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This paper presents a homogenization-based constitutive model for the mechanical behavior of particle-
reinforced elastomers with random microstructures subjected to finite deformations. The model is based on
a recently improved version of the tangent second-order (TSO) method (Avazmohammadi and Ponte Cas-
taneda 2013; J. Elasticity 112, 1828–1850) for two-phase, hyperelastic composites, and is able to directly
account for the shape, orientation, and concentration of the particles. After a brief summary of the TSO
homogenization method, we describe its application to composites consisting of an incompressible rub-
ber reinforced by aligned, spheroidal, rigid particles, undergoing generally non-aligned, three-dimensional
loadings. While the results are valid for finite particle concentrations, in the dilute limit they can be viewed
as providing a generalization of Eshelby’s results in linear elasticity. In particular, we provide analytical
estimates for the overall response and microstructure evolution of the particle-reinforced composites with
generalized neo-Hookean matrix phases under non-aligned loadings. For the special case of aligned pure
shear and axisymmetric shear loadings, we give closed-form expressions for the effective stored-energy
function of the composites with neo-Hookean matrix behavior. Moreover, we investigate the possible devel-
opment of “macroscopic” (shear band-type) instabilities in the homogenized behavior of the composite at
sufficiently large deformations. These instabilities whose wavelengths are much larger than the typical size
of the microstructure are detected by making use of the loss of strong ellipticity condition for the effective
stored-energy function of the composites. The analytical results presented in this paper will be comple-
mented in Part II of this work by specific applications for several representative microstructures and loading
configurations.

Keywords: composite materials; particulate microstructure; homogenization; nonlinear elasticity; shear
band instabilities

1. Introduction

Soft, heterogeneous materials that can undergo large deformations constitute an exten-

sively utilized class of materials in engineering applications, as well as a large class of nat-

urally existing material systems. Particle- and fiber-reinforced elastomers are a prominent

class of soft materials that have found a wide range of applications in industry. A few ex-

amples of such applications include car tires, flexible underwater vehicles, and compliant

aircraft structures. In particular, carbon-filled and silica-filled rubbers are two important

groups of particle-reinforced elastomers used for technological purposes [6, 17, 30, 42].

Moreover, elastomer-like, heterogeneous materials with particulate/fibrous microstruc-

tures are also naturally present in the form of biological tissues, such as arterial walls,

ligaments, annulus fibrosus, etc. [see, e.g., 9, 18, 19, 37].

As a consequence, investigations to characterize the mechanical behavior of elas-

tomeric composites are very timely. This work is concerned with establishing relations

between the underlying microstructure of these materials and their macroscopic response,

by means of homogenization. To date, there are essentially two types of homogeniza-

tion approaches that can be brought to bear on this problem. The first type is based on
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the “linear comparison” variational methods, including the so-called “tangent second-

order” (TSO) method [4, 16, 35] and the “generalized second-order” (GSO) technique

[23, 24, 32]. These methods make use of suitably designed variational principles for the

properties of appropriately defined “linear comparison composites” (LCC), which are fic-

titious composites with the same microstructure as the original nonlinear composites, but

with linear properties. The distinguishing features of the second-order methods are that:

(1) they rigorously incorporate full dependence on the nonlinear constitutive behavior of

the constituent phases, (2) they are exact to second-order in the heterogeneity contrast

(hence their name), and (3) they account for statistical information about the underly-

ing microstructure in the undeformed configuration, as well as for its evolution, resulting

from the finite changes in geometry caused by the applied finite deformations. The latter is

essential in homogenization of hyperelastic composites as the evolution of the microstruc-

ture can have significant geometric softening or stiffening effects on the overall response

of the material, which, in turn, may lead to the possible development of macroscopic

instabilities. The second type of approach is based on sequential lamination, which has

been used extensively for linear composites to demonstrate optimality of bounds [28],

and has been used more recently in the context of finite elasticity [10, 11, 22]. These

iterated methods have the distinct advantage of producing “exact” results, unlike the lin-

ear comparison methods, which only provide variational approximations. However, the

classes of microstructures that can be considered are much more restrictive and there is

no precise control on the typical microstructural variables such as particle shape. Instead,

use is made of two-point correlation functions for the particulate phase, which typically

exhibits highly distorted and physically unrealistic shapes. In addition, this technique gen-

erally leads to partial differential equations (of the Hamilton-Jacobi type) for the effective

behavior, which have only been solved exactly for some very special geometric configu-

rations and very specific constitutive models (essentially, neo-Hookean). More generally,

numerical (or other types of approximations) are required to obtain explicit results by the

lamination methods. By contrast, the linear comparison methods can handle much more

general classes of constitutive behavior for the phases, as well as microstructures, includ-

ing, for example, polydomain elastomeric systems [38].

Given the highly nonlinear character of these homogenization problems in finite elastic-

ity, the first applications were carried out in the context of two-dimensional idealizations

of the microstructure. Thus, elastomers with random and periodic distributions of cir-

cular particles were first considered by Ponte Castañeda and Tiberio [35] and Lahellec

et al. [16], respectively. Corresponding estimates for sequentially laminated microstruc-

tures were investigated by deBotton [10]. These works showed that the rigid particles

have the expected reinforcing effect, although the linear comparison estimates provided

a significantly stronger reinforcing effect compared to the sequentially laminated mi-

crostructures. In fact, the first type of estimate predicted a certain type of “geometric”

locking up of the macroscopic response, which has since been found to be physically

unrealistic, while the second type of estimate predicted—somewhat surprisingly—for a

neo-Hookean matrix phase the same dependence on the volume fraction, as for the cor-

responding linear case. For the purposes of the present work, the most relevant work

was carried out by Lopez-Pamies and Ponte Castañeda [25] for random distributions of

rigid elliptical fibers in an elastomeric phase, or more precisely for plane strain load-

ing of continuous fiber-reinforced elastomers in the transverse plane where the fibers ex-

hibit elliptical cross-section. These estimates, which are free from geometric locking up,

demonstrated for the first time the strong effect of particle rotations, which, under certain

conditions, could induce strong geometric softening leading to the possible development

of macroscopic instabilities through loss of ellipticity. These homogenization estimates

were also compared with full-field numerical simulations by Moraleda et al. [29] and

found to be in fairly good quantitative agreement at least for neo-Hookean matrix phases.
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The existence of long wave length instabilities [14], as well as other types of “micro-

scopic” instabilities, in the context of two-dimensional fiber-reinforced composites with

periodic microstructures has also been documented recently [27]. Further applications of

these methods for fiber-reinforced composites containing periodic and random distribu-

tions of cylindrical fibers (or circular cross section) in an elastomeric matrix subjected to

more general three-dimensional loading conditions have been addressed more recently by

means of the GSO method [2, 3, 8]. In addition, estimates for the macroscopic behavior

of hyperelastic matrices reinforced with aligned cylindrical fibers have also been obtained

making use of the sequentially laminated structures, as well as composite-cylinder assem-

blages [11, 12, 22, 39]. Results for particle-reinforced elastomers with spherical inclusions

subjected to general three-dimensional loading conditions have only been generated more

recently using the linear comparison homogenization method [4, 7], and using a combi-

nation of the sequential lamination and generalized self-consistent method [20, 21].

In spite of the significant progress over the last 12 years, results are not yet available

for more general microstructures and indeed this is the central objective of the present

work. In particular, we seek to investigate the effect of particle shape on the macroscopic

response, microstructure evolution and macroscopic instabilities in short-fiber-reinforced

elastomers subjected to general finite-strain loadings. For this purpose, we will make use

of the recent work of Avazmohammadi and Ponte Castañeda [4], which provided a more

robust way of handling the incompressibility of the elastomeric matrix phase in the context

of the tangent second-order procedure that the one initially proposed by Ponte Castañeda

and Tiberio [35]. Thus, the resulting estimates for the macroscopic response of the re-

inforced elastomers are consistent with the overall incompressibility constraint, expected

on physical grounds. On the other hand, the new method preserves the advantages of the

linear comparison approaches, allowing the direct conversion of classical results for linear

elastic composites—including estimates of the Eshelby and Willis type for systems rein-

forced with ellipsoidal inclusions—into corresponding estimates for the nonlinear, hyper-

elastic composites. Remarkably, the nonlinear homogenization theory is able to provide

analytical estimates for the evolution of the relevant microstructural variables, including

most notably the rotation of the ellipsoidal particles under general loading conditions.

In particular, it was verified [4] that the improved version of the TSO method leads to

predictions that are very similar—and in some cases identical—to the predictions of the

more sophisticated GSO method [24], at least for the case of two-dimensional elliptical

particles [25]. In this context, it should be noted that the GSO method requires the use

of the field fluctuations in the linear comparison composite and is therefore more difficult

to implement, especially for the complex three-dimensional microstructures of interest in

this work.

The structure of the paper is as follows. For convenience and clarity, Sections 2 and 3

summarize the basic elements of the nonlinear homogenization methods and, in particular,

the tangent second-order theory [4]. Section 4 deals with the specific application of the

TSO theory for elastomers reinforced with aligned, rigid, spheroidal particles. This section

includes closed-form, analytical expressions for the homogenized stored-energy function

of transversely isotropic, reinforced elastomers with neo-Hookean matrix phases under

aligned, triaxial loading conditions (see expressions (35), (39), and (42)). Section 5 spells

out the general conditions of strong ellipticity used to determine the “macroscopic” insta-

bilities for incompressible, transversely isotropic, hyperelastic composites under aligned

and non-aligned loading conditions. These conditions are provided in terms of appropri-

ate traces of the associated effective incremental modulus tensor, which, in turn, can be

written in terms of the derivatives of the associated effective stored-energy function with

respect to the macroscopic kinematical variables. Then, these conditions are specialized

for the class of (rigid) particle-reinforced elastomers undergoing axisymmetric and pure

shear loading conditions. Finally, some conclusions are drawn in Section 6. In Part II of
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this paper, use will be made of the analytical results presented in Secs. 4 and 5 of this

paper to investigate in more detail the influence of the microgeometry, matrix properties,

and loading conditions on the effective constitutive behavior of the reinforced elastomers,

including the associated microstructure evolution and the possible development of macro-

scopic instabilities.

2. Preliminaries on hyperelastic composites and their effective behavior

Consider a specimen consisting of several families of aligned, ellipsoidal particles, dis-

tributed randomly in a matrix phase, and occupying a volume Ω0 with boundary ∂Ω0 in

the undeformed configuration. Following the hypothesis of separation of length scales,

we will assume that the characteristic length-scale of the particles is much smaller than

the size of the specimen as well as the scale of variation of the loading conditions. Let the

position vector of a material point in the undeformed configuration Ω0 be denoted by X,

with Cartesian components Xi, i ∈ {1,2,3}, and the corresponding position vector in the

deformed configuration Ω be denoted by x, with components xi. The deformation gradient

tensor represented by F has components Fi j = ∂xi/∂X j and is required to satisfy the ma-

terial impenetrability condition: J = detF(X)> 0 for all X ∈Ω0. In addition, let F = RU

where U and R stand for the stretch and (rigid-body) rotation tensors, respectively, and let

C = FT F = U2 denote the right Cauchy–Green deformation tensor.

We assume that the constitutive behavior of the phases is purely elastic and charac-

terized by the stored-energy functions W (r)(F)(r = 1, ...,N), which are taken to be non-

convex functions of the deformation gradient tensor F. Also, the stored-energy functions

W (r)(F) are assumed to be objective, namely, W (r)(QF) = W (r)(F) for all proper or-

thogonal tensors Q and arbitrary deformation gradients F, so that W (r)(F) =W (r)(U). In

this work, we restrict our attention to the special case of composites made up of incom-

pressible isotropic phases, and it proves useful, for later use, to introduce the following

decomposition for the stored-energy function

W (r)(F) = W
(r)
µ (F)+

1

2
µ ′(r)(J−1)2, (1)

where W
(r)
µ denotes the “distortional” component of W (r) and depends on the ground-

state shear modulus µ (r), while the second term depending on the Lamé parameter µ ′(r)

characterizes the “volumetric” response of phase r. In other words, W
(r)
µ is that part of the

stored-energy function W (r) which does not depend on µ ′(r). It is a simple matter to verify

from (1) that the incompressibility constraint J = 1 is recovered by letting the parameter

µ ′(r) tend to infinity.

The first Piola-Kirchhoff stress in phase r is then given by the expression

S =
∂W (r)

∂F
(F). (2)

In this connection, it is useful to also define

S
(r)
µ (F) =

∂W
(r)
µ

∂F
(F), (3)

such that

S = S
(r)
µ (F)+µ ′(r)J(J−1)F−T . (4)
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In addition, consistent with the definition (1), the incremental tangent modulus tensor for

the phase r can be decomposed as

L(r)(F) =
∂ 2W (r)

∂F∂F
= L

(r)
µ +µ ′(r)L(r)

−1, (5)

where

L
(r)
µ (F) =

∂ 2W
(r)
µ

∂F∂F
, and L

(r)
−1(F) = J(2J−1)F−T ⊗F−T + J(J−1)XXX , (6)

with XXX denoting the fourth-order tensor with components Xi jkl =−F−1
li F−1

jk .

Next, the local energy function of the composite is defined as

W (X,F) =
N

∑
r=1

χ(r)(X)W (r)(F), (7)

where the characteristic functions χ(r), describing the distribution of the phases in the

reference configuration, are such that they equal 1 if the position vector X is inside the

phase r (i.e., X ∈ Ω
(r)
0 ) and zero otherwise. Following [15], the effective, or macroscopic

stored-energy function W̃ of the composite elastomer is given by

W̃ (F̄) = min
F∈K(F̄)

〈W(X,F)〉= min
F∈K(F̄)

N

∑
r=1

c
(r)
0

〈
W(r)(F)

〉(r)
, (8)

where K(F̄) denotes the set of kinematically admissible deformation gradients defined by

K(F̄) =
{

F|∃x = x(X)with F =Gradx and J > 0 in Ω0, x = F̄X on ∂Ω0

}
. (9)

In the above expressions, the triangular brackets 〈·〉 represent volume averages (in the un-

deformed configuration) over a representative volume element (RVE) Ω0 of the compos-

ite, while 〈·〉(r) denote volume averages (in the undeformed configuration) over the phases

Ω
(r)
0 , so that the scalar c

(r)
0 =

〈
χ(r)
〉

indicates the initial volume fraction of the phase r.

Noting that under the above-defined affine boundary condition 〈F〉 = F̄, and defining the

average stress S̄ = 〈S〉, the effective constitutive relation for the composite is then given

by [15]

S̄ =
∂W̃

∂ F̄
(F̄). (10)

At this point, it should be remarked that the solution (assuming that it exists) of the

Euler-Lagrange equations associated with the variational problem (8) is expected to be

unique in some neighborhood of F̄ = I (where I is the second-order identity tensor), and

gives the minimum energy. However, as the deformation increases into the finite defor-

mation regime, it may reach a point at which the solution of the Euler-Lagrange equations

(referred to as the “principal” solution and denoted by Ŵ (F̄)) is not unique anymore,

and other kinematically admissible solutions corresponding to a lower energy might exist

(which, according to (8), is labeled W̃ ). This point corresponds to the possible onset of an

instability, beyond which the applicability of the “principal” solution becomes question-

able. In the context of hyperelastic composites with periodic microstructures, it is known

[14, 41] that the first instability may be “microscopic” with wavelengths comparable to the
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size of the inhomogeneities, or they may be “macroscopic” with wavelengths comparable

to the size of the RVE. However, for composites with random microstructures, it may be

expected [27] that the first instability should actually be macroscopic. On the other hand,

it is also known [14, 40] that the “macroscopic” instabilities can be determined from the

loss of strong ellipticity of the effective stored-energy function of the material evaluated

at the above-described “principal” solution. For these reasons, in this work we will only

be concerned with the principal solution Ŵ , whose range of validity will be estimated by

evaluation of the associated loss of ellipticity condition.

