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In Part I of this work, we presented a homogenization-based constitutive model for the overall behavior of
reinforced elastomers consisting of aligned, spheroidal particles distributed randomly in an incompressible,
hyperelastic matrix. In particular, we provided analytical estimates for the effective stored-energy functions
of the composites, as well as for the associated average particle rotations under finite deformations. The
rotation of the particles is found to be very sensitive to the specific loading conditions applied, and is such
that the particles tend to align themselves with the largest tensile direction. In addition, we obtained cor-
responding formulae for the detection of macroscopic instabilities in these composites. With the objective
of illustrating the key features of the analytical results presented in Part I, we conduct here a more detailed
study of these results for several representative values of the microstructural and loading parameters, as well
as matrix properties. More specifically, this study deals with neo-Hookean and Gent elastomers reinforced
with spheroidal particles of prolate and oblate shapes with various aspect ratios and volume fractions, sub-
jected to aligned and non-aligned macroscopic loading conditions. In addition, to assess the accuracy of the
model, we compare our results with corresponding finite element results available from the literature for
the special case of spherical particles, and good agreement is found. For non-spherical particles, the results
indicate that the possible rotation of the particles has a major influence on the overall response of the elas-
tomeric composites. Furthermore, it is found that the composite may develop macroscopic shear localization
instabilities, as a consequence of the geometric softening induced by the sudden rotation—or flopping—of
the particles, when a sufficiently large amount of compression is applied along the long axes of the particles.
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1. Introduction

In the preceding paper, henceforth referred to as Part I, we made use of a recently devel-

oped, improved version [3] of the tangent second-order (TSO) homogenization method

to determine estimates for the macroscopic elastic behavior of short-fiber-reinforced

elastomers. More specifically, the class of composites considered in this work consists

of (incompressible) generalized neo-Hookean elastomers reinforced by aligned, rigid,

spheroidal particles of identical aspect ratios (see Fig. 1 in Part I), exhibiting overall

transversely isotropic behavior in the undeformed configuration. The composite is sub-

jected to finite-deformation loadings whose principal stretching directions are generally

not aligned with those of the particles in the undeformed configuration. The analytical

estimates, presented in Part I, include estimates for the effective stored-energy function of

the composite, denoted by Ŵ , as well as the associated finite rotations of the particles, de-

noted by ψ̄ (2), which are a consequence of the large deformations involved. Moreover, we

investigate the possible development of macroscopic instabilities in the composite, which,

as discussed in Part I, correspond to loss of strong ellipticity of the effective stored-energy

function Ŵ .

Our aim in Part II of this work is to examine, in the context of some representative

examples, the essential features of the effective constitutive model for the composites
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provided in Part I. In particular, we investigate the influence of the relevant microstruc-

tural variables (particle aspect ratio and volume fraction), as well as nonlinear behavior of

the matrix phase, on the effective stored-energy function, appropriate macroscopic stress

measures and possible change in orientation of the underlying particles. In this connec-

tion, it should be noted that the results given here for dilute concentrations of particles can

be viewed as a generalization of the Eshelby results in linear elasticity to finite elasticity.

Moreover, we investigate the influence of the microstructural variables on the possible

development of macroscopic instabilities in the composites, as determined by the strong

ellipticity condition. Along these lines, we will also explore the connections between the

rotation of the particles and the macroscopic instabilities. Specifically, we provide results

for the two special classes of macroscopic loadings discussed in Part I, namely, axisym-

metric shear and pure shear loading conditions. Both of these types of loadings will be

considered for aligned and non-aligned conditions.

The outline of the paper is as follows. In section 2, for convenience and clarity, we

briefly recall the analytical results presented in Part I and lay out the key features of the

results to be studied in this paper. Making use of these results, in section 3 we provide and

discuss examples for various microgeometries, matrix properties and loading parameters.

In particular, in this section, we put into evidence the interplay between the rotation of

the particles under non-aligned large deformations and the geometric softening observed

in the associated macroscopic behavior. We also show that the macroscopic instabilities

that develop in the particle-reinforced composites are basically caused by the collective

rotation—or “flopping”—of the particles, when compressed along their long axes. Finally,

in Section 4, we provide some concluding remarks.

2. Overall constitutive behavior

In this section, we briefly recall the analytical results presented in Part I and the asso-

ciated sets of examples to be provided in this paper. In Part I, we considered two-phase

composites consisting of an incompressible, elastomeric matrix phase (phase 1), charac-

terized by the stored-energy function W
(1)
µ , and a polydisperse family of rigid, aligned,

spheroidal particles (phase 2) with aspect ratio w and volume fraction c. For definiteness,

the principal directions of the particles in the undeformed configuration are defined by

the rectangular Cartesian basis {ei} such that the symmetry axis of the particles is aligned

with the e3 direction in that configuration. Also, the distribution of particles is assumed

to be statistically isotropic in the transverse plane, which is the plane perpendicular to

the symmetry axis of particles, namely, the e1 − e2 plane. For convenience, the basis {ei}
is taken to define the fixed laboratory frame of reference as well, and henceforth, un-

less stated, the components of any tensorial quantity will be referred to {ei}. Moreover,

two different geometries for the particles are assumed: (i) prolate (w ≥ 1) and (ii) oblate

