-

tional models for the plastic deformation of metals are insu<cient, since they cannot
capture observed size-e&ects (Fleck et al., 1994; Fleck and Hutchinson, 1997; Wei and
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Hutchinson, 1997; StDolken and Evans, 1998; Begley and Hutchinson, 1998). Hence,
more advanced material models have been proposed of which some are based on dis-
location mechanics (Deshpande et al., 2003), and others are continuum models, which
are able to model relevant size-e&ects through the incorporation of gradients in the
constitutive and equilibrium equations. The continuum models can be subdivided into
two classes according to the order of the governing equations. One is termed higher or-
der models by Niordson and Hutchinson (2003b), since these use higher order stresses
as work conjugates to gradients of strain and require additional boundary conditions
(Aifantis, 1984; Fleck et al., 1994; Fleck and Hutchinson, 1997, 2001a; Gurtin, 2002).
The other class is termed lower order models since the theories are based on con-
ventional equilibrium equations, and the only modi3cation compared to conventional
theory is the introduction of gradient terms in the hardening relation for the material
(Acharya and Bassani, 1996; Bassani, 2001).
Both classes of theories have been used successfully to model a variety of observed

size-e&ects on the micron scale. Some studies have been based on small strain the-
ory to study problems like torsion of thin wires (Fleck et al., 1994), bending of thin
beams (StDolken and Evans, 1998), and indentation (Begley and Hutchinson, 1998).
Others have used 3nite strain generalizations to study problems like asymptotic crack
tip 3elds (Hwang et al., 2003), size-e&ects in 3ber-reinforced metals (Niordson and
Tvergaard, 2002), and interaction of di&erent size voids (Tvergaard and
Niordson, 2004).
The present paper explores the e&ect of strain gradient hardening on plane strain

sheet-necking through studies of the material response and the onset of localization
for di&erent combinations of material parameters. Since 3nite-strain e&ects are central
to the necking problem, a 3nite strain generalization of the strain gradient plasticity
theory by Fleck and Hutchinson (2001a) is proposed. The model is implemented in
a 3nite element code and used to obtain numerical results for the necking problem.
The focus of the analyzes is on the inGuence of the material length parameters on
the overall response of thin sheets, the onset of localization, and the development of
necks. The sensitivity to imperfections as well as the importance of the aspect ra-
tio of the 3lm are studied. Two types of boundary conditions are investigated. One
where the ends are shear free, and another which corresponds to the ends of the 3lm
constrained in rigid grips. The numerical results illustrate size-e&ects, which are impor-
tant for understanding localization phenomena in micron scale sheets and free standing
3lms.

2. Material model

In this section a 3nite strain generalization of the strain gradient plasticity theory by
Fleck and Hutchinson (2001a) is developed. The initial work is based on a working
paper by Fleck and Hutchinson (2001b). An updated Lagrangian formulation based
on the work of McMeeking and Rice (1975) and Yamada and Sasaki (1995) for
conventional J2-Gow theory is proposed in the present study and used to model the
strain gradient e&ects at 3nite strains.



C.F. Niordson, P. Redanz / J. Mech. Phys. Solids 52 (2004) 2431–2454 2433

Let x and X be the positions of a material point in the reference and in the current
con3guration respectively. The displacement vector is then given by

u = X − x= uigi ; (1)

where gi are Cartesian base vectors.
De3ne the velocity gradient by

ė =∇u̇ = @Ẋ
@X

= Ḟ · F−1; (2)

where F = @X =@x is the deformation gradient. The anti-symmetric part of the velocity
gradient is denoted !̇ and it’s components are de3ned by

!̇ij = 1
2(ė ij − ė ji) = 1

2 (u̇ i; j − u̇ j; i): (3)

The symmetric part of the velocity gradient is the strain rate, which is taken to be the
sum of the elastic and the plastic strain rates

�̇ij = 1
2(ė ij + ė ji) = 1

2 (u̇ i; j + u̇ j; i) = �̇Eij + �̇Pij : (4)

The gradient measure in the theory by Fleck and Hutchinson (2001a) is based on
the following third order tensor ijk , which is the gradient of the plastic strain rate

ijk = jik = �̇Pij; k : (5)

A measure of e&ective plastic strain, EP, is used to represent the total dislocation
density through the statistically stored dislocations (accounted for in conventional the-
ories through the conventional e&ective plastic strain, �P), and geometrically necessary
dislocations (included through three invariants, I1, I2, and I3, of homogeneous degree
two of ijk). With the usual de3nition of �P by the incremental relation �̇P

2
= 2

3 �̇
P
ij �̇
P
ij,

EP is de3ned by

ĖP
2
= �̇P

2
+ l21I1 + 4l

2
2I2 +

8
3
l23I3: (6)

Here, l1, l2 and l3 are material length parameters introduced for dimensional consis-
tency. The numerical coe<cients of the invariants are chosen such that the material
length parameters in the theory have similar meaning as the length parameters in the
strain gradient theory of Fleck and Hutchinson (1997), where gradients are introduced
through second order gradients of displacement �ijk = ui; jk .