Following up on the preceding remarks, we finish this section by spelling out the condi-

tion of strong ellipticity (SE) for the effective stored-energy function Ŵ (F̄). In the context

of hyperelastic materials, the SE condition for the homogenized composite elastomers

characterized by the stored-energy function Ŵ (F̄) is equivalent to the positive-definiteness

of the associated acoustic tensor K̂, namely, Ŵ (F̄) is said to be strongly elliptic if and only

if

K̂ik mimk = L̂i jkl N jNl mimk > 0, (11)

for all non-zero pairs of unit vectors N and m. Here, K̂ik = L̂i jkl N jNl is the effective

acoustic tensor, and, the fourth-order tensor L̂, defined by

L̂ =
∂ 2Ŵ

∂ F̄∂ F̄
, (12)

denotes the incremental effective moduli tensor of the composite material characterizing

the overall incremental response of the composite elastomer. It is also worth mentioning

that the tensor L̂i jkl possesses major symmetry (L̂i jkl = L̂kli j), but not generally minor

symmetries (L̂i jkl 6= L̂ jilk).

3. Tangent second-order homogenization estimates

In this section, we briefly recall the recently developed tangent second-order variational

method of Avazmohammadi and Ponte Castañeda [4] for the effective constitutive be-

havior of (two-phase) particle-reinforced, hyperelastic composites consisting of aligned,

ellipsoidal, rigid particles distributed randomly with volume fraction c in an incompress-

ible matrix phase with energy function W
(1)
µ . (Note that since particles are rigid and the

matrix is incompressible, c = c
(2)
0 for all macroscopic deformations.) As already men-

tioned, the TSO method makes use of a fictitious “linear comparison composite” (LCC)

with the same microstructure (i.e., same characteristic functions χ(r)(X)) as the actual

(nonlinear) composite material (in the undeformed configuration). The moduli of the con-

stituent phases in the LCC are identified with “tangent” linearizations of the given non-

linear phases evaluated at the macroscopic deformation gradient F̄. This allows the use

of already available methods for estimating the effective behavior of linear composites to

generate corresponding estimates for nonlinear composites. Avazmohammadi and Ponte

Castañeda [4] made use of the generalized Hashin-Shtrikman estimates of the Willis type

[36, 43] for the effective behavior of the linear-elastic composite materials consisting of

random distributions of aligned ellipsoidal particles with prescribed “ellipsoidal symme-

try” for the particle centers (i.e., the two-point correlation functions). These estimates are

exact to second-order in the heterogeneity contrast and to first order in the particle volume

fraction, and are known to be quite accurate for the type of “particulate” microstructures

of interest here, up to moderate concentrations of particles. In order to ensure compli-

ance with the overall incompressibility constraint (J̄ = det(F̄) = 1), Avazmohammadi and
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Ponte Castañeda [4] made use of the expression (1) to split the distortional and deviatoric

components of the energy and arrived at the following estimate for the effective stored-

energy function Ŵ(F̄) of the reinforced elastomers:

Ŵ(F̄) = (1− c)W
(1)
µ (F̄(1))+

1

2

c

1− c
(F̄− R̄(2)) ·E(F̄− R̄(2)). (13)

In this expression, F̄ is the macroscopic deformation which satisfies the incompressibility

condition det(F̄) = 1, R̄(2) is a second-order orthogonal tensor characterizing the average

rotation of the rigid particles under the macroscopic deformation gradient F̄, and deter-

mined by the kinematical equation

Skew
{
(R̄(2))T [E(F̄− R̄(2))]+ (1− c)(R̄(2))T S

(1)
µ (F̄(1))

}
= 0, (14)

where Skew denotes the skew-symmetric part of the quantities inside the curly brackets.

Note that equation (14) provides in general a set of three scalar algebraic equations for the

three independent components of R̄(2). The second-order tensor F̄(1) corresponds to the

average deformation gradient in the matrix phase of the LCC, which can be expressed in

terms of the macroscopic deformation gradient F̄, and the rotation tensor R̄(2) as

F̄(1) =
1

1− c
(F̄− cR̄(2)), (15)

Finally, E is a fourth-order, microstructural tensor given by1

E = lim
µ ′(1)→∞

(P−1−L(1)). (16)

In this relation, L(1) is a fourth-order moduli tensor determined by the tangent modulus

evaluated at the macroscopic deformation, such that

L(1) =
∂ 2W (1)

∂F∂F
(F̄), (17)

while P is an Eshelby-type (fourth-order) tensor containing information about the shape

and distribution of the particles in the undeformed configuration [36]. For ellipsoidal parti-

cles, distributed in an infinite matrix with the elastic modulus tensor L(1), the components

of P read as

Pi jkl =
1

4π |Z0|

∫

|ξξξ |=1
Bik(ξξξ )ξ jξl

[
ξξξ

T
(ZT

0 Z0)
−1ξξξ

]−3
2

dS, (18)

where the symmetric, second-order tensor Z0 serves to characterize the “shape” and “ori-

entation” of the particles in the undeformed configuration, and the tensor B denotes the

inverse of the acoustic tensor K of the matrix with components Kik = L
(1)
i jkl ξ jξl . In this

work, we will also assume that the initial (in the undeformed configuration) “shape” and

“orientation” of the two-point correlation function for the distribution of the ellipsoidal

particles are identically the same as for the particles themselves, as specified by the ten-

sor Z0. It should be remarked that this assumption is not essential, and the shapes and

orientations of the distribution functions could, in general, be different from those of the

1In the prior work [4], the fourth-order tensor E was labelled EI , but, for simplicity, the superscript I has been dropped
here.



August 20, 2014 18:10 Philosophical Magazine ”Sphroidal˙Part I˙Rev”

8

particles [36] leading to the use of two different P tensors. It is also worth mentioning

that all fourth-order tensors E, P, and L(1) have major symmetry, but not generally mi-

nor symmetry. Furthermore, in view of definitions (16)-(18), together with the objectivity

assumption for W (1)(F), it can be verified that

Ei jkl(F̄) = R̄ipR̄kqEp jql(Ū), (19)

where Ū and R̄ denote the macroscopic stretch and (rigid-body) rotation tensors, respec-

tively (note that F̄ = R̄Ū). Making use of (19) along with (14) and (15), it can be shown

that expression (13) for Ŵ (F̄) satisfies the objectivity condition

Ŵ (F̄) = Ŵ (Ū). (20)

In summary, for a given ellipsoidal microstructure, macroscopic loading F̄, and matrix

strain energy W (1), the computation of the effective stored-energy function Ŵ(F̄) in

(13), as well as of the associated rotation tensor R̄(2) in (14), requires the calculation of

E. As defined in (16), the tensor E should be calculated in the incompressibility limit

of the matrix phase (µ ′(1) → ∞). To this end, Avazmohammadi and Ponte Castañeda

[4] carried out a general asymptotic analysis for the computation of the tensor E in the

incompressibility limit (µ ′(1) → ∞). For completeness and to maintain continuity, the

procedure for computing the tensor E is provided in Appendix A.

We conclude this section by noting that Avazmohammadi and Ponte Castañeda [4] al-

ready considered the application of the above-described results for the special case of

elastomers reinforced with spherical particles under triaxial loadings, and for the spe-

cial case of composites with a neo-Hookean matrix, they derived closed-form expres-

sions for the corresponding effective stored-energy function. In addition, they considered

elastomers reinforced with two-dimensional fibers of elliptical cross-section under plane-

strain loading. For the special case of composites with a neo-Hookean matrix and dilute

concentration of fibers, they recovered exactly the results obtained by Lopez-Pamies and

Ponte Castañeda [25] using the more sophisticated GSO method. In addition, for finite

concentrations of particles and Gent-type matrices, the agreement of the TSO and GSO

results was quite good. In the present work, we will consider for the first time applications

for elastomers reinforced with three-dimensional spheroidal fibers.

4. Application to composites with rigid spheroidal particles

In the previous section, we summarized the results for estimating the effective stored-

energy function and the associated evolution of the microstructure for rigidly reinforced

elastomeric composites with general “ellipsoidal microstructure.” The aim of this section

is to make use of these results to generate corresponding estimates of the Willis-type

for elastomers reinforced with a random distribution of aligned, spheroidal particles

subjected to finite deformations. Our goal here is to provide explicit analytical estimates

when possible; otherwise, numerical calculation of the aforementioned estimates is

carried out. In the following paragraphs, we provide detailed description on the mi-

crostructural configurations, constitutive behavior of the elastomeric matrix phase, and

the applied macroscopic loading for the class of composites of interest in this work.

Microstructures. The microstructures to be studied in this work are shown schematically

in Fig. 1, and are depicted in the undeformed configuration relative to the Cartesian

basis {ei} describing a fixed laboratory frame. These microstructures consists of aligned
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0
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(a) (b)

Figure 1. Schematic illustration of the microstructure of a rigid particle-reinforced elastomer in the undeformed config-
uration (Ω0). Two configurations are considered. (a) Elastomers reinforced with prolate spheroidal particles (w > 1). (b)
Elastomers reinforced with oblate spheroidal particles (w < 1). Note that, in both cases, the symmetry axis of the particles
is initially aligned with the coordinate basis vector e3 .

spheroidal particles of prolate and oblate shapes, in initial volume fraction c
(2)
0 , which

remains the same in the deformed configuration (c = c
(2)
0 ). As illustrated in Fig. 1(a), the

prolate spheroidal particles have aspect ratios w > 1, and their major (symmetry) axes

are aligned with the e3-direction. Similarly, as shown in Fig. 1(b), the oblate spheroidal

particles have aspect ratios w < 1, and their minor (symmetry) axes are likewise aligned

with the e3-direction. Therefore, for both cases, the circular cross-section of the particles

in the undeformed configuration lies on the e1 − e2 plane. Moreover, consistent with

earlier discussions, it is assumed that the particles are initially distributed with spheroidal

symmetry (isotropic symmetry in the transverse plane), and the two-point correlation

function of the particle distribution has the same aspect ratio and orientation of those of

the particles.

Matrix Constitutive Behavior. The variational estimates (13) and (14) are valid for gen-

eral behavior for the incompressible matrix phase. In this work, for definiteness, attention

is restricted to stored-energy functions of the generalized neo-Hookean type, given by

expression (1) with

W
(1)
µ (F) = g(I)+h(J). (21)

In this expression, I = tr(C) and, for proper linearization, the material functions g(I)
and h(J) are assumed to be twice continuously differentiable satisfying the conditions:

g(3) = h(1) = 0, gI(3) = µ (1)/2, hJ(1) = −µ (1), and 4gII(3)+ hJJ(1) = µ (1), in which

the subscripts I and J stand for partial differentiation with respect to the invariants I and

J, respectively. In particular, we will consider the Gent model [13], which has been shown

to provide good agreement with experimental data for rubber-like materials [31] and cap-

tures the limiting chain extensibility of elastomers. It is defined by

W
(1)
µ (F) =−Jm µ (1)

2
ln

(
1− I −3

Jm

)
+

1

2
µ (1)(J−1)(J−3)− µ (1)

Jm

(J−1)2, (22)

where µ (1) is the ground-state shear modulus and Jm is a the dimensionless parameter

characterizing the limiting value for I −3 at which the elastomer locks up (and the argu-

ment of the logarithm vanishes). In connection with expression (22) for W
(1)
µ , it should be

emphasized that the terms depending on J, although vanishing for incompressible behav-
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Figure 2. Schematic orientation of the Rectangular coordinate basis e′i with respect to the basis ei after a two-step rotation.
The loading (stretching) directions are aligned with the e′i basis vectors, which have a misorientation (measured by angles

θ̄1 and θ̄2) relative to the ei basis.

ior at J = 1, are necessary for proper linearization of the deviatoric constitutive response.

In addition, we should note that the form (22) used in this work is slightly different from

the more common form involving a logarithmic term in J, and indeed used in our prior

work [4]. The reason, as we will see below, is that this form leads to better behaved esti-

mates for large values of the deformation. Finally, we note that the Gent model includes

the well-known neo-Hookean model in the limit as Jm approaches infinity, where W
(1)
µ

specializes to

W
(1)
µ (F) =

1

2
µ (1)(I−3)+

1

2
µ (1)(J−1)(J−3). (23)

Macroscopic Loading. The isotropic distribution of the spheroidal particles in the trans-

verse plane (here, e1 − e2 plane) in the undeformed configuration leads to overall trans-

versely isotropic behavior for the composite with symmetry axis n = e3. For compressible

materials with transversely isotropic symmetry, the strain energy-density function can be

written in terms of the 5 proper invariants of the tensor C̄ = F̄T F̄ and the vector n (which

reduce to 4 in the incompressibility limit). In this work, we find useful the following de-

composition of the macroscopic deformation gradient

F̄ = U = Q̄D̄ Q̄T , (24)

where it has been assumed that R̄ = I with recourse to the overall objectivity (20). In this

decomposition, D̄ is a symmetric, second-order tensor given by

D̄ = λ̄1 e1 ⊗ e1+ λ̄2 e2 ⊗ e2+ λ̄3 e3 ⊗ e3, (25)

with λ̄1, λ̄2 and λ̄3 identifying the principal values of U (also known as the macroscopic

principal stretches). In addition, Q̄ is a proper orthogonal, second-order tensor describing

the orientation of the principal axes of U relative to the (fixed) laboratory frame of refer-

ence {ei}. Here, the principal axes of the symmetric tensor U, also known as the loading

(stretching) directions, are identified with the (rectangular Cartesian) basis {e′i}. In gen-

eral, this basis is not aligned with the basis {ei}, representing the symmetry directions of

the particles in the undeformed configuration. In turn, the tensor Q̄ can be decomposed

into three proper orthogonal tensor Q̄1,Q̄2, and Q̄3 serving to characterize the rotations of

the principal axes of U about the fixed e1, e2 and e3 axis, respectively. Recalling that the

composite has transversely isotropic symmetry with symmetry axis along e3, the response

of the composite is insensitive to rotations about e3, and we can restrict our attention to
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tensors Q̄ of the form

Q̄ = Q̄1 Q̄2. (26)

It is important to emphasize that, for a general choice of λ̄1, λ̄2 and λ̄3, the order of the

rotations in (26) matters, and in this work, the order given in (26) will be used. Also, as

illustrated in Figure 2, we let the two (Euler) angles θ̄1 and θ̄2 denote respectively rotations

of the principal axes of U about the e1 and e2 axis, with the sign defined according to the

usual right-hand rule. More explicitly,

Q̄1 = cos(θ̄1)(e2⊗ e2 + e3 ⊗ e3)+ sin(θ̄1)(e3⊗ e2 − e2 ⊗ e3)+ e1⊗ e1,

Q̄2 = cos(θ̄2)(e1⊗ e1 + e3⊗ e3)+ sin(θ̄2)(e1⊗ e3 − e3 ⊗ e1)+ e2 ⊗ e2. (27)

Finally, as mentioned earlier, attention is restricted here to incompressible composite ma-

terials satisfying the overall incompressibility constraint, so that

λ̄3 =
(
λ̄1λ̄2

)−1
. (28)

In terms of the above-defined loading parameters, the effective stored-energy function

Ŵ may be written in the form

Ŵ (F̄) = Φ̂(λ̄1, λ̄2, θ̄1, θ̄2). (29)

Moreover, for simplicity, in this work we confine our attention to a subclass of loadings,

characterized by the condition θ̄1 = 0◦, as schematically shown in Figure 3. In this case,

the effective stored-energy function simplifies further and takes the form

φ̂(λ̄1, λ̄2, θ̄) = Φ̂(λ̄1, λ̄2,0, θ̄ ), (30)

where the parameter θ̄2 has been replaced by θ̄ for convenience. In this context, it is

important to remark that, in general, second and higher derivatives of the effective stored-

energy function Φ̂(λ̄1, λ̄2, θ̄1, θ̄2) with respect to θ̄1, calculated at θ̄1 = 0◦, are required for

the calculation of the effective incremental modulus tensor L̂ (defined in (12)) needed in

turn for the computation of the ellipticity condition (11) , even for loadings where θ̄1 = 0◦.

For this reason, it will be necessary to compute Φ̂ for general values of θ̄1 and θ̄2, even

when the results presented in this work will be restricted to loading paths with θ̄1 = 0◦.

We conclude the description of the macroscopic loading conditions by identifying

two special loading conditions: (1) Axisymmetric Shear, characterized by the condition

λ̄1 = λ̄2 = λ̄ , and (2) Pure Shear, characterized by the condition λ̄2 = 1, λ̄1 = λ̄ , where λ̄
is a positive loading parameter.