(w < 1) spheroidal particles (see Figs. 1(a), (b) in Part I.) Furthermore, in Part I, the lo-

cal constitutive behavior of the matrix phase was assumed to be characterized by a fairly

general class of incompressible, isotropic stored-energy functions, written as

W
(1)
µ (F) = g(I)+h(J), (1)

where g and h are material functions, and I = tr(FT F) = λ 2
1 +λ 2

2 +λ 2
3 and J = det F =

λ1λ2λ3 denote, respectively, the first and third invariants of the deformation gradient ten-

sor F, with λ1, λ2, λ3 identifying the corresponding principal stretches. Here, the defor-

mation gradient F is subject to the incompressibility constraint, implying that

det F = λ1λ2λ3 = 1. (2)
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In this paper, for calculation purposes, we make use of two simple examples of (1). The

first material is a neo-Hookean solid whose stored-energy function is given by

W
(1)
µ (F) =

1

2
µ (1)(I−3)+

1

2
µ (1)(J−1)(J−3). (3)

where µ (1) is the shear modulus of the solid at zero strain. The second material is an

incompressible Gent solid with stored-energy function

W
(1)
µ (F) =−

Jm µ (1)

2
ln

(
1−

I −3

Jm

)
+

1

2
µ (1)(J−1)(J−3)−

µ (1)

Jm

(J−1)2, (4)

where Jm(> 0) is the lock-up parameter serving to characterize the the limiting chain

extensibility of elastomers. It is noted that the neo-Hookean model (3) corresponds to the

limit as Jm approaches infinity of the the Gent model (4), and does not lock up at finite

strain. It is also recalled that the terms involving the factor (J − 1) do not vanish for the

homogenized behavior of the reinforced elastomers and are in fact crucial to obtain the

correct linearized behavior (see part I).

The above-described particle-reinforced material is a transversely isotropic composite

(with symmetry axis aligned with e3) in the undeformed configuration, and its macro-

scopic response is characterized by the effective stored-energy function Ŵ (F̄). The macro-

scopic deformation gradient F̄ is subject to the exact overall incompressibility constraint

det(F̄) = λ̄1λ̄2λ̄3 = 1, with λ̄1, λ̄2, λ̄3 identifying the macroscopic principal stretches. For

definiteness in the analytical calculations, and motivated by possible comparisons with

numerical simulations and/or experiments, we consider deformation gradients F̄ with the

matrix representation

[F̄i j] =




cos(θ̄) 0 sin(θ̄)
0 1 0

−sin(θ̄) 0 cos(θ̄)






λ̄1 0 0

0 λ̄2 0

0 0 (λ̄1λ̄2)
−1






cos(θ̄) 0 −sin(θ̄)
0 1 0

sin(θ̄) 0 cos(θ̄)


 , (5)

where the conditions λ̄1 = λ̄2 = λ̄ and λ̄1 = λ̄ , λ̄2 = 1 correspond respectively to ax-

isymmetric and pure shear loadings, with λ̄ denoting a positive loading parameter. In the

above representation, θ̄ denotes the angle of the Lagrangian principal loading axes relative

to the (fixed) basis {ei} in the e1−e3 plane. Also, for convenience, we let the directions of

the principal stretches λ̄1, λ̄2, λ̄3 = (λ̄1λ̄2)
−1 be identified with the Cartesian vectors {e′i}

(i = 1,2,3). A schematic representation of the particle-reinforced elastomers subjected to

the class of loadings (5) is given in Fig. 3 of Part I.

In Part I, we made use of the tangent second-order (TSO) procedure of Avazmoham-

madi and Ponte Castañeda [3] to generate estimates for the effective stored-energy func-

tion Ŵ (F̄) of the above-described particle-reinforced materials, which, under deformation

gradient (5), takes the functional form

Ŵ (F̄) = φ̂(λ̄1, λ̄2, θ̄), (6)

and is given explicitly by equation (31) in Part I. Also, as discussed in Part I, the

principal directions of loading (identified by the {e′i} axes) are, in general, not aligned

with those of the particles (identified by the {ei} axes in the undeformed configuration),

leading to finite changes in the orientation of particles as characterized by the angle

ψ̄ (2). An estimate for this angle, which is an essential part in the estimate for φ̂ , is

delivered by the TSO procedure and given by equation (33) in Part I. In addition, Eqs.

(59)-(62) and (65)-(68) in Part I provide the associated strong ellipticity (SE) conditions
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for the composites under aligned loadings, for axisymmetric and pure shear loading

conditions, respectively. Likewise, Eqs. (57) and (63) provide the SE conditions for

the composites under non-aligned loadings for axisymmetric and pure shear loading

conditions, respectively. Before proceeding with the detailed examples, it proves helpful

to provide a brief description of the three different types of results covered in this paper.

Effective constitutive relation.

Recalling that the fiber-reinforced elastomers of interest in this work are incompress-

ible, their macroscopic constitutive relation is determined by the following expression for

the average Cauchy stress tensor

T̄ =
∂Ŵ (F̄)

∂ F̄
(F̄)T − pI, (7)

where p stands for the arbitrary hydrostatic pressure associated with the incompressibility

constraint.

For the specific purpose of discussing the axisymmetric and pure shear modes of load-

ing, it is useful to introduce the scalar stress variables

S̄AS =
∂ φ̂ AS(λ̄ , θ̄ )

∂ λ̄
, and S̄PS =

∂ φ̂ PS(λ̄ , θ̄)

∂ λ̄
, (8)

where (recalling expression (6)) φ̂ AS = φ̂(λ̄ , λ̄ , θ̄) and φ̂ PS = φ̂(λ̄ ,1, θ̄), respectively.