With �ij denoting the Cauchy stress tensor, and �(e) =
√

3
2SijSij von Mises’ e&ective

stress, where Sij = �ij − 1
3�ij�kk is the deviatoric stress, we now write the plastic strain

rate as the product of its magnitude, �̇P =
√

2
3 �̇
P
ij �̇
P
ij, and its direction, mij = 3

2 Sij=�(e)

�̇Pij =
3
2

Sij
�(e)

�̇P: (7)
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This gives the expression for ijk

ijk = (mij�̇P); k = mij;k �̇P + mij�̇P; k ; (8)

which shows how ijk depends on the conventional e&ective plastic strain and its
gradient, as well as on the direction of the plastic strain increment and its gradient,
mij;k . Using this relation in the expression for the e&ective plastic strain (Eq. (6)) gives

ĖP
2
= �̇P

2
+ Aij�̇P; i �̇

P
; j + Bi�̇P; i �̇

P + C�̇P
2
; (9)

where the tensors Aij, Bi and C depend on the three material length parameters l1, l2,
and l3 as well as on the spatial gradients of the plastic strain increment direction (for
details see Fleck and Hutchinson, 2001a).
Within the framework of the present theory, a single parameter theory closely related

to the strain gradient theory of Aifantis (1984) can be formulated. This is done by
de3ning the measure of the e&ective plastic strain as

ĖP
2
= �̇P

2
+ l2∗�̇

P
; i �̇
P
; i ; (10)

where l∗ is a new material length parameter (Fleck and Hutchinson, 2001a).

2.1. Principle of virtual work in the current con5guration

The 3nite strain generalization of the strain gradient plasticity theory is based on the
following form of the principle of virtual work:∫

V
(�ij��̇ij + (Q − �(e))��̇P + �i��̇P; i) dV =

∫
S
(Ti�u̇ i + t��̇P) dS; (11)

which can be expressed in index-free notation as∫
V
(� : �”̇ + (Q − �(e))��̇P + 
 · �∇�̇P) dV =

∫
S
(T · �u̇ + t��̇P) dS: (12)

Here, Q is the generalized e&ective stress, �i is the higher order stress which is
work-conjugate to the gradient of the e&ective plastic strain �P; i, Ti is the traction,
and 3nally, t is the higher order traction. The current volume and surface are denoted
V and S, respectively.
Using Gauss’s theorem and rewriting the principle of virtual work, which must

hold for arbitrary variations of u̇ i and �̇P, the strong form of the 3eld equations is
found. First, the conventional equilibrium and boundary conditions, and additionally
the consistency condition

Q − �(e) − �i; i = 0 (13)

and the higher order boundary condition

t = �iNi; (14)

which must be ful3lled at the boundary of the plastic parts of the solid. Here, Ni is
the surface unit normal in the current con3guration.
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2.2. Going from the current frame to the reference con5guration

To obtain an expression for the principle of virtual work in the reference con3gura-
tion, we now de3ne Kirchho& stress measures as follows (de3ning J = det F)

& = J�; &ij = J�ij; (15)

�&
(e) = J�(e); (16)

= J
; i = J�i; (17)

q= JQ (18)

and 3rst Piola–Kirchho& stress measures as

s = JF−1 · � = F−1 · &; (19)

%= JF−1 · 
 = F−1 · : (20)

Introducing the Piola–Kirchho& measures into the principle of virtual work Eq. (12)
gives ∫

V0
(s : �Ḟ + (q − �&

(e))��̇
P + % · �∇0�̇P) dV0 =

∫
S0
(T0 · �u̇ + t0��̇P) dS0;

where subscript “0” refers to the reference con3guration and

T0 = n · s = sT · n; (21)

t0 = n · % (22)

are the nominal traction and the nominal higher order traction, respectively. In these
expressions n is the surface unit normal in the reference con3guration, which can be
expressed by the unit normal in the deformed con3guration through Nanson’s relation

N dS = Jn · F−1 dS0: (23)

2.3. Incremental principle of virtual work

The incremental version of the principle of virtual work can now be expressed as∫
V0
(ṡ : �Ḟ + (q̇ − �̇&

(e))��̇
P + %̇ · �∇0�̇P) dV0 =

∫
S0
(Ṫ0 · �u̇ + ṫ0��̇P) dS0: (24)

In index notation, the incremental version of the principle of virtual work is then∫
V0
(ṡij�Ḟji + (q̇ − �̇&

(e))��̇
P + %̇i��̇P0; i) dV0 =

∫
S0
(Ṫ 0i�u̇ i + ṫ0��̇P) dS0: (25)

Aiming at formulating the constitutive relation in the Jaumann rate (denoted
�
()) of

the Kirchho& stress and the convected rate (denoted
∨
()) of the higher order Kirchho&
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stress, the 3rst Piola–Kirchho& stress measures are expressed as

ṡij =
�
& ij − �kj�̇ik − �ik �̇jk + �ik ė jk ; (26)

%̇i =
∨
i: (27)

Here, it is exploited that within an updated Lagrangian framework the reference con-
3guration coincides with the current con3guration, and hence F = I and J = 1.
Using the above equations to rewrite the left-hand side of Eq. (25), the incremental

version of the principle of virtual work is expressed as∫
V
(
�
& ij��̇ij − �ij(2�̇ik��̇kj − ė kj�ė ki) + (q̇ − �̇&

(e))��̇
P +

∨
i��̇P0; i) dV

=
∫
S
(Ṫ 0i�u̇ i + ṫ0��̇P) dS −

[ ∫
V
(�ij��̇ij + (Q − �(e))��̇P + �i��̇P0; i) dV

−
∫
S
(T0i�u̇ i + t0��̇P) dS

]
; (28)

which is, when excluding the higher order terms, identical to expressions derived in
McMeeking and Rice (1975) and Yamada and Sasaki (1995). The term in the square
brackets is the equilibrium correction term, which is included to ensure that the incre-
mental solution does not drift away from equilibrium.