4.1. Estimates for non-aligned loadings

Under the above-mentioned assumptions on the microstructure, matrix properties and the

macroscopic loading, we can now determine the tangent second-order estimates (13) and

(14) for the composites consisting of a generalized neo-Hookean matrix (with stored-

energy function (21)) and aligned, rigid spheroidal particles, subjected to the applied de-

formation (24). The resulting estimates, for general stretches λ̄1 and λ̄2 and angles θ̄1, and

θ̄2, are too lengthy to be included here, and instead, we present results only for the case

of θ̄1 = 0◦ and θ̄2 = θ̄ . In this case, it can be shown that the estimate for the effective
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Figure 3. Schematic representation of the applied loading on a rigid particle-reinforced elastomer as well as the associated
evolution of microstructure. The loading (stretching) directions are aligned with e′i basis vectors which correspond to a

rotation θ̄ about the e2 direction. (a) In the undeformed configuration (Ω0), the particles are aligned with the e3 direction.

(b) In the deformed configuration (Ω), the particles rotate (by the angle ψ̄ (2)) on the e1 − e3 plane.

stored-energy function of the composites reduces to

Ŵ(F̄) = Φ̂(λ̄1, λ̄2,0, θ̄ ) = φ̂(λ̄1, λ̄2, θ̄ ) = (1− c)W
(1)
µ (F̄(1))+

c

2(1− c)

{
E11

11 X2
1 +(λ̄2 −1)2E22

22

+E33
33 X2

2 +E13
13Y 2

1 +E31
31Y 2

2 +2
[
X1(E

11
33X2 +E11

13Y1 +E11
31Y2)+X2(E

33
13Y1 +E33

31Y2)

+(λ̄2 −1)(E11
22X1 +E22

33 X2 +E22
13Y1 +E22

31Y2)+E13
31Y1Y2

]}
, (31)

where use has been made of the notation E
i j
kl = Ei jkl for compactness of the Cartesian

components of the microstructural tensor E, as defined by expression (16), and where

X1 = λ̄1 cos2(θ̄)+
(
λ̄1λ̄2

)−1
sin2(θ̄)− cos(ψ̄ (2)),

X2 = λ̄1 sin2(θ̄)+
(
λ̄1λ̄2

)−1
cos2(θ̄)− cos(ψ̄ (2)),

Y1,2 = sin(θ̄) cos(θ̄)
[
λ̄1 −

(
λ̄1λ̄2

)−1
]
± sin(ψ̄ (2)). (32)

In this expressions, ψ̄ (2) characterizes the average rotation of the symmetry axis of the

particles about the (fixed) e2 axis (with sign determined by the right-hand rule) in the

deformed configuration (see Fig. 3(b)). According to expression (14), ψ̄ (2) is determined

as the solution of the equation

[
2e31 sin(ψ̄ (2))− f1 X1 − f3 X2 +E31

31 Y2 −E13
13 Y1 − (λ̄2−1) f2

]
cos(ψ̄ (2))

−
{(

E11
13 +E33

13 + e13

)
Y1 +E11

11 X1 +E33
33 X2 +(λ̄2 −1)

(
E22

33 +E11
22

)

+
[
λ̄1 +

(
λ̄1λ̄2

)−1
][

E11
33 +(1− c)

(
2gI + λ̄2 hJ

)]}
sin(ψ̄ (2))+2e13 sin2(ψ̄ (2)) = 0,

(33)

where ei j = E11
3i +E

j3
31 and fi = E ii

13 −E ii
31, with i, j = 1,2,3.

For given loading parameters λ̄1, λ̄2, and θ̄ , and material functions g and h, the calcula-

tion of the effective stored-energy (31) and the associated particle rotation in (33) require

in turn the computation of the appropriate components of the tensor E, as described by
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expression (A1) in Appendix A. The pivotal point in this procedure is the calculation of

the microstructural tensors Pr, r = 1,2,3, as defined by the integrals in (A7). For the gen-

eral matrix behavior (21), and general choice of λ̄1 and λ̄2, and θ̄ , the analytic calculation

of these integrals is a difficult task, and we must resort to the use of a Gaussian quadrature

technique. To maintain continuity here, the details are provided in Appendix B.

At this point, it is important to emphasize that expressions (31) and (33) for the macro-

scopic response of the reinforced elastomers are exactly consistent with the earlier, corre-

sponding expressions given in [4], except that a slightly different form will be used here

for the term h(J) in equation (21) defining the matrix behavior W
(1)
µ . However, it can be

shown that the modifications proposed in this work for the function h(J), as made explicit

in the context of expressions (22) and (23) for Gent and neo-Hookean elastomers, respec-

tively, only affect the term W
(1)
µ (F̄(1)) in expression (31), all other terms in expressions

(31) and (33) remaining the same. (This is because the other terms in these expressions

depend only on up to quadratic terms in the Taylor series expansion of h about J = 1.)

Finally, we note that, for the special case of aligned loadings, in which stretching di-

rections of the tensor Ū are aligned with the principal axes of spheroidal particles (in the

undeformed configuration), leading to orthotropic symmetry, the calculation of the ten-

sors Pr, and subsequently the corresponding function Φ̂ , can be carried out analytically

for special forms of the matrix stored-energy function (21). For this reason, we present in

the next subsection explicit analytical results for aligned loadings.

4.2. Estimates for aligned loadings

In this subsection, we restrict our attention to the special case of macroscopic loadings

aligned with the particle axes {ei}, and characterized by the conditions θ̄ = 0◦ and θ̄ = 90◦

in expression (24) (recall that θ̄1 = 0◦). However, for general values of λ̄1 and λ̄2, it

suffices to identify aligned loadings by the condition θ̄ = 0◦. Hence, the macroscopic

deformation gradient for aligned loadings is written as

F̄ = λ̄1 e1 ⊗ e1 + λ̄2 e2 ⊗ e2 +
(
λ̄1λ̄2

)−1
e3 ⊗ e3, (34)

where it is recalled that the particles are aligned in the e3 direction.

For the special case of aligned loadings, i.e., θ̄ = 0◦, it can be shown that ψ̄ (2) = 0

satisfies identically equation (33), implying that the particles do not rotate for any stretch

(up to the possible onset of an instability). Making use of this fact, it is easy to show that

the TSO estimate (13) for the effective stored-energy function reduces to

Ŵ(F̄) = φ̂(λ̄1, λ̄2,0) = (1− c)W
(1)
µ (F̄(1))+

c

2(1− c)

{
(λ̄1 −1)2E11

11 +(λ̄2 −1)2E22
22

+l2E33
33 +2

{
l (λ̄1 −1)E11

33 +(λ̄2−1)
[
(λ̄1 −1)E11

22 + l E22
33

]}}
, (35)

where l =
(
λ̄1λ̄2

)−1 −1, and W
(1)
µ (F̄(1)) = g(Ī(1))+h(J̄(1)), in which

Ī(1) =
(λ̄1 − c)2+(λ̄2 − c)2 +[(λ̄1λ̄2)

−1 − c]2

(1− c)2
, J̄(1) =

(λ̄1 − c)(λ̄2− c)[(λ̄1λ̄2)
−1 − c]

(1− c)3
.

(36)

For the general matrix behavior (21), the analytic calculation of the relevant compo-

nents of tensor E in (35) is cumbersome, and, for practical reasons, we make use of the

Gaussian quadrature technique as will be discussed in Appendix B. However, for some

particular types of the matrix behavior (21), and under loading condition (34), derivation

of closed-form expressions for the components of the tensor E and, subsequently, for the
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effective stored-energy function (35) is feasible. In the next subsection, we specialize the

estimate (35) to neo-Hookean behavior for the matrix phase, and derive closed-form ex-

pressions for the effective stored-energy function for the two particular cases of (aligned)

axisymmetric shear and pure shear loadings.

4.2.1. Closed-form results for a neo-Hookean matrix

In this section, we consider the hyperelastic composites made of a neo-Hookean matrix

phase with stored-energy function of the form (23) and aligned, spheroidal, rigid particles

subjected to aligned loadings of the form (34). Under this type of loading conditions, the

TSO estimate (13) for the effective stored-energy function of the composites still takes

the form (35) with the function W
(1)
µ (F̄(1)) now given by

W
(1)
µ (F̄(1)) =

1

2
µ (1)

(
Ī(1)−3

)
+

1

2
µ (1)

(
J̄(1)−1

)(
J̄(1)−3

)
, (37)

where Ī(1) and J̄(1) are given by expressions (36). Note that W
(1)
µ (F̄(1)) remains bounded

for all finite values of the stretches. This is different from the corresponding expression

originally given in [4] which tends to blow up at a finite value of the stretch depending

on the particle volume fraction—a phenomenon that was labeled geometric locking up.

In other words, the slightly modified expressions given here for the response of the ma-

trix phase lead to no geometric locking up. As we will see in Part II of this work, this

feature will lead to more accurate predictions for the overall response of the reinforced

elastomers.

As discussed earlier, in this case, the microstructural tensors Pr,r = 1,2,3, as defined

by integrals (A7), and subsequently the tensor E, as defined by (A1), can be computed

analytically for general values of λ̄1 and λ̄2. However, the expressions for the pertinent

components of E, as well as for the final expression for the effective stored-energy func-

tion, are too cumbersome to be included here. Instead, we provide only the analytical

expressions for the relevant components of the corresponding tensors Pr,r = 1,2,3, al-

though, to maintain continuity here, they are spelled out in Appendix C. Having these

components for the tensors Pr, one can conveniently obtain a closed-form expression for

the corresponding effective stored-energy function Ŵ by first determining the analytic

expressions for the relevant components of the tensor E using the algebraic operations

outlined in Eqs. (A1)-(A5), and then substituting these components along with Eq. (37)

into Eq. (35). Here, we remark that the resulting expression for the effective stored-energy

function simplifies considerably, when specialized to particular choices of λ̄1 and λ̄2, cor-

responding to (aligned) axisymmetric shear and pure shear loadings. In the remainder

of this subsection, we will separately consider these two specializations, and provide the

closed-form expressions for the associated effective stored-energy functions.

Axisymmetric shear loading. Here, we consider the case of the particle-reinforced neo-

Hookean composite subjected to aligned axisymmetric loading of the form (see Fig. 4(a))

F̄ = λ̄ e1 ⊗ e1 + λ̄ e2 ⊗ e2 + λ̄−2 e3 ⊗ e3, (38)

for which λ̄1 = λ̄2 = λ̄ is a positive loading parameter. In this case, it can be shown that

the effective stored-energy function (35) simplifies to

Ŵ(F̄) = φ̂(λ̄ , λ̄ ,0) = (1− c)W
(1)
µ (F̄(1))

+
c

2(1− c)

{
2(λ̄ −1)2E11

11 +(λ̄−2 −1)2E33
33 +2[(λ̄ −1)2E11

22 +2(λ̄−2−1)(λ̄ −1)E11
33 ]
}
,

(39)
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Figure 4. Schematic representation of a matrix reinforced by spheroidal particles subjected to aligned (a) axisymmetric
shear loading, (b) pure shear loading.

where W
(1)
µ is given by expression (37) with

Ī(1) =
2(λ̄ − c)2 +(λ̄−2− c)2

(1− c)2
, J̄(1) =

(λ̄ − c)2(λ̄−2− c)

(1− c)3
.
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and

E11
11 = A3 A4 A5(wγ1)

−1

{
wA2

1 A3
3 (A3 −wA2)I

2
1̄
−w λ̄ 12 A2

2 A4
4 −wA2

3 A2
4 A5 [2w4 −w2I2

3 +4 λ̄ 6]

+
{

w2 λ̄ 12A2
2 A2

4 +wA2 A3 A5

[
w4 +w2 I3̄

1 − λ̄ 6
]
−A2

3 [2w6 −w4 I3
3 +w2 I8

1̄
+ I1,4̄

0,0]
}

A1 A4

+A2 A3 A2
4 [2w6 λ̄ 6 +w4 I5̄,2̄

1,0 +(7w2 −3)λ̄ 12]

}
,

E33
33 = A3 A4 A5 wγ−1

1

{
[wA3 − λ̄ 6 A2]A

2
1 A3

3 I
2
1̄
+w λ̄ 6 A2 A2

4

(
wA3 I

3̄,2
0,1 − λ̄ 12 A2 A2

4

)
+w3 A2

3 A2
4 A5 I

2̄,0
0,1

+
{

λ̄ 18 A2
2 A2

4 +2w λ̄ 6 A2 A3 A5 I
2̄,0
0,1 −w2 A2

3 [w
2 I3

2̄
+ I3,4̄

0,0]
}

A1 A4

}
,

E11
22 = A3 A4 (w λ̄ 2γ1)

−1

{
A1

{
−w λ̄ 2A2 A3 A4

[(
J1̄

3 + I1,2
1̄,0

)
w4 − I3

1̄

(
J1

1 + I3
1̄

)
w2 + λ̄ 6

(
J1̄

3 + I3̄,4
1,0

)]

+A2
3 A4 A5

[
(λ̄ 2 −1)w6+

(
I5
1̄
−2 λ̄ 2

)
w4 − λ̄ 2

(
J1̄

4 − I1
1

)
w2 − λ̄ 8

]
+w2λ̄ 14A2

2 A3
4 A5

}

− λ̄ 2A2 A3 A2
4 A5

[
λ̄ 4(λ̄ 2 −1)w6+(λ̄ 2 +1)

(
J0,1

1,2 − I2
1

)
w4 − λ̄ 6

(
3 λ̄ 4 + I2

4̄

)
w2 − λ̄ 12

]

+w3 A2
3 A2

4 A2
5 [(λ̄

2 −1)w2 + λ̄ 2(2 λ̄ 4 −1)]+w λ̄ 14A2
2 A4

4

[
λ̄ 4(λ̄ 2 +1)w2+ I2̄

1 − λ̄ 4
]

+wA2
1 A3

3 (2 λ̄ 6 −1)
{

A3 [(λ̄
2 +1)w2− λ̄ 2q1]−w λ̄ 2 A2 A5

}
}
,

E11
33 =−A3 A4 λ̄ γ−1

1

{
A1

{
wA2

3 A4 A5

[
(λ̄ 2 +1)w4 −w2

(
J0,1

0,2 + I5
1̄

)
+ I1̄,4

0,0 +2 λ̄ 8
]
−w λ̄ 14 A2

2 A3
4 A5

+λ̄ 2 A2 A3 A4

[
w4
(
J1̄

3 + I4
2̄

)
+ λ̄ 4

(
2 λ̄ 14 +J0,4

0,10
− I2,3

1̄,0

)
w2 +2 λ̄ 18 + λ̄ 10 I3

1̄

]}

− λ̄ 14A2
2 A4

4 (w
2q1 − λ̄ 6 − λ̄ 4)−w λ̄ 2A2 A3 A2

4 A5

[
w4q1 −

(
J1

3 +3 λ̄ 6
)

w2 +2 λ̄ 12 +3 λ̄ 10
]

+w2 A2
3 A2

4 A2
5 I

2̄,0
0,1 +A2

1 A3
3 I

2
1̄

{
w λ̄ 2 A2 A5 −A3[(λ̄

2 +1)w2− λ̄ 2q1]
}}

. (40)

In addition, in the above relations,

A1 = tanh−1

(√
w2 −1

w

)
, A2 = tanh−1

(√
w2 − λ̄ 6

w

)
, A3 =

√
w2 − λ̄ 6,

A4 =
√

w2 −1, A5 = (λ̄ 4 + λ̄ 2 +1)(λ̄ 2−1), q1,2 = λ̄ 4 ±1,

γ1 = A3 A4

[
A1 A3 A4

(
λ̄ 6 A2 A2

3 A2
4 I

3
1̄
+wA3

3 A5 I
4̄,0
1,1

)
−A2

1 A6
3 I

2
1̄
− λ̄ 18 A2

2 A6
4

−w λ̄ 6 A2 A3 A4
4 A5 I

3̄,0
0,1 +w2 A2

3 A2
4 A2

5 I
2̄,0
0,1

]
/µ (1),
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and the abbreviations

Ia,c
b,d = cλ̄ 12 +aλ̄ 6 +d w2 +b, Ia

b = Ia,0
b,0, Ja,c

b,d = bλ̄ 10 +dλ̄ 8 +aλ̄ 4 + cλ̄ 2, Ja
b = Ja,0

b,0,

have been introduced for compactness. In these last expressions, a barred sub-

script/superscript indicates the corresponding negative coefficient. It should be pointed out

that the effective stored-energy function (39) is valid for both prolate (w > 1) and oblate

(w < 1) spheroidal shapes for the particles. Also, when specialized to the case of w = 1,

relation (39) recovers the corresponding effective stored-energy function for neo-Hookean

elastomers reinforced by rigid, spherical particles provided by relation (141) in [4] (ex-

cept that the expression for W
(1)
µ involves a logarithmic term in J̄(1), because, as already

noted, a slightly different form for the compressible generalization of the neo-Hookean

model was used in the earlier work.). Another remarkable feature of the stored-energy

function (39) is that it is valid for any positive loading parameter λ̄ . More specifically,

for λ̄ > 1, the function (39) corresponds to the effective stored-energy function of the

composite when subjected to Equibiaxial Tension loading in the e1 − e2 plane, while for

λ̄ < 1, it corresponds to Uniaxial Tension loading in the e3 direction with tensile stretch

λ̄3 = 1/λ̄ 2.