They can be related to the normal components of the macroscopic Cauchy stress tensor T̄

via the relations

S̄AS = λ̄−1
[(

T̄ ′
11 + T̄ ′

22

)
−2T̄ ′

33

]
, and S̄PS = λ̄−1

(
T̄ ′

11 − T̄ ′
33

)
, (9)

where the T̄ ′
i j denote the components of the tensor T̄ relative to the “loading” basis {e′i}

(see Fig. 3 in Part I), and are determined by transformation rule

T̄ ′
i j = Q̄pi T̄pq Q̄q j, (10)

with Q̄ = cos(θ̄)(e1 ⊗ e1 + e3 ⊗ e3)+ sin(θ̄)(e1 ⊗ e3 − e3 ⊗ e1)+ e2 ⊗ e2. Note that for

the case of aligned loadings (θ̄ = 0◦), the effective stored-energy functions φ̂ AS and φ̂ PS

are explicitly given by Eqs. (39) and (42) in Part I, and the associated stress measures read

as S̄AS = λ̄−1 [(T̄11 + T̄22)−2T̄33] and S̄PS = λ̄−1 (T̄11 − T̄33), where it is recalled that the

particles are initially aligned in the e3 direction.

Moreover, for dilute concentrations of particles, it proves useful to consider the follow-

ing modified effective stress measures

S̄AS
0 =

∂ φ̂ AS
0 (λ̄ , θ̄ )

∂ λ̄
, S̄PS

0 =
∂ φ̂ PS

0 (λ̄ , θ̄ )

∂ λ̄
, (11)

where φ̂ PS
0 (λ̄ , θ̄) and φ̂ AS

0 (λ̄ , θ̄) are given by

φ̂ AS
0 =

1

c

(
φ̂ AS −φ AS

)
, φ̂ PS

0 =
1

c

(
φ̂ PS −φ PS

)
, (12)

with φ AS and φ PS denoting the stored-energy function of the homogeneous matrix phase

evaluated at the appropriate deformation gradients.
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Evolution of microstructure. As discussed in Part I, the TSO procedure for estimating the

effective stored-energy function Ŵ (F̄) also accounts for the evolution of the underlying

microstructure, resulting from the finite changes in geometry that are induced by the de-

formation. Information on the variables characterizing the evolution of the microstructure

provides deeper physical insight into the observed macroscopic behavior. For the class of

particle-reinforced composites under study, the volume fraction and shape of the particles

do not change (because the particles are rigid and the matrix is incompressible), and the

only microstructural variables that evolve with the deformation are the orientation of

the particles, and the shape and orientation of the distributional ellipsoid characterizing

the angular dependence of the two-point correlation function (for the distribution of the

particle centers). As we have seen, the TSO model provides us with direct access to

the rotation of the particles (ψ̄ (2), as given by Eq. (33) in Part I). For aligned loadings

(θ̄ = 0◦), the particle do not rotate (ψ̄ (2) = 0◦), up to the possible development of an

instability. On there other hand, for non-aligned loadings, the orientation of particles

changes with the deformation, and this is expected to have a significant effect on the

macroscopic behavior of the composite. For this reason, the evolution of the particle

rotations will be included in the presentation of the results and associated discussions

of the next section. On the other hand, the distributional ellipsoid, which is assumed to

have initially the same shape and orientation as those of particles in the undeformed

configuration, evolves with the macroscopic deformation, and can be easily computed,

but is not expected to play a major role and will therefore not be discussed further here.

Onset of macroscopic instabilities. Theoretical results [6] suggest that composite materi-

als can develop macroscopic (or long wavelength) instabilities at sufficiently large defor-

mations, even when the constituent phases are locally strongly elliptic. Interestingly, the

TSO model, developed in Part I, was found to generate macroscopic instabilities under

certain conditions which can be captured through loss of the SE condition for the effec-

tive stored-energy function. As discussed in Part I, the onset of macroscopic instabilities

in the incompressible composites correspond to development of a localized deformation

(or shear band) on a plane (identified by the the normal vector ncr) and in the direction

mcr(⊥ ncr). In particular, our aim is to investigate (1) whether or not the homogenized

behavior of the composites loses SE for different loading/microstructure conditions, and

(2) what is the associated critical stretch (denoted by λ̄cr) and the pair of vectors (mcr and

ncr) in case of loss of SE. For the composites under study, the local behavior of the matrix

is locally strongly elliptic (models (3) and (4) are strongly elliptic for all stretches), and

therefore, the loss of SE of the homogenized behavior can be related to the evolution of

microstructure.

For completeness, in addition to presenting the macroscopic instability results in de-

formation space (given by λ̄cr), we also present them in stress space. To this end, we

need to suitably choose the arbitrary pressure p in Eq. (7) depending on the applied

macroscopic loading. For simplicity, we consider instability results in stress space only

for aligned pure shear and axisymmetric shear loadings. The case of aligned pure shear

loading (λ̄1 = λ̄ , λ̄2 = 1) can be identified with the biaxial state of stress

S̄ = S̄22e2 ⊗ e2 + S̄33e3 ⊗ e3, (13)

where the S̄i j denote components of the Piola-Kirchhoff stress relative to the basis {ei}.

Similarly, the case of aligned axisymmetric shear loading (λ̄1 = λ̄2 = λ̄ ) can be associated

to a uniaxial state of stress in the e3 direction, written as

S̄ = S̄33e3 ⊗ e3. (14)
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Accordingly, we define the critical stress as the stress component S̄33 at which the com-

posite loses the strong ellipticity under these two types of loading, namely,

S̄PS
cr = S̄33(λ̄cr) =−λ̄ 2

cr

∂ φ̂ PS(λ̄cr,0)

∂ λ̄
, S̄AS

cr = S̄33(λ̄cr) =−
1

2
λ̄ 3

cr

∂ φ̂ AS(λ̄cr,0)

∂ λ̄
. (15)

In this work, we will only be concerned with macroscopic instabilities, as just described.

For other types of instabilities, the reader is referred to the work of Michel et al. [12] in

the context of two-dimensional particle-reinforced composites.