2.4. Constitutive equations

The 3nite strain generalization of the constitutive equations for the stress-measures
corresponding to the total strain, the plastic strain, and the plastic strain gradient,
respectively, are proposed as

�
& ij =Rijkl(�̇kl − �̇Pmkl) = &̇ij − !̇ik�kj − �ik!̇jk ; (29)

q̇ − �̇&
(e) = h

(
�̇P +

1
2
Bi�̇P; i + C�̇P

)
− mij

�
& ij; (30)

∨
i = h(Aij�̇P; j +

1
2
Bi�̇P) = ̇i − ė ikk ; (31)

where

Rijkl =
E
1 + %

(
1
2
(�ik�jl + �il�jk) +

%
1− 2% �ij�kl

)
(32)

and the hardening modulus is given by

h[EP] =
(

1
Et[EP]

− 1
E

)−1
: (33)

Here, Et is the tangent modulus and it is noted that the hardening modulus is evaluated
at EP rather than at �P as it would be in a conventional theory.
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The constitutive equation for the generalized e&ective stress in Eq. (30) can also be
expressed by

q̇= h
(
�̇P +

1
2
Bi�̇P; i + C�̇P

)
(34)

since �̇&
(e) = mij

�
& ij.

Instead of using the convected rate for the higher order stress in the constitutive
equations (Eq. (31)), one could use the Jaumann rate,

�
i = h(Aij�̇P; j +

1
2
Bi�̇P) = ̇i − !̇ikk : (35)

This constitutes a di&erent constitutive assumption, which employed in the principle
of virtual work, Eq. (25), leads to a non-symmetric sti&ness matrix, which is not the
case when using the convected rate in the constitutive equation for the higher order
stress. For the sake of simplicity, we will proceed with using the convected rate for
the higher order stress (Eq. (31)).

3. Problem formulation and numerical method

A rectangular sheet under plane strain tension is considered (see Fig. 1). The initial
width and length of the sheet is 2a0 and 2b0, respectively, and it has a cosine im-
perfection of magnitude �0. As load is applied to the sheet, it is elongated, and the
magnitude of the neck � changes. Due to the geometrical changes of the specimen, the
nominal stress passes through a maximum, and at some point thereafter elastic unload-
ing begins; this is de3ned as the onset of localization. After this point, the neck grows
rapidly, and soon after all plastic deformation takes place in a narrow band around the
midpoint of the specimen.
The numerical solutions are obtained using a special kind of 3nite element method

where nodal e&ective plastic strain increments, �̇Pn , appear directly as unknowns on
equal footing with the nodal displacement increments, Ḋn. The structure of the 3nite
element method as it is used in the present study has been used by Vardoulakis and
Aifantis (1991), de Borst and MDuhlhaus (1992), and de Borst and Pamin (1996), to
model the gradient theory by Aifantis (1984), and by Niordson and Hutchinson (2003a)
to model the small strain theory by Fleck and Hutchinson (2001a).
The displacement increments, u̇ i, and the e&ective plastic strain increments, �̇P, are

interpolated within each element between the nodal displacement increments, Ḋn, and
the nodal e&ective plastic strain increments, �̇Pn , respectively

u̇ i =
2k∑
n=1

Nn
i Ḋ

n ; �̇P =
l∑

n=1

Mn�̇Pn : (36)

Here, Nn
i and Mn are shape functions, and k and l are the number of nodes used for

the displacement interpolation and the e&ective plastic strain interpolation, respectively.
A linear interpolation of both the displacements and the e&ective plastic strain is used
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2a0

2b0

� �0

�

�

Fig. 1. The geometry of the specimen in the undeformed con3guration (dashed line) and in the deformed
state (solid line). The amplitude of the neck is denoted �, and it has the value �0 in the undeformed
con3guration.

which means that k = l= 3 in the above equations. The appropriate derivatives of the
displacement 3eld and the e&ective plastic strain 3eld can be expressed as

ė ij =
2k∑
n=1

Nn
i; jḊ

n ; �̇ij =
2k∑
n=1

En
ijḊ

n ; �̇P; i =
l∑

n=1

Mn
;i �̇
P
n (37)

with

En
ij =

1
2(N

n
i; j + Nn

j; i): (38)

Using these relations in the principle of virtual work (Eq. (28)) which must hold
for arbitrary variations of �Ḋn and ��̇Pn , we can now write the discretized equations in
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the following form:[
Ke Kep

KTep Kp

] [
Ḋ

”̇P

]
=

[
Ḟ1

Ḟ2

]
+

[
C1

C2

]
; (39)

where

K nm
e =

∫
V0
(En

ijRijklEm
kl + �ij(Nm

k;jN
n
k; i − 2Em

ikE
n
kj)) dV0 (40)

is the elastic sti&ness matrix,

K nm
ep =−

∫
V0
(En

ijRijklmklMm) dV0 (41)

is a matrix of dimension force, and

K nm
p =

∫
V0
(mijRijklmklMmMn + h(MmMn + AijMm

;j M
n
; i

+1
2 Bi(Mm

;i M
n +MmMn

;i) + CMmMn)) dV0 (42)

is a matrix of dimension energy.
The 3rst part of the right-hand side of Eq. (39) consists of two components,