Pure shear loading. Next, we consider the case in which the (spheroidal) particle-

reinforced neo-Hookean composite undergoes aligned pure shear loading (in the e1 − e3

plane) of the form (see Fig. 4(b))

F̄ = λ̄ e1 ⊗ e1 + e2 ⊗ e2 + λ̄−1 e3 ⊗ e3, (41)

where, similar to the preceding axisymmetric case, λ̄1 = λ̄ is a positive loading parameter.

In this case, the TSO estimate (35) for the effective stored-energy function simplifies to

Ŵ(F̄) = φ̂(λ̄ ,1,0) = (1− c)W
(1)
µ (F̄(1))+

c

2(1− c)

{
(λ̄ −1)2E11

11 +(λ̄−1−1)2E33
33

+ 2(λ̄ −1)(λ̄−1−1)E11
33

}
, (42)

where W
(1)
µ is given by expression (37) with

Ī(1) =
(λ̄ − c)2+(λ̄−1− c)2

(1− c)2
+1, J̄(1) =

(λ̄ − c)(λ̄−1− c)

(1− c)2
,

and

E11
11 =−(w λ̄ γ2)

−1Q1
1̄

{
w λ̄ B2 B2

3

(
wB2

3Ξp2 − λ̄ B3
2

)[
wB1Q

1
2 +B3

(
λ̄ 2w2 −2Q1

1

)]
Ξp1

−wB2
2 B2

3Q
1
1

[
w2 B2

1 B3Q
1
1 −w

(
w4Q1

1̄
−4 λ̄ 2w2 +O1,1

1,1

)
B1 +

(
w4Q1

1̄
+w2O1,1

3̄,1̄
+2 λ̄ 6

)
B3

]
Ξp2

+
{

w2 λ̄ q2 B2 B2
3

[
wB1Q

1
2 +
(
λ̄ 2w2 −2Q1

1

)
B3

]
Ξp1 −w2 λ̄ B3

2 B2
3

[
wB1Q

1
2 +
(
λ̄ 2w2 −2Q1

1

)
B3

]
Ξp2

−wB2
2

[
w2 q3

2 B2
1 B3 +wB1 B2

3

(
w2O1,1̄,1

2,0,0 +O1,1,3̄
2,4̄,0

)
+B3

3

(
w4λ̄ 4 −w2O1,1,1

2,0,0+2 λ̄ 6Q1
1

)]}
Ξ f

+ λ̄B5
2Q

1
1

[
w2 B2

1 B3Q
1
1 +wB1 B2

3

(
w2Q1

1̄
−Q3

1

)
−B3

3

(
w2Q1

1̄
−2 λ̄ 2

)]
}
,
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E33
33 =−wγ−1

2 Q1
1̄

{
λ̄ (B1 −wB3)B2 B2

3Q
1
2

(
w λ̄

3
B2

3 Ξp2 −B3
2

)
Ξp1 −w λ̄ B2

2 B2
3Q

1
1

{
λ̄ 2B2

1 B3Q
1
1

+wα B1 −w2 B3

(
2w2 − λ̄ 2Q1

1

)}
Ξp2 + λ̄ 3

{
w λ̄ B2 B2

3 (B1 −wB3)
(
B4Q

1
1 Ξp1 −B2

2Q
1
2 Ξp2

)

−B2
2

[
wq3

2 B2
1 B3 −B1 B2

3

(
w2O2̄,0,1

4̄,2,0
+ λ̄ 6Q1

2

)
−wB3

3

(
w2Q2

1 − λ̄ 6Q1
2

)]}
Ξ f

+B5
2 B3 (λ̄

2 +1)2 (B1 −wB3)
2

}
,

E11
33 = γ−1

2

{
λ̄ B2

3

{
B4

2

[(
w2 λ̄ 2Q1

3 −2Q1
1

)
B3 −wB1 B4

]
−w λ̄ B2 B2

3 (wB1 B4 +α B3)Ξp2

}
Ξp1

+w λ̄ q2 B2
2 B2

3

[
wB2

1 B3Q
1
1 +
(

w4Q1̄
1̄
+w2Q1

1̄
+ λ̄ 2Q1

1

)
B1 +w

(
2w2 − λ̄ 2Q1

1

)
B3

]
Ξp2

+ λ̄
{

B2
2

[
w2B3 q2

2Q
1
1B2

1 +B3
3

(
w4O1,0,0

2,1,0−w2O0,2,1
1,3,1 +2λ̄ 8Q1

1

)
+wB2

3Q
1
1̄

(
w2O2,3,1

5,2,0−O0,3,3
1,6,0

)
B1

]

−w λ̄ B2 B2
3 (wB1 B4 +α B3)

(
q2 Ξp1 −B2

2 Ξp2

)}
Ξ f +q2

2 B5
2

(
wB2

1 B3 +(w4 −1)B1+wB3
3

)
}
.

(43)

In addition, in the above relations,

B1 = tan−1

(√
1−w2

w

)
, B2 =

√
λ̄ 4 −w2, B3 =

√
1−w2, B4 = (λ̄ 2 −1)(λ̄ 2+2),

γ2 =

{
λ̄ B2

3

{
2w λ̄ 3B2 B5

3 Ξp2 −B4
2

[
wB1 B4 −B3

(
w2λ̄ 2Q1

1 −2
)]}

Ξp1 +q2 B5
2Q

1
1

[
wB2

1 B3

+(w4 −1)B1−w3 B3 +wB3

]
+w λ̄ q2 B2

2 B2
3

[
w
(
2w2 − λ̄ 2Q1

1

)
B3 −

(
2w4 − λ̄ 2Q1

1

)
B1

]
Ξp2

+ λ̄ 3B4
3

{
2w λ̄ B2 B3

(
q2 Ξp1 −B2

2 Ξp2

)
−B2

2

[
wB1Q

1
1̄
O1,2

2,0 +B3

(
w2Q1

1 −2 λ̄ 6
)]}

Ξ f

}
/µ (1)

and α = w2
(
λ̄ 2Q1

1 +2
)
−2λ̄ 2Q1

1. Also, the abbreviations

Qa
b = aλ̄ 2 +b, Oa,c,e

b,d, f = f λ̄ 10 + eλ̄ 8 +dλ̄ 6 + cλ̄ 4 +bλ̄ 2 +a, Oa,c
b,d =Oa,c,0

b,d,0,

are introduced for compactness, and it is recalled that a barred subscript/superscript indi-

cates the corresponding negative coefficient. Moreover, Ξ f , and Ξp1,2 are given in terms

of the incomplete elliptic integrals of the first and third kind [1], respectively, via

Ξ f = F

(
B2

λ̄ 2
, q

)
, Ξp1 = P

(
B2

λ̄ 2
,

λ̄ 4 −1

w2 − λ̄ 4
,q

)
, Ξp2 = P

(
B2

λ̄ 2
, 1,q

)
,
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where q = λ̄
√
(λ̄ 2 −1)/(λ̄ 4−w2), and the functions F and P are defined by

F (a,b) =

∫ a

0

1√
1− t2

√
1−b2t2

dt, P(a,b,c) =

∫ a

0

1√
1− t2

√
1−bt2

√
1− c2t2

dt.

(44)

It is important to note that, similar to relation (39), the effective stored-energy function

(42) is valid for both prolate (w > 1) and oblate (w < 1) spheroidal shapes of particles.

Likewise, when specialized to the case of w= 1, relation (42) reduces to the corresponding

effective stored-energy function for neo-Hookean elastomers reinforced by rigid, spheri-

cal particles provided by relation (139) in [4] (notwithstanding the earlier comment about

the logarithmic term). Finally, it is emphasized, for completeness, that the estimates (39)

and (42) are consistent with the macroscopic incompressibility constraint λ̄1λ̄2λ̄3 = 1, and

linearize properly.

5. Onset of macroscopic instabilities

The purpose of this section is to investigate the possible development of macroscopic

instabilities in the finitely strained, particle-reinforced elastomers described in the prior

section. As discussed earlier in Section 2, in this work, our attention is restricted to the

onset of macroscopic (as opposed to microscopic) instabilities, which are characterized by

wavelengths much larger than the characteristic size of the underlying microstructure. We

recall from our discussion in Section 2 that, based on the work by Geymonat et al. [14],

the onset of macroscopic instabilities in the heterogeneous materials corresponds to the

loss of strong ellipticity of the associated homogenized constitutive behavior. Recalling

from (11), the homogenized particle-reinforced elastomer characterized by Ŵ(F̄) is said

to be strongly elliptic if and only if

L̂i jklN jNl mimk =
(

∂ 2Ŵ/∂ F̄i j ∂ F̄klN jNl

)
mimk > 0. (45)

Thus, equivalently, the first macroscopic instability happens whenever the inequality (45)

ceases to hold true.

For incompressible materials, however, it proves convenient to express the strong ellip-

ticity (SE) condition in terms of the tensor L̂c
i jkl = L̂ipkq F̄jp F̄lq which is the updated in-

cremental moduli tensor when the undeformed configuration coincides with the deformed

configuration. Correspondingly, for incompressible composites, the SE condition (45) can

be rewritten as

tr{[L̂c(m⊗n)](m⊗n)}> 0, (46)

where n = F̄−T N is the transformation of the unit vector N in the deformed configuration.

In this case, the incompressibility constraint det(F̄) = 1 implies that the unit vectors n

and m must satisfy n ·m = 0 in (46). In fact, due to the incompressibility constraint, some

components of the moduli Lc become infinite, however, the constraint n ·m = 0 projects

the tensor Lc onto the space of isochoric deformation det(F̄) = 1, and accordingly, the

condition (46) is expressed in terms of some traces of Lc with finite values.

Since the effective strain energy (13) is strongly elliptic in sufficiently small neighbor-

hoods of F̄ = I, one expects that the inequality (46) holds true in the infinitesimal-strain

regime. However, as the macroscopic strain increases, the inequality may be violated at

some specific critical tensor F̄cr. This critical deformation gradient is associated with the

critical vectors ncr, mcr. In fact, F̄cr constitutes the boundary of the domain in deformation

space, including the value F̄ = I, inside which the SE condition holds. It is also remarked
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that when the condition (46) fails to hold, the homogenized material becomes macroscop-

ically unstable and this corresponds to a developing shear band taking place on a plane

with the (unit) normal vector ncr (in the deformed configuration) and along the direction

mcr.

The main objective of this section is to find the F̄cr (together with the associated vectors

ncr and mcr) when the composite material consisting of rigid spheroidal particles under-

goes the macroscopic deformation given by (24). In the following, the specialization of

the SE condition (46) for the class of transversely isotropic composites under non-aligned

and aligned loadings are provided, and later, they are further specialized for the (rigidly)

particle-reinforced composites of interest under axisymmetric and pure shear loadings.

The modulus tensor L̂c in (46), which in general has 45 independent components, sim-

plifies when it is specialized to the class of (incompressible) transversely isotropic com-

posites (with symmetry axis aligned with e3 direction) undergoing the macroscopic de-

formation field (24) (recall that θ̄1 = 0◦). Accordingly, it can be shown, by making use of

the orthogonality condition n ·m = 0 to solve for m3 in terms of the other components of

m and n, that the SE condition (46) for the stored-energy function Ŵ(F̄) can be written as

n−2
3

{{
L̂c

3131 n4
1 −2 L̂∗

2 n3n3
1 +
(

L̂c
3232 n2

2 + L̂∗
3 n2

3

)
n2

1 +
(

2 L̂∗
1 n3

3 −2 L̂c
3212 n2

2 n3

)
n1+

L̂c
1212 n2

2 n2
3 + L̂c

1313 n4
3

}
m2

1 +
{

2 L̂c
3131 n2 n3

1 +2
(

L̂∗
7 n2

3 − L̂∗
8 n2

1 − L̂c
3212 n2

2

)
n2 n3

+2
(

L̂c
3232 n2

2 + L̂∗
5 n2

3

)
n1n2

}
m1 m2 +

[(
L̂c

3131 n2
2 + L̂c

2121 n2
3

)
n2

1

+2
(

L̂c
2321 n2

3 − L̂∗
6 n2

2

)
n1n3 + L̂c

3232 n4
2 + L̂∗

4 n2
3 n2

2 + L̂c
2323 n4

3

]
m2

2

}
> 0, (47)

where

L̂∗
1 = L̂c

1113 − L̂c
3313, L̂∗

2 = L̂c
1131 − L̂c

3331,

L̂∗
3 = L̂c

1111 + L̂c
3333−2 L̂c

1133−2 L̂c
1331, L̂∗

4 = L̂c
2222 + L̂c

3333−2 L̂c
2233−2 L̂c

2332

L̂∗
5 = L̂c

1122 + L̂c
1221+ L̂c

3333 − L̂c
1133− L̂c

2233− L̂c
1331 − L̂c

2332,

L̂∗
6 = L̂c

2231 + L̂c
3221− L̂

′c
3331, L̂∗

7 = L̂c
2213 + L̂c

2312− L̂c
3313, L̂∗

8 = L̂c
2231+ L̂c

3221 + L̂c
1131−2 L̂c

3331,
(48)

The loss of strong ellipticity of the (incompressible) composite elastomer can be deter-

mined by monitoring the sign of the LHS expression in inequality (47) for all possible

unit vectors n and m satisfying the constraint n ·m = 0, and detecting the point at which

the expression first vanishes. As mentioned earlier in this section, for an incompressible

composite, some of the components of the corresponding effective incremental modulus

tensor L̂c become unbounded, however, the traces of this modulus tensor which appear in

the strong ellipticity condition (47) (the expressions of L̂c
i jkl terms multiplying ni’s com-

ponents) have finite values. These traces can be derived in terms of loading parameters

λ̄1, λ̄2, and θ̄2 as well as the first and second derivatives of the effective stored-energy

function Φ̂(λ̄1, λ̄2, θ̄1, θ̄2) with respect to its arguments, evaluated at θ̄1 = 0◦. To maintain

continuity, the corresponding explicit expressions for the moduli traces, calculated in the

rectangular Cartesian basis {e′i}, are provided in Appendix D.

Substituting the expressions for the moduli traces (in (D2)-(D6)) into (47), the SE con-

dition is expressed in terms of Φ̂ and can be used to detect the onset of macroscopic

instabilities for the class of particle-reinforced composites described in Section 4. For a



August 20, 2014 18:10 Philosophical Magazine ”Sphroidal˙Part I˙Rev”

21

general choice of λ̄1, λ̄2, and θ̄ = θ̄2 in deformation (24) (recall that θ̄1 = 0◦), the resulting

condition takes the form

f (Φ̂,λ̄1
,Φ̂,λ̄2

,Φ̂,λ̄1λ̄1
,Φ̂,λ̄2λ̄2

,Φ̂,θ̄1θ̄1
,Φ̂,θ̄2θ̄2

,n1,n2,n3,m1,m2,m3, λ̄1, λ̄2, θ̄)> 0, (49)

in which subscript commas followed by an index denote derivatives with respect to the

corresponding variables. For this general choice of loading parameters, the explicit ex-

pression for function f in (49) is too lengthy to be included here, but it simplifies consid-

erably for the special case of aligned loadings (θ̄ = 0◦) as discussed in the following.