As explained in Part I of this work, the calculation of the effective stored-energy func-

tion φ̂ , as well as of the particle rotation ψ̄ (2), requires the computation of the tensor E,

which, in turn, requires the calculation of the integrals associated with the tensors Pr,

r = 1,2,3 (see Appendix A of Part I). For practical reasons, we make use here of the

(numerical) Gaussian quadrature integration procedure presented in Appendix B of Part

I for calculating the tensors Pr. The calculation of these integrals is the most computa-

tionally intensive part of the procedure, and a high number of Gaussian points may be

needed to achieve convergence, especially when the particles have aspect ratios that are

far from w = 1. A FORTRAN program has been written for this purpose and is available

upon request. In the next section, the above-mentioned sets of results will be presented

and discussed in detail.

3. Applications

In this section, we present some representative examples for the tangent second-order es-

timates for particle-reinforced elastomers with an incompressible matrix phase and (rigid)

spheroidal particles undergoing macroscopic deformations of the form (5). In particular,

we study the TSO estimates for particle-reinforced composites with Gent (Eq. (4)) and

neo-Hookean (Eq. (3)) matrix phases. For simplicity, results for the effective energy, stress

and modulus tensors are normalized by the ground-state shear modulus (that is, µ (1) = 1),

and for the case of composites with Gent matrices, results are shown for several values of

lock-up parameter Jm. We provide results for both prolate and oblate shapes of particles,

and several values of the volume fraction c and particle aspect ratio w. Note that results

are shown with solid and dotted lines up to the point at which the effective incremental

modulus tensor loses strong ellipticity, beyond which the results are depicted by dashed

and dashed-dotted lines, respectively. For the cases when no loss of SE is detected, they

are truncated at some sufficiently large strain. In this connection, the circle marker ‘•’

in the plots is used to denote the point at which loss of SE first takes place (as the load-

ing parameter λ̄ is increased). Moreover, in most of the figures, the results for the pure

neo-Hookean matrix are included for comparison purposes.

The results provided in this section are organized as follows. First, in subsection 3.1, we

address the effective behavior of particle-reinforced, neo-Hookean and Gent elastomers

subjected to aligned loadings (θ̄ = 0◦). Attention is devoted to (aligned) pure shear and

axisymmetric shear loadings. Next, in subsection 3.2, we will present representative re-

sults for the overall behavior of particle-reinforced neo-Hookean elastomers subjected to

non-aligned loadings (θ̄ 6= 0◦). In this subsection, similar to the first one, attention is re-

stricted to (non-aligned) pure and axisymmetric shear loadings. Also, in both subsections,

in order to consider exclusively the impact of the particle shape on the macroscopic be-

havior, results are first provided for dilute concentration of particles (c ≪ 1), followed by

results for several (finite) values of c. The theoretical significance for the dilute concentra-

tion results is that they can be interpreted as a generalization of the results of Eshelby [5]

for a composite material consisting of dilute concentrations of aligned, rigid spheroidal
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inclusions in a nonlinear hyperelastic matrix. In fact, the nonlinear results of this paper

reduce exactly to the Eshelby results in the infinitesimal (linearized) deformation regime.

3.1. Aligned loadings

In this subsection, we restrict our attention to the special case of macroscopically aligned

loadings, characterized by θ̄ = 0◦. It is recalled from Part I that in this case the parti-

cles do not rotate (ψ̄ (2) = 0◦) for any applied stretch (up to the possible development

of an instability). Moreover, results are given for two specific types of aligned loadings,

namely, aligned pure shear loading and aligned axisymmetric shear loading. It is impor-

tant to observe that for the case of aligned axisymmetric loading, the overall behavior of

the composite remains transversely isotropic in the deformed configuration with the axis

of symmetry aligned with the e3 direction. On the other hand, for the case of aligned pure

shear loading, the composite is initially transversely isotropic, but develops general or-

thotropic overall response (whose principal axes are aligned with the ei basis directions)

in the deformed configuration. It is also noted that the results in this subsection will be

presented as functions of the macroscopic logarithmic strain ē = ln(λ̄). Accordingly, for

the case of prolate particles, the compressive (tensile) axis of loading is aligned with the

longest principal axis of particles for ē > 0 (ē < 0), while the opposite is true for the case

of oblate particles. This remark will be of the essence in the physical interpretation of loss

of SE results provided later in this subsection.

Figure 1 presents plots for the TSO estimates for the effective stored-energy func-

tion φ̂0 of the neo-Hookean elastomers reinforced with dilute concentrations of particles,

as defined by expressions (12). Figures 1(a) and (b) show plots for pure shear loading

(λ̄1 = λ̄ , λ̄2 = 1), as a function of the strain ē = ln(λ̄ ), for the cases of prolate and oblate

particles, respectively, while Fig. 1(c) and (d) show corresponding plots for axisymmetric

shear loading (λ̄1 = λ̄2 = λ̄ ). The results for prolate particles are given for aspect ratios

w = 2, 4, and 8, and those for oblate particles are given for aspect ratios w= 0.5, 0.25, and

0.125. For comparison purposes, the finite element results (FEM) of Lopez-Pamies et al.

[7] (obtained for a single rigid inclusion embedded in a neo-Hookean elastomer matrix),

as well as the corresponding TSO results for the special case of spherical particles (w = 1)

are also included in the plots. An immediate observation from this figure is that the as-

pect ratio of particles has a significant reinforcing effect on the overall response of the

composite at fixed particle concentrations. We also observe that TSO estimate provides

fairly good agreement with the FEM results for spherical particles (up to the point where

the simulations were carried out) for both pure shear and axisymmetric shear loadings.

Moreover, it is noticed from Fig. 1 that the predictions of the TSO model for the macro-

scopic response of the composites with spherical particles remain macroscopically stable

for all strains, while those of the composites with prolate and oblate particles become un-

stable for ē > 0 and for ē < 0, respectively, under both types of loadings. We will discuss

these macroscopic instabilities and the associated failure mechanisms in more detail in

the context of the next two figures.