Ḟn
1 =

∫
S0
Ṫ 0iN n

i dS0; (43)

which is the conventional external incremental force vector, and

Ḟn
2 =

∫
S0
ṫ0Mn dS0; (44)

which is the incremental higher order force vector.
In order to guarantee total equilibrium, the equilibrium correction term should be

added to the right-hand side of the system of equations as shown in Eq. (28). The
vector to be added has two parts, one a&ecting displacement degrees of freedom C1,
which must be added to Ḟ1, and another a&ecting the e&ective plastic strain degrees
of freedom C2, which must be added to Ḟ2. The equilibrium correction vectors are
calculated as follows:

C n
1 =−

∫
V
�ijEn

ij dV +
∫
S
T0iN n

i dS; (45)

C n
2 =−

∫
V
((Q − �(e))Mn + �iMn

; i) dV +
∫
S
t0Mn dS: (46)

When the nodal displacement and e&ective plastic strain increments have been de-
termined, the elastic strains are calculated, and then the Jaumann rate of the stress
and the convected rate of the higher order stress can be found according to Eqs. (29)
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and (31). The increments of the stress tensor and the higher order stress vector are
then calculated by

�̇ij =
�
& ij + !̇ik�kj + �ik!̇jk − �ij�̇kk ; (47)

�̇i =
∨
i + ė ik�k − �i�̇kk ; (48)

where the expression for the stress increments, Eq. (47), can also be found in Yamada
and Sasaki (1995).
Initial plastic yielding is initiated when �(e) becomes larger than the initial yield

stress, �y. Unloading of an integration point within an element along the elastic moduli
is started, when the solution has found a negative increment of the e&ective plastic
strain at that integration point in the previous increment. After elastic unloading plastic
yielding is restarted when Q reaches Qy. The present strain gradient plasticity theory
reduces to J2-3nite strain theory when all material length parameters are set to zero.
The meshes used in the present study are rectangular with quadrilateral elements

each subdivided by the diagonals into four triangles. In order to avoid spurious modes
for the incremental e&ective plastic strain 3eld (see e.g. de Borst and Pamin, 1996), a
three point integration rule is needed for the integration of K nm

p . In the present work,
we have used a three point integration rule for all integrations (40)–(42) and (45)–(46)
in order to obtain consistency between the discretized incremental principle of virtual
work and the equilibrium correction term.
Numerical tests showed that the results in the present work are independent of the

boundary condition at the elastic-plastic boundary. Whether the plastic Gow rate is
constrained, �̇P = 0, or the higher order traction rate is set to zero, �̇ini = 0, makes no
signi3cant di&erence.
In the present numerical implementation of the material model it has been found

that good convergence is obtained for a material with linear hardening. The results to
be presented here apply linear hardening.
A more detailed description of the computational and modeling details for the small

strain version of the present theory (Fleck and Hutchinson, 2001a) has been given by
Niordson and Hutchinson (2003a). Most details are similar in the 3nite strain case and
will not be repeated here.

4. Results

The numerical results presented in this section focus on the inGuence of the material
length parameters on the overall stress–strain response of specimens with di&erent
material parameters and geometries. The geometry is speci3ed by two parameters;
the aspect ratio, b0=a0, and the amplitude of the imperfection normalized by the half
width of the specimen, �0=a0, see Fig. 1. In addition to the material length parameters,
the material is de3ned according to the conventional material parameters, Young’s
modulus, E, Poisson’s ratio, %, the initial yield stress, �y, and the tangent modulus, Et .
Unless otherwise is stated plane strain specimens with shear free ends are studied using
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�av

conventional

l* / a0 =                     0.50
l* / a0 =  0.25

1.8

1.6

1.4

1.2

1

1

0.90.8

0.8

0.70.6

0.6

0.50.4

0.4

0.30.2

0.2

0 .10

� n
      

0

/  �
y

Fig. 2. Overall response for specimens with shear free ends characterized by the geometrical parameters
b0=a0 = 3:0, and �0=a0 = 5:0× 10−3, and the material parameters �y=E=0:01, %=0:3, and Et=E=1=40. The
solid curve shows results for a conventional material, while the two dashed curves show results for materials
with l∗=a0 = 0:25 and l∗=a0 = 0:50.

the following material parameters:

b0=a0 = 3; �0=a0 = 0:005; (49)

�y=E = 0:01; %= 0:3; Et=E = 1=40: (50)