For the special case of macroscopic aligned loadings, given by (34), it can be shown

that the SE condition (47) reduces to

n−2
3

{[
L̂c

3131 n4
1 +
(

L̂c
3232 n2

2 + L̂∗
3 n2

3

)
n2

1 + L̂c
1313 n4

3 + L̂c
1212 n2

2 n2
3

]
m2

1

+
[
2 L̂c

3131 n3
1n2 +

(
2 L̂c

3232 n3
2 +2 L̂∗

5 n2n2
3

)
n1

]
m1 m2

+
[(

L̂c
2121n2

3 + L̂c
3131 n2

2

)
n2

1 + L̂c
3232 n4

2 + L̂∗
4 n2

2n2
3 + L̂c

2323n4
3

]
m2

2

}
> 0. (50)

Substituting the moduli traces in (D7)-(D9) (for aligned loadings) into the above con-

dition, the corresponding SE condition for Φ̂ is obtained. For general choice of λ̄1 and λ̄2

in deformation (34), the resulting condition can be shown to reduce to

l−2
1 l−2

2 l−1
3

{{
λ̄ 4

1 λ̄ 2
2 l2

2 l3φ ∗
1 n4

1 +
[
λ̄ 2

1 λ̄ 4
2 l2

1 l3φ ∗
2 n2

2 + λ̄1 l2
2 l3

(
λ̄1 l2

1Φ̂,λ̄1λ̄1
−2 λ̄ 3

1 λ̄ 2
2 Φ̂,θ̄2θ̄2

−2 l1Φ̂,λ̄1

)
n2

3

]
n2

1

+λ̄ 2
2 l2

2 l2
1 φ ∗

3 n2
2 n2

3 + λ̄1 l2
2 l3

(
l1 Φ̂,λ̄1

+ λ̄ 3
1 λ̄ 2

2 Φ̂,θ̄2θ̄2

)
n4

3

}
m2

1 +2
{

λ̄ 4
1 λ̄ 2

2 l2
2 l3φ ∗

1 n3
1 n2

+
{[

λ̄1 λ̄2 l3

(
l2
1 l2

2Φ̂,λ̄1λ̄2
− λ̄ 3

1 λ̄2 l2
2Φ̂,θ̄2θ̄2

− λ̄1 λ̄ 3
2 l2

1Φ̂,θ̄1θ̄1

)
+ l1l2

(
λ̄ 3

1 l2
2Φ̂,λ̄1

− λ̄ 3
2 l2

1Φ̂,λ̄2

)]
n2 n2

3

+ λ̄ 2
1 λ̄ 4

2 l2
1 l3 φ ∗

2 n3
2

}
n1

}
m1 m2 +

{(
λ̄ 4

1 λ̄ 2
2 l2

2 l3 φ ∗
1 n2

2 + λ̄ 2
1 l2

2 l2
1 φ ∗

3 n2
3

)
n2

1 + λ̄ 2
1 λ̄ 4

2 l2
1 l3φ ∗

2 n4
2

+ λ̄2 l2
1 l3

[(
λ̄2 l2

2Φ̂,λ̄2λ̄2
−2 λ̄ 2

1 λ̄ 3
2 Φ̂,θ̄1θ̄1

−2 l2Φ̂,λ̄2

)
n2

2n2
3 +
(

l2Φ̂,λ̄2
+ λ̄ 2

1 λ̄ 3
2 Φ̂,θ̄1θ̄1

)
n4

3

]}
m2

2

}∣∣∣∣∣
θ̄1=0◦

n−2
3 > 0,

(51)

where φ ∗
1 = λ̄1l1Φ̂,λ̄1

+ Φ̂,θ̄2θ̄2
, φ ∗

2 = λ̄2l2Φ̂,λ̄2
+ Φ̂,θ̄1θ̄1

, φ ∗
3 = λ̄1Φ̂,λ̄1

− λ̄2Φ̂,λ̄2
, and

l1 = λ̄ 4
1 λ̄ 2

2 −1, l2 = λ̄ 2
1 λ̄ 4

2 −1, l3 = λ̄ 2
1 − λ̄ 2

2 . (52)

Before proceeding with the study of conditions (47), (49), (50), (51) for the particle-

reinforced composites of interest, it is important to make the following remarks:

(1) The SE conditions (49) and (51) are valid for any stored-energy function of the

form Φ(λ̄1, λ̄2, θ̄1, θ̄2) corresponding to a transversely isotropic material whose axis of

symmetry is aligned with the e3 direction and subjected to a deformation field of the form

(24) (with the condition θ̄1 = 0◦) and (34), respectively.

(2) In the remainder of this section, we will examine the SE conditions (49) and (51)

only for the transversely isotropic composite with the class of particulate microstructures

studied in this work. For this class of composites, based on a numerical study of (49) and

(51) (as will be discussed in Part II of this work), we provide the corresponding critical

unit vectors ncr and mcr at which these condition are first violated.
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(3) The aforementioned results for the critical vectors ncr, mcr are based on numerical

investigations carried out for composites with Gent and neo-Hookean matrices. However,

it is plausible that corresponding calculations for composites with other matrix models of

the form (21) would result in the same critical unit vectors.

Keeping in mind these remarks, in the next two subsections we consider the strong

ellipticity conditions (49) and (51) for two special types of loadings. In the first subsection,

we consider axisymmetric shear (characterized by λ̄1 = λ̄2 = λ̄ ), and provide first the SE

conditions associated with expressions (49) and (51) for non-aligned and aligned loadings,

respectively. In the second, we provide the corresponding specialized SE conditions for

pure shear loadings (characterized by λ̄1 = λ̄ , λ̄2 = 1). In this context, it is useful to

introduce the critical stretch λ̄cr, at which the strong ellipticity conditions associated with

axisymmetric and pure shear loadings are first violated.

In the discussions below, it is helpful to introduce the notations

Φ̂AS(λ̄ , θ̄1, θ̄2) = Φ̂(λ̄ , λ̄ , θ̄1, θ̄2), Φ̂PS(λ̄ , θ̄1, θ̄2) = Φ̂(λ̄ ,1, θ̄1, θ̄2), (53)

corresponding to general non-aligned axisymmetric and pure shear loadings, respectively

(cf., (29)). Similarly, we introduce the notations

φ̂ AS(λ̄ , θ̄) = φ̂(λ̄ , λ̄ , θ̄ ), φ̂ PS(λ̄ , θ̄ ) = φ̂(λ̄ ,1, θ̄ ), (54)

respectively for axisymmetric and pure shear loadings with θ1 = 0 (cf., (30)).

5.1. Axisymmetric Shear

Here, we begin by considering the SE condition for non-aligned axisymmetric loadings,

characterized by λ̄1 = λ̄2 = λ̄ in the loading form (24). For this case, the numerical results

show that the critical unit vectors at which the inequality (47) cease to hold, take the form

mcr = e2 and ncr = cos(αcr)e1+sin(αcr)e3. In view of these results for the critical vectors

mcr and ncr, it is inferred that the macroscopic instability, under non-aligned loading

condition, consistently takes places through development of localized shear deformations

(also known as “shear bands”) on all planes whose normal lies in the e1 − e3 plane, and

in the e2 direction. In this connection, αcr serves to characterize the angle between the

normal to the plane of the “shear band” and the e1 direction, exactly at the moment of

shear band initiation. The corresponding normal vector in the undeformed configuration

can be obtained from relation Ncr = F̄T
crncr. Using the resulting vectors ncr, and mcr in

condition (47), it can be deduced that macroscopic instabilities may first develop along

non-aligned axisymmetric shear loading paths whenever the quadratic equation

L̂c
2121

(
n1

n3

)2

+2 L̂c
2321

(
n1

n3

)
+ L̂c

2323 = 0 (55)

admits real roots for n1/n3. Consequently, necessary and sufficient condition for the

quadratic equation to have complex roots can be expressed as

L̂c
2121 L̂c

2323 −
(

L̂c
2321

)2

> 0. (56)

Making use of the expressions for the Lc
2121, Lc

2323, and Lc
2321, provided in Appendix D, for

axisymmetric shear loading, the associated SE condition for the effective stored-energy
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function Φ̂ can be written as

{[
λ̄ sin2(θ̄)Φ̂,λ̄1λ̄1θ̄1θ̄1

− λ̄ sin(θ̄)cos(θ̄) Φ̂,λ̄1λ̄1θ̄2
+6Φ̂,λ̄1λ̄1

λ̄ +2 λ̄ Φ̂,λ̄2λ̄2
+8Φ̂,λ̄1

−2 λ̄ Φ̂AS

,λ̄ λ̄
−2Φ̂AS

,λ̄

]
×
[
λ̄ 5 sin(θ̄)cos(θ̄)Φ̂,θ̄2

+ λ̄ 5 cos2(θ̄) Φ̂,θ̄1θ̄1
+(λ̄ 6 −1)Φ̂,λ̄2

]

−2 λ̄ 2 (λ̄ 6 −1)−2
{

2 λ̄ (2 λ̄ 6 cos2(θ̄)−1) Φ̂,θ̄2
+ λ̄ 2 (λ̄ 6 −1)cos2(θ̄) Φ̂,λ̄1θ̄2

−λ̄ 2 sin(θ̄)cos(θ̄)
[
4 λ̄ 5 Φ̂,θ̄1θ̄1

+(λ̄ 6 −1)Φ̂,λ̄1θ̄1θ̄1

]}2

}∣∣∣∣∣λ̄1=λ̄2=λ̄ ,

θ̄1=0, θ̄2=θ̄

> 0. (57)

Recall that the above condition is calculated at θ̄1 = 0◦, and the axisymmetric shear condi-

tions λ̄1 = λ̄2 = λ̄ should be applied to all terms after taking derivatives. Loss of ellipticity

is therefore expected at the critical stretch λ̄cr for which condition (57) is first violated.

The corresponding critical angle αcr can be shown to be given by

αcr = θ̄ + tan−1
{

λ̄
{

2 λ̄ (2 λ̄ 6cos2(θ̄)−1)Φ̂,θ̄2
+ λ̄ 2(λ̄ 6 −1)cos2(θ̄)Φ̂,λ̄1θ̄2

−λ̄ 2 sin(θ̄)cos(θ̄)
[
4 λ̄ 5 Φ̂,θ̄1θ̄1

+(λ̄ 6 −1)Φ̂,λ̄1θ̄1θ̄1

]}

×1

2

[
λ̄ 5 cos(θ̄)sin(θ̄)Φ̂,θ̄2

+ λ̄ 5Φ̂,θ̄1θ̄1
cos2(θ̄)+(λ̄ 6 −1)Φ̂,λ̄2

]−1
}∣∣∣∣λ̄1=λ̄2=λ̄cr ,

θ̄1=0, θ̄2=θ̄

.

(58)

Note that the above expression is calculated at λ̄cr.

Next, we consider the development of macroscopic instabilities for the composites sub-

jected to the aligned axisymmetric loading of the form (38). In this case, the result depends

on whether the particles are prolate (w > 1), or oblate (w < 1), and these two cases are

considered separately below.

Prolate particles. Here, we consider composites consisting of an incompressible matrix

and aligned prolate spheroidal particles (see Fig. 1a) subjected to axisymmetric shear

loading (38). In this case, within the context of condition (50), and based on the numerical

examination, the loss of strong ellipticity for the effective stored-energy function Φ̂ takes

place when the vector ncr is aligned with the e3 axis and the vector mcr lies in the e1 − e2

plane in the deformed configuration. That is, the homogenized composite material may

develop localized shear deformations on the plane determined by the normal e3, and in

all directions in the transverse plane. Using these vectors in the condition (50), it can be

deduced that macroscopic instabilities may first develop along axisymmetric shear loading

paths whenever the following inequality is first violated

L̂c
1313 = L̂c

2323 > 0. (59)

It should be noted that, for the case of prolate particles, the associated numerical results (to

be discussed in more detail in Part II of this work) show that this type of instability occurs

only when λ̄ > 1. This regime of λ̄ corresponds to the equibiaxial tension loading in the

e1 − e2 plane with the stretch λ̄ , which is equivalent to the uniaxial compression loading

in the e3 direction with (compressive) stretch 1/λ̄ 2. In other words, as the (compressive)

stretching along the long axes of the particle increases, the effective incremental modu-
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lus in the transverse plane perpendicular to the particle symmetry axes (L̂c
1313 = L̂c

2323)

softens to the point that it vanishes (L̂c
1313 = 0). This point is characterized by some finite

critical stretch λ̄cr > 1. This localized behavior can be related to the evolution of the mi-

crostructure in the particle-reinforced elastomers. Thus, as will be seen in Part II, the loss

of strong ellipticity would correspond to an abrupt rotation (or flopping) of the particles

under a sufficiently large compressive loading. Making use of the expression for Lc
1313

given in Appendix D, the associated strong ellipticity condition in terms of the effective

stored-energy function can be given as

[
λ̄ 5 ∂ 2φ̂ AS

∂ θ̄ 2
+

1

2
(λ̄ 6 −1)

∂ φ̂ AS

∂ λ̄

]∣∣∣∣∣
θ̄=0◦

> 0. (60)

Note that all derivatives in the above conditions are taken at θ̄ = 0◦.

Oblate particles. Here, we consider composites consisting of an incompressible matrix

and aligned oblate spheroidal particles (see Fig. 1(b)). In this case, along the loading

path (38), the numerical study indicates that the strong ellipticity condition (50) is first

violated when the vector ncr lies in the e1−e2 plane and the vector mcr is aligned with the

e3 direction in the deformed configuration. In other words, the homogenized composite

material may develop localized shear deformations on all planes whose normal lies in the

e1 − e2 plane, and in the e3 direction. Using these vectors in the condition (50), it is easy

to show that the first macroscopic instabilities may develop along axisymmetric shear

loading paths whenever the following inequality is first violated

L̂c
3131 = L̂c

3232 > 0. (61)

It is remarked that, for the case of oblate particles, the numerical results show that this

instability occurs only for 0 < λ̄ < 1. This regime of λ̄ corresponds to a equibiaxial

compression loading in the e1−e2 plane with (compressive) stretch λ̄ , which is equivalent

to the uniaxial tension loading in the e3 direction with (tensile) stretch 1/λ̄ 2. That is, as

the (compressive) stretching in the transverse plane increases, the effective incremental

modulus in all planes with the normal vector n ∈ Span{e1 − e2} softens to the point that

it vanishes (L̂c
3131 = L̂c

3232 = 0). Making contact with the microstructure, the loss of strong

ellipticity can be identified with flopping of the oblate particles under compressive loading

in the e1 − e2 plane. Making use of the expression for L̂c
3131, given in Appendix D, the

associated strong ellipticity condition in terms of the effective stored-energy function can

be written as

[
2

∂ 2φ̂ AS

∂ θ̄ 2
+ λ̄ (λ̄ 6 −1)

∂ φ̂ AS

∂ λ̄

]∣∣∣∣∣
θ̄=0◦

> 0. (62)

5.2. Pure shear

In this subsection, we consider the case of particle-reinforced elastomers subjected to pure

shear deformations, characterize by λ̄1 = λ̄ , λ̄2 = 1 in expression (24). In this case, similar

to the case of non-aligned axisymmetric shear loading, the strong ellipticity condition (47)

is violated at the critical vectors mcr = e2 and ncr = cos(αcr)e1 + sin(αcr)e3. In turn, the

same strong ellipticity condition (56) is obtained for the case of non-aligned pure shear

loading. Making use of the expressions for the Lc
2121, Lc

2323, and Lc
2321 given in Appendix

D for pure shear loading, the following macroscopic onset-of-failure surface (λ̄ , θ̄ ) is
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obtained

{[
cos(θ̄)sin(θ̄)Φ̂,θ̄2

− sin2(θ̄)Φ̂,θ̄1θ̄1
−
(
λ̄ 2 −1

)(
λ̄ Φ̂,λ̄1

− Φ̂,λ̄2

)]
λ̄ 2

×
[(

λ̄ 2 −1
)

Φ̂,λ̄2
+ λ̄ 2 sin(θ̄)cos(θ̄)Φ̂,θ̄2

+ λ̄ 2 cos2(θ̄) Φ̂,θ̄1θ̄1

]
− λ̄ 4

(
λ̄ 2 +1

)−2

×
[(

λ̄ 2cos2(θ̄)− sin2(θ̄)
)

Φ̂,θ̄2
−
(
λ̄ 2 +1

)
sin(θ̄)cos(θ̄)Φ̂,θ̄1θ̄1

]2
}∣∣∣∣λ̄1=λ̄ , λ̄2=1,

θ̄1=0, θ̄2=θ̄

> 0. (63)

Note that the SE condition (63) is calculated at θ̄1 = 0◦, and the pure shear conditions

λ̄1 = λ̄ , λ̄2 = 1 should be applied to all terms after taking derivatives. Also, for the cases

in which the strong ellipticity condition (63) is violated, the corresponding critical angle

αcr, characterizing the angle between the e1 axis and the normal to the shear band plane

at the moment of its initiation, can be shown to be obtained by

αcr = θ̄ + tan−1

{
λ̄ 2
[(

λ̄ 2cos2(θ̄)− sin2(θ̄)
)

Φ̂,θ̄2
− sin(θ̄)cos(θ̄)

(
λ̄ 2 +1

)
Φ̂,θ̄1θ̄1

]

×
{(

λ̄ 2 +1
)[(

λ̄ 2 −1
)

Φ̂,λ̄2
+ λ̄ 2 sin(θ̄)cos(θ̄)Φ̂,θ̄2

+ λ̄ 2 cos2(θ̄) Φ̂,θ̄1θ̄1

]}−1

}∣∣∣∣∣λ̄1=λ̄cr , λ̄2=1,

θ̄1=0, θ̄2=θ̄

.