Figure 2 provides plots of the TSO estimates for the overall response of the particle-

reinforced elastomer with a neo-Hookean matrix phase and particle volume fractions

c= 0.05, 0.15, and 0.25, under aligned pure shear loading. Figures 2(a) and (b) show plots

for the macroscopic stress measure S̄PS as a function of the logarithmic strain ē = ln(λ̄ ).
In particular, part (a) shows the results for spherical particles (w = 1) and compares them

with the corresponding FEM results of Lopez-Pamies et al. [7], while part (b) shows

the results for prolate and oblate shapes of particles with fixed aspect ratios w = 4 and

w= 0.25, respectively. (It should be noted that the FEM results correspond to unit cell cal-

culations containing 30 randomly positioned spherical particles.) Also, Figs. 2(c) and (d)

show plots for certain shear components of the effective incremental modulus tensor L̂c, as
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Figure 1. Tangent second-order (TSO) estimates for the effective stored-energy function φ̂0(λ̄) of neo-Hookean elastomers

reinforced with dilute concentrations of rigid particles, as functions of the macroscopic logarithmic strain ē = ln(λ̄). Two

aligned loadings are considered: pure shear (PS) (λ̄1 = λ̄ , λ̄2 = 1), and axisymmetric shear (AS) (λ̄1 = λ̄2 = λ̄ ). (a) Prolate
particles (w ≥ 1) under PS loading, (b) oblate particles (w ≤ 1) under PS loading, (c) prolate particles under AS loading, and
(d) oblate particles under AS loading. The finite element (FEM) results of Lopez-Pamies et al. [7] for the case of spherical
particles (w = 1) are also included for comparison.

functions of ē = ln(λ̄ ), for prolate particles with w = 4 and oblate particles with w= 0.25,

respectively. The main observation from Fig. 2(a) is that the TSO estimate provides fairly

good agreement with the FEM results (up to the point where the simulations were carried

out), especially for the smaller particle concentrations. For the higher volume fraction

(c = 0.25), the TSO estimates tend to underestimate the FEM results at sufficiently large

stretches, but are still in good agreement with the FEM results for stretches of less than

λ̄ = 1.4. This is partially due to the fact that in this work the TSO model makes use of the

Willis lower bound [16] for estimating the behavior of the associated linear comparison

composite [3]. In addition, compared to the results for spherical particles (Fig. 2(a)), the

results in Fig. 2(b) for spheroidal shapes show an enhanced reinforcing effect, which is

due to the combined role of aspect ratio w and volume fraction c on the overall response

of the composite. It is further observed from Fig. 2(b) that, for a fixed particle volume

fraction, the composite stiffening is larger for elongated particles (w = 4) than for oblate

particles (w = 0.25), as long as the composite response remains strongly elliptic. Next, we

observe from Fig. 2(b) that the composites with finite concentrations of prolate and oblate

particles become unstable at positive strains (ē > 0) and negative strains (ē < 0), respec-

tively, when (for both cases) the compressive loading axis is aligned with the longest axis
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Figure 2. TSO estimates for particle-reinforced, neo-Hookean elastomers under aligned pure shear loading (λ̄1 = λ̄ , λ̄2 =
1), as functions of the macroscopic logarithmic strain ē = ln(λ̄). The macroscopic stress S̄PS for: (a) spherical (w = 1),

and (b) spheroidal (w = 4, 0.25) particles. Certain shear components of the effective modulus tensor L̂c
i jkl for: (c) prolate

(w = 4) and (d) oblate (w = 0.25) particles. Results are shown for the volume fractions c = 0.05, 0.15 and 0.25. The finite
element (FEM) results of Lopez-Pamies et al. [7] for spherical particles are also provided for comparison in part (a).

of the particles. Consistent with what was anticipated in Section 5.2 of Part I for prolate

particles, it is seen from Fig. 2(c) that both the shear modulus L̂c
1313 transverse to the long

axis of the particles (and in the in-plane direction e1), as well as the shear modulus L̂c
2323

transverse to the long axis of the particles (but in the out-of-plane direction e2) decrease

with increasing tensile strain in the e1 direction (and, therefore, increasing compressive

strain the e3 direction). However, in this case with a moderate volume fraction and aspect

ratio (c ≤ 0.3 and w ≤ 5), L̂c
2323 actually reaches zero before L̂c

1313, and therefore the loss

of ellipticity first occurs through a shear band whose normal is parallel to e3, and whose

slip direction is along the out-of-plane direction e2 (i.e., out of the loading plane). On the

other hand, for the case of oblate particles, the loss of SE takes place through vanishing of

the shear modulus L̂c
3131 (in the plane perpendicular to the long axis of the oblate particles,

and in the direction of the loading axis e3). It is also observed from these figures that the

reinforced elastomers lose macroscopic stability earlier for larger particle concentrations.

Similar to the previous figure, Fig. 3 provides results for the TSO estimates for the

overall response of the particle-reinforced elastomers with a neo-Hookean matrix phase

and particle volume fractions c = 0.05, 0.15, and 0.25, under aligned axisymmetric shear

loading (λ̄1 = λ̄2 = λ̄ ). Figures 3(a) and (b) depict the macroscopic stress measure S̄AS, as

a function of the logarithmic strain ē = ln(λ̄). In particular, part (a) shows the results for
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Figure 3. TSO estimates for particle-reinforced, neo-Hookean elastomers under aligned axisymmetric shear loading (λ̄1 =
λ̄2 = λ̄ ), as functions of the macroscopic logarithmic strain ē = ln(λ̄). The macroscopic stress S̄PS for: (a) spherical (w = 1),

and (b) spheroidal particles (w = 4, 0.25). Certain shear components of the effective modulus tensor L̂c
i jkl for: (c) prolate

(w = 4), and (d) oblate (w = 0.25) particles. Results are shown for various volume fractions c = 0.05, 0.15 and 0.25. The
finite element (FEM) results of Lopez-Pamies et al. [7] for the case of spherical particles are also included for comparison
in part (a).

spherical particles (w= 1) in which the corresponding FEM results of Lopez-Pamies et al.