Due to symmetry only a quarter of the specimen is modeled by dividing it into 25
quadrilateral elements through the half width of the sheet, and 150 elements along the
half length of the sheet. For specimens with di&erent aspect ratios than b0=a0 = 3
the number of elements along the length of the specimen is scaled properly, so that
the elements in the neck have the same aspect ratios.
Fig. 2 shows the nominal stress in the tensile direction normalized by the yield

stress in uniaxial tension, as a function of the average logarithmic strain in the tensile
direction, �av. The solid curve shows the results for a conventional material, while the
dashed curves show results for gradient dependent materials modeled by the single
parameter theory (Eq. (10)) with two di&erent values of the material length parameter.
Since the stress and strain state are almost constant throughout the solid until the maxi-
mum load point is reached, gradient hardening has no signi3cant e&ect on the material
response before the maximum, which is illustrated through the coinciding curves of
the overall response in Fig. 2. On the other hand at some point after the maximum
load point the response is signi3cantly a&ected by the material length parameter, since
localization of the solid leads to signi3cant strain gradients and thereby di&erences in
gradient hardening. In the 3gure this is seen through the increased sti&ness for increas-
ing length parameters toward the end of the curves. Analyzes in Fig. 2 (and in the
following 3gures as well) are terminated at a critical value of the aspect ratio of the
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Table 1
The average strain at maximum load, �m, and at the onset of localization, �l, are shown together with the
delay of the onset of localization, �l − �m, for a conventional material and di&erent gradient dependent
materials

�m �l �l − �m

Conventional 0.651 0.654 0.003

l∗=a0 = 0:25 0.664 0.673 0.010
l∗=a0 = 0:50 0.677 0.722 0.045

l1=a0 = 0:50 0.677 0.718 0.041
l2=a0 = 0:50 0.673 0.708 0.035
l3=a0 = 0:50 0.674 0.719 0.045

The specimens have shear free ends, and the geometry of the specimens is characterized by b0=a0 = 3:0
and �0=a0 = 5:0× 10−3, and the conventional material parameters are �y=E=0:01, %=0:3, and Et=E=1=40.

elements in the numerical model. The quadrilaterals in the neck start out by having
an aspect ratio of 0.2, and the analyzes are terminated when the aspect ratio reaches
10, which corresponds to stopping the analyzes when the accumulated e&ective strain
in the neck has reached around 2.25. It is seen that while the nominal stress at the
end of the analyzes is almost independent of the gradient e&ects, the strain is very
much inGuenced by the material length parameter. Hence, at the end of the analyzes,
the overall strain is around 22% larger for the material with l∗=a0 = 0:50 compared
to the conventional material. The increased sti&ness for the gradient dependent ma-
terials can be attributed to gradient hardening and thereby to the decreased tendency
to localization for the gradient dependent materials. This is furthermore illustrated in
Table 1, which shows the average logarithmic strain at the maximum load point, �m,
and at the onset of localization (de3ned as the onset of elastic unloading), �l, for the
di&erent materials discussed in relation to Fig. 2. The third column shows the delay
of the onset of localization compared to the maximum load point, calculated as the
di&erence in average logarithmic strain, �l − �m. The table shows that the delay of
elastic unloading compared to the maximum load point is rather small for the conven-
tional material, and that it increases signi3cantly with the material length parameter,
l∗. Hence, for the conventional material the delay of the onset of localization is around
0.003, while it is around 15 times larger for the material characterized by l∗=a0 =0:50.
Experiments suggest that the material length parameter valid for most metals is on

the order of a micron (see e.g. Hutchinson, 2000; Fleck and Hutchinson, 2001a). This
implies that the specimen with l∗=a0=0:5 in Fig. 2 has a width on the order of 10 �m.
Fig. 3 shows the deformed geometries of the sheets analyzed in Fig. 2 at the end of

the simulations. In the 3gure both the undeformed meshes, and the deformed meshes
are shown. The black area marks the part of the material that is being deformed
plastically, while the rest of the material is unloading elastically. Keeping in mind
that the criterion for ending the simulations is tied to a critical value of the e&ective
strain within the neck, it is seen that the overall deformation increases with increasing
material length scale for this criterion to be met. Furthermore, the 3gure shows that
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conventional l* / a0 = 0.25 l* / a0 = 0.50 
(a) (b) (c)

Fig. 3. Deformed geometries for specimens with shear free ends characterized by the geometrical parameters
b0=a0 = 3:0 and �0=a0 = 5:0× 10−3, and the material parameters �y=E = 0:01, %= 0:3, and Et=E = 1=40, at
the end of the simulations. Figure (a) shows the deformed geometry for a conventional material, and the
3gures (b) and (c) show the deformed geometries for gradient dependent materials with l∗=a0 = 0:25 and
l∗=a0 = 0:50, respectively. The black areas show the zones that are being plastically loaded, while the rest
is being elastically unloaded.

for the gradient dependent materials the active plastic zone is signi3cantly longer than
for the conventional material, and that the neck becomes more smooth for increasing
values of l∗.
The inGuence of the material length parameter on the development of the neck is

shown in Fig. 4. In this 3gure the amplitude of the neck normalized by the initial
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Fig. 4. Development of the neck for specimens with shear free ends characterized by the geometrical param-
eters b0=a0 = 3:0 and �0=a0 = 5:0× 10−3, and the material parameters �y=E=0:01, %=0:3, and Et=E=1=40.
The solid curve shows results for a conventional material, while the two dashed curves show results for
materials with l∗=a0 = 0:25 and l∗=a0 = 0:50.