(64)

Recall that the above expression is calculated at λ̄cr, corresponding to the stretch at which

the shear band is initiated.

Next, we consider the development of macroscopic instabilities for the composites sub-

jected to the aligned pure shear loading of the form (41). Similar to the case of axisym-

metric loadings, the two classes of microstructures with prolate and oblate particles (see

Fig. 1a, b) should be examined separately.

Prolate particles. For the case of prolate particles (see Fig. 1a), the strong ellipticity con-

dition (50) is violated at the critical vectors ncr = e3 and mcr ∈ Span{e1 − e2}. Making

use of these vectors in condition (50), it is concluded that the particle-reinforced materi-

als become unstable under the aligned pure shear loading whenever any of the following

inequalities is violated

L̂c
1313 > 0, L̂c

2323 > 0. (65)

In fact, the “failure mechanism” for both aligned pure shear and axisymmetric shear load-

ings is essentially the same, which is the softening of the effective incremental shear

response perpendicular to the e3 direction. However, at the point of instability in the pure

shear case, the overall shear response of the composite in the transverse plane vanishes in

a particular direction within this plane (e1 or e2), while in the axisymmetric shear case, as

mentioned earlier, it vanishes in all directions within the transverse plane. Making contact

with evolution of the microstructure, this implies that, under aligned pure shear loading,

the prolate particles “flop” about either the e1 or e2 directions depending on the other

microstructural variables (w and c), while, under aligned axisymmetric shear loading, the

flopping of the particles about any axis m ∈ Span{e1 − e2} is essentially the same. Now,

making use of the pertinent expressions in Appendix D for aligned pure shear loading, the

necessary and sufficient conditions for the associated effective stored-energy function Φ̂
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to be strongly elliptic can be expressed as



λ̄

∂ 2φ̂ PS∗

∂ θ̄ 2
+(λ̄ 2 −1)


∂ φ̂ PS

∂ λ̄
−
(

∂ φ̂

∂ λ̄1

)∣∣∣∣∣
λ̄1=λ̄ ,λ̄2=1







∣∣∣∣∣∣
θ̄=0◦

> 0,

[
λ̄ 3 ∂ 2φ̂ PS

∂ θ̄ 2
+(λ̄ 4 −1)

∂ φ̂ PS

∂ λ̄

]∣∣∣∣∣
θ̄=0◦

> 0, (66)

where φ̂ PS∗(λ̄ , θ̄ ) = φ̂(1, λ̄ , θ̄ ). (In the context of this last expression, it should be recalled

that Φ̂(λ̄1, λ̄2, θ̄ ,0) = Φ̂(λ̄2, λ̄1,0, θ̄ ).) Also, note that all derivatives in the above condi-

tions are taken at θ̄ = 0◦, and the pure shear conditions λ̄1 = λ̄ , λ̄2 = 1 should be applied

to the term ∂ φ̂/∂ λ̄1.

Oblate particles. For the case of oblate particles (see Fig. 1b), the strong ellipticity con-

dition (50) is violated at the critical vectors ncr = e1 and mcr = e3. Making use of these

vectors in condition (50), it is deduced that the particle-reinforced materials first become

unstable under aligned pure shear loading whenever the following inequality is violated

L̂c
3131 > 0. (67)

In this case, similar to the prolate particles case, the “failure mechanism” for both aligned

pure shear and axisymmetric shear loadings is essentially the same, which is the softening

of the effective incremental shear response along the e3 direction. The only difference is

that, at the point of instability in the pure shear case, the overall shear response in the

plane with normal vector e1 vanishes (L̂c
3131 = 0); however, in the axisymmetric shear

case, the overall shear response of the composite in all planes with the normal vector in

the n ∈ Span{e1 − e2} vanishes (L̂c
3131 = L̂c

3232 = 0). Now, making use of the pertinent

expressions in Appendix D for aligned pure shear loading, the necessary and sufficient

conditions for the associated effective stored-energy function Φ̂ to be strongly elliptic can

be expressed as

[
∂ 2φ̂ PS

∂ θ̄ 2
+ λ̄ (λ̄ 4 −1)

∂ φ̂ PS

∂ λ̄

]∣∣∣∣∣
θ̄=0◦

> 0. (68)

Finally, note that for particular case of w = 1, corresponding to spherical shape of par-

ticles, no loss of strong ellipticity is detected within the context of the condition (50).

This observation, which is consistent with the results of Avazmohammadi and Ponte

Castañeda [4] and Lopez-Pamies et al. [21], implies that the effective stored-energy func-

tion (35) is strongly elliptic in the limiting case of spherical particles. The results for

general spheroidal particle shapes will be discussed in more detail in Part II of this paper.

6. Concluding Remarks

In this paper, we have made use of the tangent second-order, finite-strain homogeniza-

tion framework proposed by Avazmohammadi and Ponte Castañeda [4] to estimate the

overall response and microstructure evolution in incompressible elastomers reinforced by

aligned, spheroidal, rigid particles, subject to general loading conditions. In particular, for

non-aligned loadings, the analytical estimates (31) and (33) were derived for the effective

stored-energy function of the composite and the rotation of the particles, respectively. For

the special case of aligned loadings, explicit closed-form expressions were provided for
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the effective stored-energy function of particle-reinforced neo-Hookean elastomers sub-

jected to axisymmetric and pure shear loadings, as given in (39) and (42), respectively. It

should be emphasized that the analytical results developed in this work are given in a form

that can be easily implemented numerically into user-defined constitutive subroutines for

use with standard finite element codes.

In this work, we also have presented a detailed study of the possible development

of macroscopic instabilities in the particle-reinforced composites of interest, under both

aligned and non-aligned loading conditions. The onset of such instabilities in these materi-

als is identified with the loss of strong ellipticity of the associated homogenized behavior.

In this connection, general conditions for loss of ellipticity were given in (49) and (51) for

non-aligned and aligned loadings, respectively. These conditions were then specialized

for the class of particulate composites undergoing axisymmetric and pure shear loadings

in Subsections 5.1 and 5.2.

It should be remarked that, to the best of our knowledge, the estimates provided in

this work for the effective stored-energy function and the particle rotation are the first

homogenization-type estimates for reinforced elastomers with general spheroidal particle

shape. The results are valid for large strains provided that the interfaces between the parti-

cles and the rubber remain intact. The estimates generalize the results of Avazmohammadi

and Ponte Castañeda [4] for spherical particles, and are consistent with earlier results for

continuous-fiber-reinforced elastomers [2, 3], as well as with simple laminates [10, 26],

in the limits when the aspect ratio of the spheroidal particles tends to infinity and zero, re-

spectively. It should also be noted that the results of this paper for the mechanical response

of short-fiber-reinforced composites could be used to derive corresponding results for the

magneto-elastic response of such composite materials when the particles are allowed to

be magnetically susceptible (e.g., iron, nickel alloys) by means of the “partial decoupling

approximation” introduced recently by Ponte Castañeda and Galipeau [33] (see also [34]

for electro-active polymer composites).

In Part II of this paper, the analytical results provided in this part for the effective stored-

energy function, rotation of particles, and development of the macroscopic instabilities

will be explored in more detail for particle reinforced composites with neo-Hookean and

Gent matrix phases. Explicit results will be presented for axisymmetric and pure shear

loadings, as well as for a wide range of particles shapes and concentrations. Where possi-

ble, comparisons with full-field numerical simulations will be carried out.
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Appendix A. Calculation of the tensor E

In this appendix, we recall from our earlier paper [4] the procedure for calculating the

tensor E for a given stored-energy function W
(1)
µ , macroscopic deformation gradient F̄,

and shape tensor Z0. Thus,

E = Q0 −L
(1)
µ , (A1)
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where

Q0 = P
†
0 (III −P1 Q−1)+

3

∑
i=1

Wi ⊗V
(1)
i , (A2)

with

Q−1 =
3

∑
i=1

Wi ⊗V
(0)
i . (A3)

In the above equations, {W1,W2,W3} is a set of second-order tensor spanning the null

space of P0, while the second order tensors V
(0)
i and V

(1)
i are defined by [5]

V
(0)
i =

1

Wi ·P1Wi

Wi, (A4)

and

V
(1)
i =− 1

Wi ·P1Wi

{
(P1 P

†
0)

T Wi +
[
Wi.(P2 −P1 P

†
0P1)Wi

]
V
(0)
i

}
, (A5)

where i = 1,2,3 (no sum), and where the superscript T denotes the usual transpose of a

fourth-order tensor (i.e., (·)T
i jkl = (·)kli j). In addition, P†

0 is the Moore-Penrose generalized

inverse of P0 satisfying the properties

P0 P
†
0 P0 = P0, P

†
0 P0 P

†
0 = P

†
0,

(P0 P
†
0)

T = P0 P
†
0, (P†

0 P0)
T = P

†
0 P0, (A6)

where the tensors P0, P1, andP2 are given by

(Pr)i jkl =
1

4π |Z0|

∫

|ξξξ |=1
(Br)ik ξ jξl

[
ξξξ

T
(ZT

0 Z0)
−1ξξξ

]− 3
2

dS, r = 0,1,2. (A7)

Note that the tensor P0 is the limiting value of the tensor P (defined in (18)) in the incom-

pressible matrix limit. The second-order tensors Br, r = 1,2,3 in (A7) can be obtained

by

B0 =
1

d0
D0,

B1 =
1

d0

(
D1 −

d1

d0
D0

)
,

B2 =
d1

(d0)3
(d1D0 −d0D1) , (A8)

where d0 and d1 are given by

d0 =
1

6
ei jkepqr

[
(Kµ)ip(Kµ) jq(K−1)kr +(Kµ)ip(K−1) jq(Kµ)kr +(K−1)ip(Kµ) jq(Kµ)kr

]
,

d1 = det(Kµ) =
1

6
ei jkepqr(Kµ)ip(Kµ) jq(Kµ)kr, (A9)
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and the tensors D0 and D1 have components

(D0)ik = eirsekpq(Kµ)rp(K−1)sq,

(D1)ik =
1

2
eirsekpq(Kµ)rp(Kµ)sq. (A10)

Finally, the second-order tensors Kµ and K−1 in (A9) and (A10) are the parts of the

acoustic tensor K (defined in the context of (18)) associated with the ”incompressible”

and ”compressible” parts of the moduli tensor L(1). These two parts of the tensor L(1),

denoted by L
(1)
µ and L

(1)
−1, respectively, defined in (6). Hence, the tensors K−1 and Kµ are

determined by the following relations

(Kµ)ik = (Lµ)
(1)
i jkl ξ jξl, (K−1)ik = (L−1)

(1)
i jkl ξ jξl . (A11)

In general, a Gaussian quadrature technique can be implemented for the numerical com-

putations of the integrals (A7) over the surface of the unit sphere, |ξξξ | = 1. However, it

is noted that, for a given microstructure, and for certain types of matrix behaviors and

loading conditions, these integrals can be calculated analytically, leading to closed-form

expressions for the components of the tensor E. This is the case for spheroidal particles

in a neo-Hookean matrix subjected to aligned loadings. The relevant components of the

tensors Pr for this case are given in Appendix C.

Appendix B. Calculation of the tensors Pr for spheroidal particles embedded in a

generalized neo-Hookean matrix under non-aligned loadings

In this appendix, we briefly address the numerical calculation of the integrals (A7) for

the case of spheroidal particles embedded in an incompressible matrix of the form (21)

subjected to non-aligned loadings (24) (note that θ̄1 = 0◦). For this purpose, we make use

of polar cylindrical coordinates, and parametrize the unit vector ξξξ in (A7) as

ξ1 =
√

1− z2 cos(θ ), ξ2 =
√

1− z2 sin(θ ), ξ3 = z, (B1)

in which θ and z vary over the intervals 0 ≤ θ ≤ π and 0 ≤ z ≤ 1. Now, making use of

(B1), and setting Z0 = diag(1,1,w) for the spherical particles, the integrals (A7) yield to

the following double integrals

(Pr)i jkl =
w

4π

∫ π

0

∫ 1

0

(Br)ik

[1+(w2−1)z2]
3/2

dθ dz, r = 0,1,2. (B2)

In order to compute the above integrals, it proves helpful to provide the corresponding

analytical expression for the tensors Br, r = 1,2,3, which can be determined from those of

the second-order tensors D0 and D1 as well as the scalars d0 and d1 by using relations (A8).

For general non-aligned loadings (24) and general matrix behavior (21), the analytical

expressions for D0, D1, d0 and d1 are too cumbersome to be included here, and instead,

we present the expressions for the tensors Kµ and K−1 from which the corresponding

expressions for D0, D1, d0 and d1 can be easily obtained with the help of relations (A9)

and (A10). In this case, the components of the symmetric, second-order tensors Kµ and
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K−1 read as

(Kµ)11 = 2gI +4(V1 ξ1 −V3 ξ3)
2gII +(V2 ξ1 +V3 ξ3)

2 λ̄ 2
2 hJJ, (Kµ)22 = 2gI +(4 λ̄ 2

2 gII +hJJ/λ̄ 2
2 )ξ

2
2 ,

(Kµ)33 = 2gI +2(V3 ξ1 −V2 ξ3)
2gII +(V3 ξ1 +V1 ξ3)

2λ̄ 2
2 hJJ,

(Kµ)12 =
[
4 λ̄2(V1 ξ1 −V3 ξ3)gII +(V2 ξ1 +V3 ξ3)hJJ

]
ξ2,

(Kµ)23 =
[
4 λ̄2(V2 ξ3 −V3 ξ1)gII +(V3 ξ1 +V1 ξ3)hJJ

]
ξ2,

(Kµ)13 = 4
[
(2V 2

3 + λ̄−1
2 )ξ1ξ3 −V3(V1ξ 2

1 +V2ξ 2
3 )
]

gII + λ̄ 2
2

[
(2V 2

3 + λ̄−1
2 )ξ1ξ3 +V3(V1ξ 2

3 +V2ξ 2
1 )
]

hJJ,

and

(K−1)11 = (V2 ξ1 +V3 ξ3)
2 λ̄ 2

2 , (K−1)22 = ξ 2
2 / λ̄ 2

2 , (K−1)33 = (V3 ξ1 +V1 ξ3)
2 λ̄ 2

2 ,

(K−1)12 = (V2 ξ1 +V3 ξ3)ξ2, (K−1)23 = (V3 ξ1 +V1 ξ3)ξ2,

(K−1)13 =
[
(2V 2

3 + λ̄−1
2 )ξ1ξ3 +(V2ξ 2

1 +V1ξ 2
3 )V3

]
λ̄ 2

2 , (B3)

where

V1 = λ̄1 cos(θ̄)2 +
(
λ̄1λ̄2

)−1
sin(θ̄)2, V2 = λ̄1 sin(θ̄)2 +

(
λ̄1λ̄2

)−1
cos(θ̄)2

V3 =
[
λ̄1 −

(
λ̄1λ̄2

)−1
]

sin(θ̄)cos(θ̄).