[7] are also included for comparison purposes, while part (b) shows the results for prolate

and oblate shapes of particles with fixed aspect ratios 4 and 0.25. In addition, Figs. 3(c)

and (d) depict the variation of the moduli L̂c
1313 and L̂c

3131 versus the logarithmic strain

ē = ln(λ̄ ) for prolate particles with aspect ratio w = 4 and oblate particles with aspect

w = 0.25, respectively. Once again, we observe good agreement between the TSO esti-

mates for spherical particles and the corresponding FEM results (up to the point where

the simulations were carried out), for all three volume fractions of particles. In addition,

similar to the case of pure shear loading, Fig. 3(b) shows that, at a fixed particle volume

fraction, the composites exhibit stiffer responses for elongated particles (w = 4) than for

oblate particles (w = 0.25). Figure 3(b) also shows that, for a fixed aspect ratio of particles

(e.g., w = 4), the behavior of composites with spheroidal particles becomes progressively

less stable—as determined by loss of SE—as the volume fraction of the particles in-

creases. Next, consistent with the results of Part I (see relations (59) and (61)), Figs. 3(c)

and (d) show that the loss of SE in the composites subjected to aligned axisymmetric shear

loading takes place through vanishing of the effective incremental shear modulus in the

plane perpendicular to the major axis of particles, namely, the components L̂c
1313(= L̂c

2323)
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and L̂c
3131(= L̂c

3232), for the cases of prolate and oblate particles, respectively.
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Figure 4. TSO estimates for the macroscopic instabilities (loss of SE) in particle-reinforced neo-Hookean elastomers
subjected to aligned loadings. Parts (a) and (b) show pure shear (λ̄1 = λ̄ , λ̄2 = 1) results for the critical strain (ēPS

cr ) at which
loss of SE of the homogenized elastomer takes place, and the corresponding critical stress (S̄PS

cr ), respectively. Parts (c) and

(d) show axisymmetric shear (λ̄1 = λ̄2 = λ̄ ) results for the critical strain (ēAS
cr ) and the corresponding critical stress (S̄AS

cr ),
respectively. The results are shown for various particle concentrations as functions of the particle aspect ratio ln(w).

Figure 4 presents TSO estimates for the critical strains and stresses at which macro-

scopic instabilities first develop in the particle-reinforced neo-Hookean composites sub-

jected to aligned loadings. Figures 4(a) and (b) show plots for the critical strain ēPS
cr =

ln(λ̄cr) (at which the homogenized elastomer first loses SE) and the corresponding criti-

cal stress S̄PS
cr (as defined in (15)), respectively, for pure shear loading. Similarly, Figs. 4(c)

and (d) show plots for the critical strain (ēAS
cr ) and the corresponding critical stress (S̄AS

cr ),

respectively, for axisymmetric shear loading. The results are shown for several values of

the concentration (c = 0.05, 0.15 and 0.25), as functions of the logarithm of the parti-

cle aspect ratio, ln(w). The main observation from these figures is that, for fixed volume

fractions, the particle-reinforced composites become increasingly less stable in both the

deformation and the stress as the value of | ln(w)| increases and the particle shape becomes

progressively more prolate, or oblate. In this regard, we see from Figs. 4(a) and (c) that

the critical strain curves have a vertical asymptote at w = 1 and horizontal asymptotes

at ēcr = 0 as w → ∞ or w → 0. The special case of w = 1 correspond to neo-Hookean

elastomers reinforced by spherical (rigid) particles, which, as already mentioned, remain

strongly elliptic for all deformations (ēcr → ∞). On the other hand, for the two extreme
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values of the particle aspect ratio, namely, the limiting cases of zero and infinite aspect

ratios, the composite becomes unstable at zero strain (ēcr → 0), which is in consistent

with the fact that the composites become rigid in these two limiting cases corresponding

to a laminated material with a rigid phase and a (continuous) fiber-reinforced elastomers

with rigid fibers, respectively. Similar observations can be made from Fig. 4(b) and (d)

for the critical stresses, except that the critical stresses tend to finite values, depending on

the volume fraction of particles, in the limits as w → ∞ and w → 0.

In connection with this last observation, it is relevant to recall that Agoras et al. [2] de-

rived the following results for the critical stress in composites consisting of a generalized

neo-Hookean matrix and isotropic distributions of aligned, rigid, circular fibers, namely,

S̄PS
cr = S̄AS

cr =−
1+ c

1− c
µ (1). (16)

Similarly, making use of the results provided in Appendix A of the paper [2] for the

laminate composites consisting of alternating layers of incompressible neo-Hookean ma-

terials, it can be shown that the critical stress in the limit as one phase becomes rigid is

given by

S̄PS
cr = S̄AS

cr =
1

1− c
µ (1). (17)

Moreover, note that relations (16) and (17) are valid for both pure shear and axisymmetric

shear loadings. Thus, we can check from Fig. 4(b) and (d) that the trends in the results

predicted by the TSO model for the critical stress are consistent with the corresponding

results calculated form expressions (16) and (17), respectively, in the limiting cases of

w → ∞ and w → 0.