length of the specimen is shown as a function of the average strain. It is seen that for
all values of the overall deformation, the amplitude of the neck decreases for increasing
values of the material length parameter. Hence, gradient hardening limits localization.
Until now, only the single parameter theory has been discussed. In Fig. 5 the solid

curve shows the response for a conventional material, and the dashed curve shows the
response for a gradient dependent material characterized by l∗=a0 = 0:50. The three
dotted curves represent responses for materials characterized by the multi parameter
theory with each of the three length parameters set equal to a0=2 one by one. The
3gure illustrates that it is not signi3cant for the present problem which of the theories
and which of the three length parameters is used. In Table 1 the average logarithmic
strain at the maximum load point and at the onset of localization are shown for the
materials discussed in relation to Fig. 5. The table shows that for all the gradient
dependent materials the maximum load point is reached at a strain of 0.67–0.68, and
that the onset of localization is delayed between 0.035 and 0.045 compared to this
point. In conclusion it is noted that neither the overall response nor the maximum load
point and the delay of the onset of localization, are a&ected much by which of the
di&erent material length parameters is used. Hence, from now on we will focus on the
single parameter theory.
The inGuence of the amplitude of imperfection is shown in Fig. 6, where the over-

all responses for both conventional materials (solid curves) and gradient dependent
materials (dashed curves) are shown for two di&erent values of the amplitude of the
imperfection, namely �0=a0 = 5:0 × 10−3 (studied until now), and a 10 times smaller
initial imperfection, �0=a0 = 5:0 × 10−4. It is seen that decreasing the imperfection
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Fig. 5. Overall response for specimens with shear free ends characterized by the geometrical parameters
b0=a0 = 3:0 and �0=a0 = 5:0× 10−3, and the material parameters �y=E=0:01, %=0:3, and Et=E=1=40. The
solid curve shows results for a conventional material, the dashed curve shows results for a gradient dependent
material with l∗=a0=0:50, and the three dotted curves show results for gradient dependent materials modeled
by the multi parameter theory with each of the three length parameters l1, l2, and l3 put equal to a0=2 one
by one setting the others equal to zero.
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Fig. 6. Overall response for specimens with shear free ends characterized by the geometrical parameters
b0=a0 = 3:0, and the material parameters �y=E = 0:01, % = 0:3, and Et=E = 1=40. The results are presented
for both conventional materials and gradient dependent materials with l∗=a0 = 0:25 and l∗=a0 = 0:50. The
solid curves show results for an imperfection of �0=a0 = 5:0× 10−3, while the dashed curves show results
for �0=a0 = 5:0× 10−4.



2446 C.F. Niordson, P. Redanz / J. Mech. Phys. Solids 52 (2004) 2431–2454

l* / a0

onset of localization

maximum load point

0.75

0.74

0.73

0.72

0.71

0.70

0.69

0.68

0.67

0.66

0.65
0.50.450.40.350.30.250.20.150.10.050

εm
, ε

l

� / a0 = 5. 10−3

� / a0 = 5. 10−4

� / a0 = 0
εl − εm

εl − εm

Fig. 7. The strain at the maximum load point and at the onset of localization as a function of the material
length parameter, l∗=a0, for specimens with shear free ends. The aspect ratio is b0=a0 =3:0, and the material
parameters �y=E = 0:01, % = 0:3, and Et=E = 1=40. The solid curves show results for a specimen with
�0=a0 = 5:0× 10−3, and the dashed curves show results for a material with a 10 times smaller imperfection
amplitude, �0=a0 =5:0×10−4. The dotted curve shows the strain at the maximum load point for a specimen
without any imperfection.

amplitude results in a right-shift of the part of the response curve that is after the
maximum load point, and that this right-shift is rather independent of the value of the
material length parameter. For the same two imperfection amplitudes, Fig. 7 shows
the maximum strain, �m, and the strain at the onset of localization, �l, as a function of
the material length parameter l∗=a0. For the larger imperfection amplitude, the delay
of the onset of localization, calculated as �l − �m, is 0.003 for a conventional material
(l∗=0:0), and it increases with increasing length parameter to 0.045 when l∗=a0 =0:5.
For the smaller imperfection, the delay of the onset of localization is much larger for
the conventional material, namely around 0.011, and it increases with increasing l∗
to 0.070 when l∗=a0 = 0:5. It is interesting to note in Fig. 7 that the strain at the
maximum load point for the large imperfection varies signi3cantly over the range of
the material length parameters studied. This strain is below the corresponding curve
for the smaller imperfection (which is close to constant), which in turn is below the
curve at the maximum load point for a material without any imperfection 0.679. The
latter curve is constant as gradient e&ects are absent in this homogeneous specimen.
The 3gure also shows that decreasing the initial amplitude of the imperfection leads
to a delay in the onset of localization, calculated as the di&erence in strain at the
onset of localization for the two di&erent imperfection magnitudes. This delay is rather
insensitive to the value of the material length scale, in that it varies from 0.034 for a
conventional material to 0.028 for a gradient dependent material with l∗=a0 = 0:5. The
stress as a function of the material length parameter at the maximum load point and
at the onset of localization, respectively, are shown in Fig. 8. Again, the solid curves
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Fig. 8. The stress at the maximum load point and at the onset of localization as a function of the material
length parameter, l∗=a0, for specimens with shear free ends. The aspect ratio is b0=a0 =3:0, and the material
parameters �y=E = 0:01, % = 0:3, and Et=E = 1=40. The solid curves show results for a specimen with
�0=a0 = 5:0× 10−3, and the dashed curves show results for a material with a 10 times smaller imperfection
amplitude, �0=a0 =5:0×10−4. The dotted curve shows the stress at the maximum load point for a specimen
without any imperfection.