For the special case of neo-Hookean matrix given by (23), the final expressions for d0, d1

and D0, D1 can be simplified considerably. In this case, the expressions for d0 and d1 are

given by

d0 = (µ (1))2(u2ξ 2
1 +u3ξ1ξ3 +u1ξ 2

3 + t2 λ̄ 4
1 ξ 2

2 )λ̄
2
2 , d1 = µ (1)d0 +(µ (1))3. (B4)

Also, the corresponding components of the symmetric matrices D0 and D1 read as

(D0)11 = µ (1) λ̄ 2
2

(
V 2

3 ξ 2
1 + t2 λ̄ 4

1 ξ 2
2 +V 2

1 ξ 2
3 +2V1V3 ξ1ξ3

)
, (D0)22 = µ (1) λ̄ 2

2 (u2ξ 2
1 +u3ξ1ξ3 +u1ξ 2

3 ),

(D0)33 = µ (1) λ̄ 2
2

(
V 2

2 ξ 2
1 + t2 λ̄ 4

1 ξ 2
2 +V 2

3 ξ 2
3 +2V2V3 ξ1ξ3

)
,

(D0)12 =−µ (1) ξ2(V2ξ1 +V3 ξ3), (D0)23 =−µ (1) ξ2(V3ξ1 +V1 ξ3),

(D0)13 =−µ (1) λ̄ 2
2

[
V2V3 ξ 2

1 +(2V 2
3 + λ̄−1

2 )ξ1ξ3 +V1V3ξ 2
3

]
,

and

(D1)11 = µ (1)(D0)11+(µ (1))2, (D1)22 = µ (1)(D0)22 +(µ (1))2, (D1)33 = µ (1)(D0)33+(µ (1))2,

(D1)12 = µ (1)(D0)12, (D1)13 = µ (1)(D0)13, (D1)23 = µ (1)(D0)23, (B5)

where t =
(
λ̄1λ̄2

)−2
, and

u1 = λ̄ 2
1 cos2(θ̄)+t sin2(θ̄), u2 = t cos2(θ̄)+ λ̄ 2

1 sin2(θ̄), u3 = (λ̄ 2
1 −t)sin(2θ̄). (B6)

Finally, it is noted that for the special case of aligned loadings (34) with matrix behavior

given by (21), we can make use of the analytical expressions for the tensors D0 and D1
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and the scalars d0 and d1 provided in [4] for the case of spherical particles embedded in a

matrix of the form (21) under isochoric, triaxial loadings of the form (34). This is because

the tensors D0 and D1 and the scalars d0 and d1 do not contain any information about

the shape of particles and depend only on the matrix behavior and loading conditions.

These expressions are available in Eq. (131) and (132) in [4] and are not included here,

for brevity.

In general, a Gaussian quadrature technique with a rather high numbers of Gauss points

is needed for the numerical integrations of (B2). However, for the special case of a neo-

Hookean matrix subjected to aligned loadings, the integrals (B2) can be evaluated analyt-

ically, and will be given in Appendix C.

Appendix C. Normal components of the tensor Pr,r = 1,2,3 for spheroidal particles

embedded in a neo-Hookean matrix under general aligned loading

In this appendix, we present explicit expressions for the normal components of the tensor

Pr,r = 1,2,3, associated with a spheroidal particle embedded in a neo-Hookean material

subjected to the isochoric, aligned deformation of the form (34). It is recalled that these

analytical expressions for the components of the tensors Pr, defined by (A7), are needed

to find the corresponding analytical expressions for the E-tensor, using Eqs. (A1)-(A6). In

turn, a corresponding analytical expression for the effective stored-energy function (35) is

obtained by substituting the E-tensor components. Making use of the neo-Hookean model

(23) into equations (A8)-(A11), it follows that the normal components of Pr, r = 1,2,3,

after some algebra, can be expressed as

(P0)1111 = λ̄ 2
1 (2 µ (1) l2

3 ω2
1 ω2 ω4

3 )
−1
{

ω2
1 ω2 ω3

[
w(2 λ̄ 2

1 λ̄ 6
2 − l4)A1 +ω3 (w

2l4 −2 λ̄ 2
1 λ̄ 6

2 )
]

−2w λ̄1λ̄2

{
ω4

2 ω2
3 Ξe1 −ω2

2

[
w2(1

2̄
L+1)+ λ̄ 2

1 λ̄ 2
2 T

2̄,1
1,0

]
Ξ f 1 + l2

2ω2
1 Ξp3

}}
,

(P0)2222 = λ̄ 2
2 (2 µ (1) l2

3 ω2 ω4
3 )

−1
{

ω2

[
wω3 (2 λ̄ 6

1 λ̄ 2
2 − l4)A1 +ω2

3 (w
2l4 −2 λ̄ 6

1 λ̄ 2
2 )
]

−2wλ̄1λ̄2 (ω
2
1 ω2

3 Ξe1 + l1 ω2
1 Ξ f 1 + l2

1Ξp3)
}
,

(P0)3333 = (µ (1)ω2
1 ω2 ω5

3 )
−1
[
ω2

1 ω2ω2
3 (wA1 −ω3)−w λ̄ 3

1 λ̄ 3
2 ω3

3 Ξe1 −w λ̄ 3
1 λ̄ 3

2 ω3 ω2
1 Ξp3

−w λ̄ 3
1 λ̄ 3

2 ω3

(
λ̄ 4

1 λ̄ 2
2 −2w2 +1

)
Ξ f 1

]
,

(P0)1122 =−λ̄1λ̄2 (2 µ (1) l2
3 ω2 ω4

3 )
−1
{

ω2ω3

[
w(2 λ̄ 4

2 λ̄ 4
1 − l4)A1 +ω3 (w

2l4 −2 λ̄ 4
2 λ̄ 4

1 )
]

−2w λ̄1λ̄2

(
ω2

2 ω2
3 Ξe1 + l2 ω2

1 Ξ f 1 + l1l2 Ξp3

)}
,

(P0)1133 = λ̄ 2
1 λ̄ 2

2 (µ
(1) l3 ω2

1 ω2 ω5
3 )

−1
{

w λ̄1 ω3

[
(λ̄ 4

2 λ̄ 2
1 −ω2

2 −1)w2+ω2
2 − λ̄ 6

1 λ̄ 6
2 + λ̄ 4

1 λ̄ 2
2

]
Ξ f 1

+wω2
2 λ̄1 ω3

3 Ξe1 −w λ̄1 ω3 l2 ω2
1 Ξp3 + λ̄2 ω2

1 ω2 ω2
3 (wA1 −ω3)

}
,

(P0)2233 =−λ̄ 2
1 λ̄ 2

2 (µ
(1) l3ω2 ω5

3 )
−1
[
λ̄1ω2ω2

3 (wA1 −ω3)+w λ̄2ω3

(
ω2

3 Ξe1 −ω2
1 Ξ f 1 − l1 Ξp3

)]
,
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(P1)1111 = λ̄ 2
1 λ̄2 (2 µ (1)l2

3 ω4
1 ω2)

−1
[
wλ̄1ω2

2

(
w2T1

3̄
+ λ̄ 4

1 λ̄ 2
2 l4
)

Ξe1 −wλ̄ 3
1 λ̄ 2

2 l3
(
w2T2

3̄
+ λ̄ 4

1 λ̄ 4
2

)
Ξ f 1

+λ̄ 3
2 ω2

1 ω2

(
2w2 − λ̄ 4

1 l4
)]
,

(P1)2222 = λ̄1λ̄ 2
2 (2 µ (1)l2

3ω3
2 )

−1
[
wλ̄ 2

1 λ̄ 5
2 l3 Ξ f 1 −wλ̄2

(
w2T3

1̄
− λ̄ 2

1 λ̄ 4
2 l4
)

Ξe1 + λ̄ 3
1 ω2(2w2− λ̄ 4

2 l4)
]
,

(P1)3333 = λ̄1λ̄2(2 µ (1)ω3
1 ω4

2 )
−1
[
w(w4 +w2 λ̄ 2

1 λ̄ 2
2 l4 −3λ̄ 6

1 λ̄ 6
2 )Ξe2 −wλ̄ 2

1 λ̄ 2
2

(
w2T1

2 −3 λ̄ 4
2 λ̄ 4

1

)
Ξ f 2

−λ̄ 3
1 λ̄ 3

2 ω1 ω2
2

]
,

(P1)1122 = λ̄ 2
1 λ̄ 2

2 (2 µ (1)l2
3ω2

1 ω2)
−1
[
w
(
w2l4 −2 λ̄ 4

1 λ̄ 4
2

)
Ξe1 −wλ̄ 4

1 λ̄ 2
2 l3 Ξ f 1 −2 λ̄1λ̄2 ω2 ω2

1

]
,

(P1)1133 = λ̄ 3
1 λ̄ 2

2 (2 µ (1)l3ω4
1 ω2)

−1
[
λ̄1λ̄2 ω2 ω2

1 −w
(
w2T2

1̄
− λ̄ 4

1 λ̄ 4
2

)
Ξe1 +wl3

(
λ̄ 4

1 λ̄ 2
2 +w2

)
Ξ f 1

]
,

(P1)2233 =−λ̄ 2
1 λ̄ 3

2 (2 µ (1)l3ω1ω4
2 )

−1
[
λ̄1λ̄2ω1ω2

2 +w
(
w2T1

2̄
+ λ̄ 4

1 λ̄ 4
2

)
Ξe2 −wl3

(
λ̄ 4

2 λ̄ 2
1 +w2

)
Ξ f 2

]
,

(P2)1111 =−λ̄ 2
1 λ̄2(8 µ (1)l2

3ω6
1 ω2)

−1
{

wλ̄1

[(
Y3,6̄

3,0 +T4
12

)
w6 +

(
Y7̄,12

3̄,12
+P7,9̄

0,0+12 λ̄ 2
1 λ̄ 6

2

)
w4

−w2 λ̄ 4
1 λ̄ 2

2

(
Y1,3̄

6,4 +P2,3
0,9̄

+L4
16

)
+ λ̄ 8

1 λ̄ 6
2

(
4
4L

2
0 +T1,0

1,4̄

)]
Ξe1 −wλ̄1l3

[(
8
12
L9

0 +T3̄,0
3,9̄

)
w4

−λ̄ 4
1 λ̄ 2

2

(
8
16
L1

0 +T5
6̄

)
w2 + λ̄ 8

1 λ̄ 6
2R

4̄,1
1̄,0

]
Ξ f 1 + λ̄2ω2

1 ω2

[
8w4λ̄ 2

2 − λ̄ 2
1

(
4
12L

6
0 +T3̄,0

5,8̄

)
w2

+λ̄ 6
1 λ̄ 2

2

(
4
4L

2
0 +T1,0

1,4̄

)]}
,

(P2)2222 =−λ̄1λ̄ 2
2 (8 µ (1)l2

3 ω2
1 ω5

2 )
−1
{

λ̄1ω2
1 ω2

[
8w4λ̄ 2

1 + λ̄ 2
2

(
T5̄,0

3,8+
12
4̄
L0

6̄

)
w2 + λ̄ 2

1 λ̄ 6
2

(
T1,0

1,4̄
+4

4 L
0
2

)]

+wλ̄2

[(
T12

4 +Y3,6̄
3,0

)
w6 +

(
P0,0

7,9̄
+Y3̄,12

7̄,12
+12 λ̄ 6

1 λ̄ 2
2

)
w4 + λ̄ 4

2 λ̄ 2
1

(
P0,9

2̄,3̄
+Y6̄,3

1̄,4̄
+L16

4̄

)
w2

+λ̄ 8
2 λ̄ 6

1

(
4
4L

0
2 +T1,0

1,4̄

)]
Ξe1 −wλ̄2l3

[(
0
4̄
L3

6̄
+T3̄,0

3,3

)
w4 + λ̄ 2

1 λ̄ 6
2

(
3
2L−Y4̄,4̄

0,0 −6 λ̄ 6
1 +1

)
w2

−λ̄ 6
1 λ̄ 8

2 R
4,3̄
1,2

]
Ξ f 1

}
,

(P2)3333 = (8 µ (1) λ̄1λ̄2ω5
1 ω6

2 )
−1
{

λ̄ 3
1 λ̄ 3

2 ω1ω2
2

[
w4R4,4

1̄,4
− λ̄ 2

1 λ̄ 2
2

(
4
4L+T3,0

3,8

)
w2 + λ̄ 6

1 λ̄ 6
2R

4
7

]

−w

[
w8R4,1

2,1 + λ̄ 2
1 λ̄ 2

2

(
T7̄,0

7̄,3
+L7

7

)
w6 − λ̄ 4

1 λ̄ 4
2

(
Y3,13

3,16 +P0,20
0,20+L4

4

)
w4 + λ̄ 8

1 λ̄ 8
2

(
T10,0

10,21+
16
16 L
)

w2

−3 λ̄ 12
1 λ̄ 12

2 R4
5

]
Ξe2 +wλ̄ 2

1 λ̄ 2
2

[(
T1̄,0

1,3 +
4
8 L

4
5

)
w6 − λ̄ 2

1 λ̄ 2
2

(
Y3,3

9,24 +P0,11

3̄,13
+L4

8

)
w4

+2 λ̄ 6
1 λ̄ 6

2

(
T5,0

10,6 +
8
10 L

0
3̄

)
w2 +3 λ̄ 10

1 λ̄ 10
2 R4̄,0

5̄,1

]
Ξ f 2

}
,

(P2)1122 = λ̄ 2
1 λ̄ 2

2 (8 µ (1)l2
3ω2

1 ω4
2 )

−1
{

λ̄1λ̄2ω2
2

[
8w4 +

(
8̄
8̄
L1

1 −T1
1

)
w2 − λ̄ 4

1 λ̄ 4
2 R

8̄,1
2̄,1

]
ω1

−w

[(
Y1,2̄

1,0 +T4
4

)
w6 +

(
P1,0

1,0 +Y2̄,2

2̄,16
−L4

4

)
w4 −2 λ̄ 4

1 λ̄ 4
2

(
6̄
6̄
L1

1 − l4

)
w2 + λ̄ 8

1 λ̄ 8
2 R

8̄,1
2̄,1

]
Ξe2

+wl3

[(
0
4̄
L1

2̄
+T1̄,1

0,1

)
w4 − λ̄ 6

2 λ̄ 2
1

(
2 λ̄ 6

1 −4 λ̄ 4
1 −R4,1

1,0

)
w2 − λ̄ 8

2 λ̄ 6
1R

4,1̄
1,0

]
Ξ f 2

}
,
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(P2)1133 =−λ̄1

(
8 µ (1)l3ω6

1 ω3
2

)−1{
λ̄ 3

1 λ̄ 3
2 ω2

1 ω2

[(
T3

1̄
+4
)

w4 +
(
T4̄,0

1,2̄
−4

4 L
1̄
0

)
w2 + λ̄ 4

1 λ̄ 4
2 R

4,1̄
3,0

]