Next, in Fig. 5, we investigate the influence of the matrix constitutive behavior on the

macroscopic stress-strain response of the composite elastomers, when subjected to aligned

pure shear (PS) and axisymmetric shear (AS) loadings. Thus, Figs. 5(a) and (b) provide

plots of the macroscopic stress S̄PS for prolate particles with w = 4 and oblate particles

with w = 0.25, respectively, while Figs. 5(c) and (d) provide corresponding plots for the

macroscopic stress S̄AS. In each figure, the volume fraction of particles is assumed to be

fixed at c= 0.25, and results are shown for several values of the matrix lock-up parameters

(Jm = 50,100, and ∞). It is recalled that the case Jm → ∞ corresponds to an incompress-

ible neo-Hookean matrix. We observe from these figures that the composites with prolate

particles tend to stiffen more significantly for compressive strains (ē < 0), resulting in ten-

sile strains in the long fiber direction, while the composites with oblate particles tend to

stiffen more significantly for tensile strains (ē > 0), corresponding to compressive strains

along the short fiber direction. In addition, the amount of stiffening is more significant

for larger values of Jm, as expected. Moreover, it can be shown that, the effective lock-up

strain1 for the composite materials with spheroidal particles under aligned loadings is in-

dependent of the shape of the particle and is completely determined by the values of Jm,

and c. Therefore, the relations (142) in [3] for the composites with spherical particles, can

be used to determine the lock-up stretch for the class of composites of interest here when

subjected to aligned pure and axisymmetric shear loadings. Furthermore, the plots in Fig.

5 illustrate that, although the strain-locking parameter Jm in the Gent elastomers can have

a strong influence on the macroscopic response of the reinforced elastomer, it has basi-

cally no effect on the loss of SE for the particle-reinforced composites. This is consistent

with earlier findings by Lopez-Pamies and Ponte Castañeda [8] and Agoras et al. [2] that

the development of macroscopic instabilities in (long) fiber-reinforced composites with

1The strain at which the composite locks up because of lock up in the elastomeric matrix phase
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Figure 5. TSO estimates for the macroscopic stress S̄ versus the macroscopic logarithmic strain ē = ln(λ̄ ) for particle-
reinforced Gent elastomers. The results are shown for three values of the matrix inextensibility parameter Jm = 50, 100, and
∞. Four different cases are considered: (a) aligned pure shear for a prolate spheroidal shape (w = 4), (b) aligned pure shear
for an oblate shape (w = 0.25), (c) aligned axisymmetric shear for a prolate shape (w = 4), and (d) aligned axisymmetric
shear for an oblate shape (w = 0.25).

Gent matrix materials subjected to 2-D and 3-D loadings becomes independent of Jm for

very stiff fibers.

Finally, Fig. 6 provides results for the transverse effective response of a (2-D) com-

posite consisting of an incompressible, neo-Hookean matrix reinforced by rigid, aligned,

cylindrical fibers with elliptical cross section of aspect ratio w, which are subjected to

pure shear aligned with the principal axes of the elliptical fibers. The response of this type

of composite to pure shear loading has also been studied in [8] and [3]. These results are

compared with the corresponding results of this paper for the (3-D) neo-Hookean elas-

tomers reinforced with aligned, spheroidal particles with the same aspect ratio w that are

subjected to the same pure shear loading, but this time in a plane including the long axis

of the fibers. (It should be noted here that the results for the 2-D composite with aspect

ratio w = 1 also correspond to the transverse shear response of the 3-D composite with

aspect ratio w → ∞.) More specifically, Fig. 6 shows results for the effective stress S̄PS

versus the logarithmic strain ē = ln(λ̄ ) in 2-D and 3-D composites with fiber/particle as-

pect ratios w = 1 and w = 4, at the fixed fiber/particle concentration c = 0.3. From this

figure, we first observe that the response curves for the 2-D and 3-D composites with as-

pect ratio w = 1 are fairly similar, with the spherical particles producing a slightly stiffer

response. On the other hand, the responses for the 2-D and 3-D composites with aspect
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Figure 6. Comparison between the TSO estimates for the macroscopic stress S̄PS in 2-D and 3-D rigidly reinforced elas-
tomers subjected to aligned pure shear loadings. The 2-D composite is a fiber-reinforced composite which consists of an
incompressible neo-Hookean matrix and a random distribution of long, aligned (rigid) fibers with elliptical cross section,
and is subjected to aligned pure shear loading. The 3-D composite is the composite studied in this work with a neo-
Hookean matrix and spheroidal particles, and is subjected to aligned pure shear deformation (λ̄1 = λ̄ , λ̄2 = 1). The results
are shown as functions of the logarithmic strain ē = ln(λ̄) for two fiber/particle aspect ratios (w = 1 and w = 4), at the fixed
fiber/particle concentration c = 0.3. The FE simulations of Moraleda et al. [13] for a 2-D fiber-reinforced composite with
circular fibers (w = 1) are also included for comparison.

ratio w = 4 are quite different. While the response of the 2-D composites is the same

regardless of whether the extension axis is aligned with the long particle axis (θ̄ = 90◦)

or perpendicular to it (θ̄ = 0◦), the response of the 3-D composites is quite a bit stiffer

when the extension axis is aligned with the long particle axis than when it is perpendicular

to it. (Recall that the unstable branches of the solutions for θ̄ = 0◦ are shown in dashed

and dashed-dotted lines.) However, the results for aspect ratio w = 4 and loading angle

θ̄ = 0◦ indicate that the 2-D fiber-reinforced composites are slightly more stable than the

3-D composites with the same aspect ratio. In addition, we observe that the TSO estimate

for the 2-D composite with circular fibers is in excellent agreement with the FEM simula-

tions of Moraleda et al. [13] for the same problem (at least for the range of stretches that

were achieved in the numerical simulations). In this connection, it is important to recall

that the modification of the TSO estimates proposed in Part I of this work (in terms of

expression (22) instead of the corresponding expression (113) in [3] involving a log term

in the determinant) is free from the “geometric lock up” condition, and is much closer

to the FEM results than the earlier estimate in [3], which were found to blow up for a

sufficiently small value of the stretch λ̄ (at λ̄ = 1/c, for the results shown in the plots).
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3.2. Non-aligned loadings