show results for a specimen with an initial imperfection given by �0=a0 = 5:0× 10−3,
the dashed curves for �0=a0 = 5:0 × 10−4, and the dotted constant curve shows the
stress at the maximum load point for a specimen without any imperfection. From the
3gure it is seen that the di&erence in stress at the maximum load point and at the
onset of localization is very small for both non-zero values of the initial imperfection.
The 3gure also illustrates that the maximum stress increases with increasing internal
material length scale, since gradient e&ects become more signi3cant. This tendency is
most clear for the larger imperfection, as these specimens have more inhomogeneous
deformation 3elds, and thus more gradient hardening. Although the 3gure gives inter-
esting qualitative information, the quantitative importance of the trends in the 3gure is
not signi3cant, since all the variations in the 3gure are well below 1%.
In Fig. 9 the overall response is shown for materials with di&erent tangent moduli

and di&erent material length parameters. The three upper curves are characterized by
Et=E=1=20, the three curves in the middle by Et=E=1=40, and the three lower curves by
Et=E=1=60. The solid curves show results for conventional materials, while the dashed
curves show results for gradient dependent materials for two values of l∗=a0. Comparing
the strains, at which the stop criterion is reached, shows that lower hardening specimens
are more inGuenced by the gradient e&ects than higher hardening specimens. Table 2
shows the strain at maximum load point and at the onset of localization, as well as the
delay of the onset of localization for the materials in Fig. 9. It is seen that the delay
of the onset of localization decreases with increasing tangent modulus. This means
that the delay of the onset of localization decreases with increasing aspect ratio in the
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Fig. 9. Overall response for specimens with shear free ends characterized by the geometrical parameters
b0=a0 = 3:0 and �0=a0 = 5:0× 10−3, and the material parameters �y=E = 0:01 and %= 0:3. The solid curves
show results for a conventional material, the dashed curves show results for a gradient dependent material
with l∗=a0 = 0:25 and l∗=a0 = 0:50. The three di&erent sets of curves show results for di&erent values of
the tangent modulus.

Table 2
The average strain at maximum load, �m, and at the onset of localization, �l, are shown together with
the delay of the onset of localization, �l − �m, for conventional materials and di&erent gradient dependent
materials, for di&erent values of the tangent modulus

�m �l �l − �m

Et=E = 1=20 Conventional 0.829 0.830 0.000
l∗=a0 = 0:25 0.842 0.845 0.003
l∗=a0 = 0:50 0.861 0.882 0.021

Et=E = 1=40 Conventional 0.651 0.654 0.003
l∗=a0 = 0:25 0.664 0.673 0.010
l∗=a0 = 0:50 0.677 0.722 0.045

Et=E = 1=60 Conventional 0.487 0.499 0.012
l∗=a0 = 0:25 0.495 0.523 0.028
l∗=a0 = 0:50 0.500 0.583 0.083

The geometry of the specimens is characterized by b0=a0 = 3:0 and �0=a0 = 5:0× 10−3, and the material
parameters are �y=E = 0:01, and % = 0:3. The specimens have shear free ends.

deformed state of the specimen at the maximum load point. This is consistent with the
3ndings in Hill and Hutchinson (1975) for the bifurcation stress, where it is reported
that the delay in bifurcation decreases with increasing aspect ratio of the specimen at
the maximum load point.
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Table 3
The average strain at maximum load, �m, and at the onset of localization, �l, are shown together with the
delay of the onset of localization, �l − �m, for a conventional material and a gradient dependent material for
di&erent aspect ratios of the specimen

�m �l �l − �m

b0=a0 = 2, (conv.) 0.667 0.683 0.016
b0=a0 = 3, (conv.) 0.651 0.654 0.003
b0=a0 = 4, (conv.) 0.642 0.643 0.001

b0=a0 = 2, (l∗=a0 = 0:5) 0.679 0.804 0.125
b0=a0 = 3, (l∗=a0 = 0:5) 0.677 0.722 0.045
b0=a0 = 4, (l∗=a0 = 0:5) 0.669 0.686 0.016

The amplitude of the imperfection is �0=a0 = 5:0 × 10−3, and the conventional material parameters are
�y=E = 0:01, % = 0:3, and Et=E = 1=40. The specimens have shear free ends.

Table 3 shows �m, �l, and �l−�m, for a conventional material and a gradient dependent
material (l∗=a0 = 0:50) for di&erent aspect ratios of the specimen in the undeformed
geometry b0=a0. The table shows that, in accordance with the 3ndings of Needleman
(1972) and Hill and Hutchinson (1975) for conventional materials and Benallal and
Tvergaard (1995) for gradient dependent materials, the delay in onset of localization
decreases with increasing aspect ratio of the specimen. Furthermore, the table shows
that the delay is signi3cantly larger for the gradient dependent materials than for the
conventional materials for all values of the aspect ratio.
Until now we have studied specimens with shear free ends. A problem which is