−w
[(

8
4̄
L7

2̄
+T1̄,0

1,3̄

)
w6 + λ̄ 2

1 λ̄ 2
2

(
P1,11

0,7 +Y7̄,3
1,8̄

+L8̄
4

)
w4 −2 λ̄ 6

1 λ̄ 6
2

(
6̄
0L

1
0 −T6,0

3̄,1

)
w2 − λ̄ 10

1 λ̄ 10
2 R4,1̄

3,0

]
Ξe1

+w λ̄ 2
1 λ̄ 2

2 l3

[(
T3

1 +4
)

w6 +
(

0
4̄
L5

0 −T5,0
1,4

)
w4 − λ̄ 4

1 λ̄ 2
2

(
4 λ̄ 4

1 λ̄ 2
2 +T3,0

6̄,5

)
w2 + λ̄ 8

1 λ̄ 6
2 R

4,0
3,0

]
Ξ f 1

}
,

(P2)2233 =−λ̄2

(
8 µ (1) l3ω4

1 ω5
2

)−1{
λ̄ 3

1 λ̄ 3
2 ω2

1

[(
T1

3̄
−4
)

w4 +
(
T1̄,0

4,2+
4
4 L

0
1̄

)
w2 − λ̄ 4

1 λ̄ 4
2 R

4,0
3,1̄

]
ω2

−w

[(
4
8̄
L2

7̄
+T1̄,0

1,3

)
w6 − λ̄ 2

1 λ̄ 2
2

(
P0,7

1,11
+Y1,3

7̄,8̄
+L4

8̄

)
w4 −2λ̄ 6

1 λ̄ 6
2

(
0
6L

0
1̄
+T3̄,0

6,1

)
w2 + λ̄ 10

1 λ̄ 10
2 R4,0

3,1̄

]
Ξe1

+w λ̄ 2
1 λ̄ 2

2 l3

[(
T1

3 +4
)

w6 +
(

4̄
4̄
L1

1 −T2,0
4,3

)
w4 +2w2 λ̄ 4

1 λ̄ 4
2 R

2,1̄
3,1̄

+ λ̄ 10
1 λ̄ 10

2

]
Ξ f 1

}
,

where

l1 = λ̄ 4
1 λ̄ 2

2 −1, l2 = λ̄ 2
1 λ̄ 4

2 −1, l3,4 = λ̄ 2
1 ∓ λ̄ 2

2 ,

ω1 =
√

w2 − λ̄ 4
1 λ̄ 2

2 , ω2 =
√

w2 − λ̄ 2
1 λ̄ 4

2 , ω3 =
√

w2 −1,

and the symbols

a
bL

c
d = aλ̄ 4

1 λ̄ 2
2 +bλ̄ 2

1 λ̄ 4
2 + cλ̄ 6

1 λ̄ 2
2 +dλ̄ 2

1 λ̄ 6
2 , Pa,c

b,d = aλ̄ 8
1 λ̄ 2

2 +bλ̄ 2
1 λ̄ 8

2 + cλ̄ 6
1 λ̄ 4

2 +dλ̄ 4
1 λ̄ 6

2 ,

Ra,c
b,d = cλ̄ 4

1 λ̄ 2
2 +dλ̄ 2

1 λ̄ 4
2 +aλ̄ 2

1 λ̄ 2
2 +b, Ta,c

b,d = aλ̄ 2
1 +bλ̄ 2

2 + cλ̄ 2
1 λ̄ 2

2 +dλ̄ 4
1 λ̄ 4

2 ,

Ya,c
b,d = aλ̄ 4

1 +bλ̄ 4
2 + cλ̄ 2

1 λ̄ 2
2 +dλ̄ 4

1 λ̄ 4
2 , Lc

d = 0
0L

c
d,

a
bL= a

bL
0
0, Ta

b = Ta,0
b,0,

are introduced for brevity, with barred subscript/superscript indicating negative coeffi-

cients. Moreover, Ξ f 1,2, Ξe1,2, Ξp3 are given in terms of the incomplete elliptic integrals

of the first, second and third kind [1], respectively, via

Ξ f 1 = F

(ω2

w
,ω4

)
, Ξ f 2 = F

(ω1

w
,ω5

)
,

Ξe1 = E

(ω2

w
,ω4

)
, Ξe2 = E

(ω1

w
,ω5

)
, Ξp3 = P

(
ω2

w
,
ω2

3

ω2
2

,ω4

)
,

where ω4,5 =
√

ω2
1,2/ω2

2,1, the functions F and P are defined in (44), and the function E

is defined by

E (a,b) =
∫ a

0

√
1−b2t2

√
1− t2

dt. (C1)

It is important to note that the components of the Pr tensors, given in this appendix, are

valid for both prolate (w > 1) and oblate (w < 1) shapes of particles, and for all positive

stretches λ̄1, and λ̄2. However, for the axisymmetric case with the condition λ̄1 = λ̄2

suitable limits must be taken. The final results for this case (in terms of the components

of the E tensor) are given in Subsection 4.2. Finally, it should be pointed out that the

remaining non-zero components of the tensors Pr, such as (Pr)1313 and (Pr)1113, have not

been provided here since they do not enter the process for calculating the appropriate

components of the tensor E, required for determining the effective stored-energy function

(35).
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Appendix D. On the modulus tensor Lc for the incompressible composites with the effective

stored-energy function Φ̂(λ̄1, λ̄2, θ̄2, θ̄1) subjected to non-aligned loadings

In this appendix, we spell out the explicit expressions for the all traces of the effective

incremental moduli tensor Lc which appear in the condition (47). Note that in the incom-

pressibility limit of the composite, these (3-D) moduli traces remain finite while some

components of the tensor L̂c tend to infinity. Also, these traces, associated with the load-

ing condition (24) (recall that θ̄1 = 0◦), can be given in terms of kinematical variables

λ̄1, λ̄2, θ̄(= θ̄2), as well as the derivatives of the effective potential Φ̂(λ̄1, λ̄2, θ̄1, θ̄2),
with respect to its arguments, calculated at θ̄1 = 0◦. Moreover, the explicit expressions for

the corresponding moduli can be provided in a simpler and shorter form if they are given

in a coordinate basis {e′i} which is aligned with the loading axes (see Fig 3a). In this case,

the components of the moduli tensor L̂c in the basis {e′i} and {ei} can be related to each

other thorough the following transformation rule

L̂
′c
i jkl(F̄) = Q̄miQ̄n jQ̄pkQ̄qlL̂

c
mnpq(F̄), (D1)

where Q̄= cos(θ̄)(e1⊗e1+e3⊗e3)+sin(θ̄)(e1⊗e3−e3⊗e1)+ e2⊗e2, and the primed

components denote those relative to the basis {e′i}. Making use of this transformation, the

aforementioned traces of L̂c in the basis {e′i} read as

L̂
′∗
1 =

λ̄ 2
1 λ̄2

[(
λ̄ 4

1 λ̄ 2
2 +3

)
Φ̂,θ̄2

− λ̄1 l1 Φ̂,λ̄1θ̄2

]

l2
1

L̂
′∗
2 =

λ̄ 2
1 λ̄2

[(
3 λ̄ 4

1 λ̄ 2
2 +1

)
Φ̂,θ̄2

− λ̄1 l1 Φ̂,λ̄1θ̄2

]

l2
1

L̂
′∗
3 =

λ̄1

(
λ̄1 l2

1 Φ̂,λ̄1λ̄1
−2 l1 Φ̂,λ̄1

−2 λ̄ 3
1 λ̄ 2

2 Φ̂,θ̄2θ̄2

)

l2
1

L̂
′c
1313 =

λ̄1

(
λ̄ 3

1 λ̄ 2
2 Φ̂,θ̄2θ̄2

+ l1 Φ̂,λ̄1

)

l2
1

L̂
′c
3131 =

λ̄ 4
1 λ̄ 2

2

(
Φ̂,θ̄2θ̄2

+ λ̄1 l1 Φ̂,λ̄1

)

l2
1

(D2)

L̂
′c
3232 =

λ̄ 2
1 λ̄ 4

2

(
cos2(θ̄) Φ̂,θ̄1θ̄1

+ λ̄2 l2 Φ̂,λ̄2
+ sin(θ̄)cos(θ̄) Φ̂,θ̄2

)

l2
2

L̂
′c
2323 =

λ̄2

(
λ̄ 2

1 λ̄ 3
2 cos2(θ̄) Φ̂,θ̄1θ̄1

+ l2 Φ̂,λ̄2
+ λ̄ 2

1 λ̄ 3
2 sin(θ̄)cos(θ̄) Φ̂,θ̄2

)

l2
2

L̂
′c
2121 =−

λ̄ 2
1

[
l3

(
λ̄2 Φ̂,λ̄2

− λ̄1 Φ̂,λ̄1

)
+ λ̄ 2

2 sin(θ̄)cos(θ̄) Φ̂,θ̄2
− λ̄ 2

2 sin2(θ̄) Φ̂,θ̄1θ̄1

]

l2
3

L̂
′c
1212 =−

λ̄ 2
2

[
l3

(
λ̄2 Φ̂,λ̄2

− λ̄1 Φ̂,λ̄1

)
+ λ̄ 2

1 sin(θ̄)cos(θ̄) Φ̂,θ̄2
− λ̄ 2

1 sin2(θ̄) Φ̂,θ̄1θ̄1

]

l2
3

(D3)
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L̂
′∗
4 =

(
λ̄2 l2

2 Φ̂,λ2 λ2
−2 l2 Φ̂,λ̄2

−2 λ̄ 2
1 λ̄ 3

2 sin
(
θ̄
)

cos(θ̄) Φ̂,θ̄2
−2 λ̄ 2

1 λ̄ 3
2 cos2(θ̄) Φ̂,θ̄1θ̄1

)
λ̄2

l2
2

L̂
′∗
5 =−(l2

1 l2
2 l2

3)
−1
{

λ̄ 2
1 λ̄ 2

2

(
λ̄ 4

1 λ̄ 8
2 + λ̄ 4

1 λ̄ 2
2 −4 λ̄ 2

1 λ̄ 4
2 + λ̄ 6

2 +1
)

l2
1 sin(θ̄)cos(θ̄) Φ̂,θ̄2

+ λ̄ 2
1 λ̄ 2

2 l2
1

[(
λ̄ 4

1 λ̄ 8
2 + λ̄ 4

1 λ̄ 2
2 −4 λ̄ 2

1 λ̄ 4
2 + λ̄ 6

2 +1
)

cos2(θ̄)− l2
2

]
Φ̂,θ̄1θ̄1

− λ̄1 λ̄2 l2
1 l2

2 l2
3Φ̂,λ̄1 λ̄2

+ λ̄ 4
1 λ̄ 2

2 l2
2 l2

3Φ̂,θ̄ θ̄ − λ̄ 3
1 l1 l3

2 l3Φ̂,λ̄1
+ λ̄ 3

2 l3
1 l2

2 l3Φ̂,λ̄2

}
(D4)

L̂
′c
2312 = L̂

′c
3212 = L̂

′c
3221 =−

[(
l1 cos2(θ̄)− λ̄ 2

1 λ̄ 2
2 l3
)

Φ̂,θ̄2
− sin(θ̄)cos(θ̄)l1 Φ̂,θ̄1θ̄1

]
λ̄ 2

1 λ̄ 3
2

l2
1 l2

2 l3

L̂
′c
2321 =−

[(
λ̄ 2

2 l1 cos2(θ̄)− λ̄ 2
1 + λ̄ 2

2

)
Φ̂,θ̄2

− sin(θ̄)cos(θ̄)λ̄ 2
2 l1 Φ̂,θ̄1θ̄1

]
λ̄ 2

1 λ̄2

l3 l2
2 l2

1

(D5)

L̂
′∗
6 =−(l2

1 l2 l3)
−1 λ̄ 2

1 λ̄2

×
{[

λ̄ 2
2 l2

1 cos2(θ̄)− l3

(
2 λ̄ 6

1 λ̄ 6
2 − l1

)]
Φ̂,θ̄2

+ λ̄2 l1 l2 l3 Φ̂,λ2 θ − λ̄ 2
2 l2

1 sin(θ̄)cos(θ̄) Φ̂,θ̄1θ̄1

}

L̂
′∗
7 =−(l3 l2 l2

1)
−1 λ̄ 2

1 λ̄2

×
{[

λ̄ 2
2 l2

1 cos2(θ̄)− l3

(
λ̄ 6

1 λ̄ 6
2 + λ̄ 2

1 λ̄ 4
2 −2

)]
Φ̂,θ̄2

+ λ̄2 l1 l2 l3 Φ̂,λ̄2 θ̄ − λ̄ 2
2 l2

1 sin(θ̄)cos(θ̄) Φ̂,θ̄1θ̄1

}

L̂
′∗
8 =−(l3 l2 l2

1)
−1 λ̄ 2

1 λ̄2

×
{[

λ̄ 2
2 l1

2 cos2(θ̄)− l3

(
5 λ̄ 6

1 λ̄ 6
2 −4 λ̄ 4

1 λ̄ 2
2 + λ̄ 2

1 λ̄ 4
2 −2

)]
Φ̂,θ̄2

+ l1 l2 l3

(
λ̄1 Φ̂,λ1 θ̄ + λ̄2 Φ̂,λ̄2 θ̄

)

−λ̄ 2
2 l2

1 sin(θ̄)cos(θ̄) Φ̂,θ̄1θ̄1

}
(D6)

Note that for axisymmetric shear loadings with the condition λ̄1 = λ̄2 = λ̄ , suitable limits

must be taken for the traces involving the terms (λ̄1− λ̄2) in the denominator. Taking these

limits for the pertinent traces appearing in the strong ellipticity condition (56) yields

L̂
′c
2121 =

1

8
λ̄
[
λ̄ sin2(θ̄)Φ̂,λ̄1λ̄1θ̄1θ̄1

+6 λ̄ Φ̂,λ̄1λ̄1
+2 λ̄ Φ̂,λ̄2λ̄2

−2 λ̄ Φ̂AS

,λ̄ λ̄
+8Φ̂,λ̄1

−2Φ̂AS

,λ̄
− λ̄ sin(θ̄)cos(θ̄)Φ̂,λ̄1λ̄1θ̄

]∣∣∣
λ̄1=λ̄2=λ̄

L̂
′c
2321 =−1

2
λ̄ 2
(

λ̄ 6 −1
)−2{

2 λ̄
(

2 λ̄ 6 cos2(θ̄)−1
)

Φ̂,θ̄ + λ̄ 2
(

λ̄ 6 −1
)

cos2(θ̄)Φ̂,λ̄1θ̄

−λ̄ 2 sin(θ̄)cos(θ̄)
[(

λ̄ 6 −1
)

Φ̂,λ̄1θ̄1θ̄1
+4 λ̄ 5 Φ̂,θ̄1θ̄1

]}∣∣∣
λ̄1=λ̄2=λ̄

For the special case of aligned loadings (θ̄ = 0◦), the above expressions for the moduli

traces simplify considerably. For convenience in using these traces in the SE condition

(50) (associated with aligned loadings), we provide the simplified expressions. The rele-

vant, non-zero traces in the basis {ei} (note that L̂
′c
i jkl = L̂c

i jkl for aligned loadings) read
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as

L̂∗
3 =

λ̄1

(
λ̄1 l2

1Φ̂,λ̄1λ̄1
−2 l1 Φ̂,λ̄1

−2 λ̄ 3
1 λ̄ 2

2 Φ̂,θ̄2θ̄2

)

l2
1

,

L̂c
1313 =

λ̄1

(
λ̄ 3

1 λ̄ 2
2 Φ̂,θ̄2θ̄2

+ l1 Φ̂,λ̄1

)

l2
1

, L̂c
3131 =

λ̄ 4
1 λ̄ 2

2

(
Φ̂,θ̄2θ̄2

+ λ̄1 l1 Φ̂,λ̄1

)

l2
1

, (D7)

L̂c
3232 =

λ̄ 2
1 λ̄ 4

2

(
Φ̂,θ̄1θ̄1

+ λ̄2 l2 Φ̂,λ̄2

)

l2
2

, L̂c
2323 =

λ̄2

(
λ̄ 2

1 λ̄ 3
2 Φ̂,θ̄1θ̄1

+ l2 Φ̂,λ̄2

)

l2
2

,

L̂c
2121 =

λ̄ 2
1

(
λ̄1 Φ̂,λ̄1

− λ̄2 Φ̂,λ̄2

)

l2
3

, L̂c
1212 =

λ̄ 2
2

(
λ̄1 Φ̂,λ̄1

− λ̄2 Φ̂,λ̄2

)

l3
, (D8)

L̂∗
4 =

λ̄2

(
λ̄2 l2

2Φ̂,λ̄2λ̄2
−2 l2 Φ̂,λ̄2

−2 λ̄ 2
1 λ̄ 3

2 Φ̂,θ̄1θ̄1

)

l2
2

,

L̂∗
5 = (l2

1 l2
2 l3)

−1
[
λ̄1 λ̄2 l2

1 l2
2 l3 Φ̂,λ̄1λ̄2

− λ̄ 2
1 λ̄ 2

4 l2
1 l3 Φ̂,θ̄1θ̄1

− λ̄ 4
1 λ̄ 2

2 l2
2 l3 Φ̂,θ̄2θ̄2

+ λ̄ 3
1 l1 l3

2 Φ̂,λ̄1
− λ̄ 3

2 l2 l3
1 Φ̂,λ̄2

]
.

(D9)

Again, note that for axisymmetric shear loadings with the condition λ̄1 = λ̄2 = λ̄ , suitable

limits must be taken for the traces involving the terms (λ̄1− λ̄2) in the denominator. Taking

these limits for the pertinent traces appearing in the SE condition (50) yields

L̂c
1212 = L̂c

2121 =
1

2
λ̄

[
1

2
Φ̂AS

,λ̄
+ λ̄

(
2Φ̂,λ̄1λ̄1

− 1

2
Φ̂AS

,λ̄ λ̄

)∣∣∣∣
λ̄1=λ̄2=λ̄

]
,

L̂∗
5 =

1

4

λ̄
[(

λ̄ 13 −2 λ̄ 7 + λ̄
)

Φ̂AS

,λ̄ λ̄
−4 λ̄ 5

(
Φ̂,θ̄1 θ̄1

+ Φ̂,θ̄ θ̄

)
−
(
λ̄ 12 +2 λ̄ 6 −3

)
Φ̂AS

,λ̄

]

(
λ̄ 6 −1

)2
.
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