perhaps easier to study experimentally is tension of a specimen with rigid grips at the
ends, so that the specimen cannot contract in the directions orthogonal to the tensile
direction at the ends. For this type of loading no initial imperfection is needed for a
neck to develop. Fig. 10 shows the overall stress–strain response for specimens with
rigid grips both for a conventional material and for two gradient dependent materials.
For comparison the response curve for the conventional material with shear free ends
(from Fig. 2) is also shown in this 3gure. All specimens have an initial aspect ratio of
b0=a0 =3, and a tangent modulus of Et=E=1=40. It is seen that although the specimens
with rigid grips behave sti&er to begin with, due to the increased constraint at the ends,
localization sets in earlier, and this leads to a softer response at larger strains, when
compared to specimens with shear free ends. In Fig. 11 the amplitude of the neck
is shown as a function of average strain for the specimens discussed in Fig. 10. The
3gure shows that for the rigid grips, the amplitude of the neck increases signi3cantly
from the beginning of the deformation, which is not the case for the specimen with
shear free ends. Furthermore, it is seen that while gradient hardening decreases the
neck amplitude for large strains, the neck increases slightly with increasing material
length l∗ in the beginning of the deformation (before the onset of localization).
The deformed meshes at the end of the numerical simulations are shown in Fig. 12

together with the undeformed meshes and the active plastic zones, which are marked
by the black areas in the necks. This 3gure illustrates that increasing gradient hardening
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Fig. 10. Overall response for specimens with rigid grips. The geometrical parameters are b0=a0 = 3:0 and
�0=a0 =5:0×10−3, and the material parameters �y=E=0:01, %=0:3, and Et=E=1=40. The solid curve shows
results for a conventional material, while the two dashed curves show results for materials with l∗=a0 =0:25
and l∗=a0 = 0:50. For comparison the stress–strain curve for a conventional material with shear free ends is
shown in the 3gure.
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Fig. 11. Development of the neck for specimens with rigid grips. The specimen is characterized by the aspect
ratio b0=a0 = 3:0, and the material parameters �y=E =0:01, %=0:3, and Et=E =1=40. The solid curve shows
results for a conventional material, while the two dashed curves show results for materials with l∗=a0 =0:25
and l∗=a0 = 0:50. For comparison the corresponding curve for a conventional material with shear free ends
is shown in the 3gure.
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(a) (b) (c)

Fig. 12. Deformed geometries at the end of the simulations for specimens with rigid grips. The geometry
is characterized by the initial aspect ratio b0=a0 = 3:0, and the material is characterized by the parameters
�y=E=0:01, %=0:3, and Et=E=1=40. Figure (a) shows the deformed geometry for a conventional material,
and 3gures (b) and (c) show the deformed geometries for gradient dependent materials with l∗=a0 = 0:25
and l∗=a0 = 0:50, respectively. The black areas show the zones that are being plastically loaded, while the
rest is being elastically unloaded.

increases the length of the neck zone, and hence the deformations are less localized;
conclusions which are the same as those of Fig. 3, where results for specimens with
shear free ends were discussed.

5. Conclusion

A 3nite strain version of the strain gradient plasticity theory by Fleck and Hutchinson
(2001a) has been proposed. The formulation has been used to study size-e&ects in plane
strain sheet-necking at average logarithmic strains up to around 1.
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Introducing gradient e&ects in the necking problem results in attaining the onset of
localization at larger overall strains. Before reaching the maximum load point, the stress
state is almost homogeneous, hence the stress–strain response prior to the maximum
load is almost independent of whether or not a material length scale is included. The
delay between maximum load and onset of localization is increased with increasing
inGuence of strain gradients. The size of the plastic zone in the neck is larger when
l∗=a0¿ 0 compared to the necking behavior in a conventional material. Furthermore,
it has been shown that the multi parameter theory and the single parameter theory for
the present problem lead to qualitatively the same results.
A larger material length scale leads to wider shear bands at a given overall strain

as reported by Sluys and Estrin (2000). Similarly, in the present study the gradient
e&ects are found to depress localization, in that they lead to smaller neck amplitudes.
Di&erent imperfection amplitudes have been tested and it has been found that a

smaller imperfection leads to larger overall strains at the maximum load and later onset
of localization, both for the conventional material and the gradient dependent materials.
The delay from the maximum load to the onset of localization is also increased with
decreased imperfection amplitude.
Stress–strain responses for di&erent degrees of hardening (di&erent tangent moduli)

have been studied as well. The gradient hardening contributions are more important
for the lower hardening specimens. Moreover, the strain levels at maximum load and
at the onset of localization are signi3cantly higher with increasing tangent modulus,
hence, the relative gradient hardening is larger for the lower values of Et=E.
In the numerical analyzes with rigid grips at the ends of the specimen, no imperfec-

tion is necessary to trigger localization. The stress–strain response when the ends are
3xed is sti&er in the beginning of the tensile test, but the maximum load and the onset
of localization are reached earlier compared to the specimens with shear free ends. The
neck amplitudes are much larger for the rigid grips results compared to the amplitudes
where the material is free to contract at the ends.
The focus of the present work on linear hardening and relative high hardening ma-

terials leads to rather large localization strains. A more low hardening material would
give rupture of the sheet at smaller strains. For a power law hardening material re-
sponse or lower hardening in general, localization will occur at smaller strains in closer
agreement with experimental data (see e.g. Huang and Spaepen, 2000; Espinosa et al.,
2003), but a di&erent numerical procedure from the one used in this work is then
necessary. We are currently working on a di&erent numerical implementation of the
method that will make it possible to also obtain good convergence for power law hard-
ening materials and materials with even lower linear hardening than presented in this
study.
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