In the previous subsection, we restricted our attention to cases in which the principal axes

of loading are aligned with those of the particles. In this subsection, we present results for

the more general case of macroscopically non-aligned loadings of the form (5). The idea

behind presenting these results is to explore the effect of the evolution of the microstruc-

ture (here, the particle rotation) on the macroscopic response and stability of the rein-

forced elastomers. Keeping in mind the transverse isotropy of the reinforced elastomers

of interest in this work, it will suffice to restrict our attention to loading orientation angles

in the range 0 ≤ θ̄ ≤ π/2. Thus, in this section, results will be provided for variety of

loading angles in this range, including θ̄ = 0◦ and θ̄ = 0+◦. The latter corresponds to the

case in which the principal axes of loading has a very small misorientation with respect

to the principal axes of the particles in the undeformed configuration. The significance

of this choice will be expounded upon in the discussion below. It is also noted that all

results in this subsection are for composites with neo-Hookean matrix phases of the form

(3). Moreover, results are given for two specific types of non-aligned loadings: (1) pure

shear at an angle, characterized by the choice λ̄1 = λ̄ , λ̄2 = 1 (in expression (5)), and (2)

axisymmetric shear at an angle, characterized by the choices λ̄1 = λ̄2 = λ̄ . It is relevant

to note that the transformations λ̄ → λ̄−1 and θ̄ → θ̄ +π/2 lead to the same pure shear

loading loading. In addition, it is recalled from the formulation in Part I that the loading

angle θ̄ = θ̄2 corresponds to rotation of the principal loading axes about the (fixed) lab-

oratory axis e2, while the loading angle θ̄1 (which has thus far been assumed to be zero)

corresponds to a rotation of the principal loading axes about the axis e1. As will be seen

below in the context of Fig. 7 for pure shear loading conditions, we will also consider

small out-of-plane misalignments (θ̄1 = 0+◦) for reasons that will become evident in the

discussion of said figure. Furthermore, we note that the sign convention for the angle ψ̄ (2),

characterizing the average rotation of the particles, is given by the usual right-hand rule

(with respect to the fixed frame of reference, see Fig. 3a in Part I). Finally, we note that,

similar to the previous subsection, we first consider the case of dilute concentrations of

particles (c ≪ 1) in order to isolate the influence of the particle shape on the macroscopic

behavior and the microstructure evolution under non-aligned loadings. After doing this,

we will provide results for finite concentrations of particles.

Figure 7 provides results for the TSO estimates for the effective response of a neo-

Hookean elastomer reinforced with prolate particles under pure and axisymmetric shear,

at the fixed loadings angles θ̄ = 0◦, 0+◦, 5◦, 45◦, 70◦ (as well as for the angle θ̄1 = 0+◦,

for pure shear only). Results are shown for the fixed aspect ratio w = 2 and a dilute con-

centration of particles, as functions of the macroscopic logarithmic strain ē = ln(λ̄ ). Fig-

ures 7(a) and (b) show plots for the macroscopic stress S̄PS
0 and the particle rotation ψ̄ (2),

respectively, for pure shear. Similarly, Figs. 7(c) and (d) show corresponding plots for ax-

isymmetric shear. Recalling that S̄PS
0 and S̄AS

0 , as determined by expressions (9) and (11),

are measures of the normal stress differences defined by the loading direction, we observe

from Figs. 7(a) and (c) that S̄PS
0 and S̄AS

0 are both quite sensitive to the loading angle θ̄ .

While this is to be expected for small strains, it is interesting to note that, at finite strains,

the particle rotations can have significant additional effects relative to the perfectly aligned

case (θ̄ = θ̄2 = 0◦). Indeed, it can be seen that the large rotations that are produced for

the cases where the long axes of the particles are nearly (but not exactly) orthogonal to

the tensile loading axis (θ̄ = 0+◦, 5◦; θ̄1 = 0+◦) are associated with significant soften-

ing relative to the perfectly aligned case (θ̄ = 0◦), especially for axisymmetric shear. In

fact, the softening is so significant that loss of ellipticity is observed for these cases (as

well as for the perfectly aligned case). In connection with the particle rotations shown in

Figs. 7(b) and (d), it should be noted that, when the composite is subjected to non-aligned

loadings, the particles tend to align their longest axis with the tensile loading direction as

the deformation progresses, implying that ψ̄ (2) → θ̄ −90◦ for ē >> 0, and ψ̄ (2) → θ̄ for
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Figure 7. TSO estimates for a particle-reinforced neo-Hookean composite with a dilute concentration of prolate particles
with aspect ratio w = 2 subjected to non-aligned loadings. Parts (a) and (b) show results for pure shear loading (λ̄1 =

λ̄ , λ̄2 = 1) for the effective stress S̄PS
0 and the angle of rotation of the particles ψ̄ (2), respectively. Parts (c) and (d) show

results for axisymmetric shear loading (λ̄1 = λ̄2 = λ̄ ) for the effective stress S̄AS
0 and the rotation ψ̄ (2), respectively. The

results are shown for various angles θ̄ (as well as for the out-of-plane misalignment angle θ̄1 = 0+◦ for the case of pure
shear lading), as functions of the macroscopic logarithmic strain ē = ln(λ̄ ).

ē << 0 (except for θ̄ = 0, π/2, for which, the particles do not rotate and ψ̄ (2) = 0◦). For

example, for the loading angle θ̄ = 70◦, ψ̄ (2) tends to the values −20◦ and 70◦ for ē > 0

and ē < 0, respectively.

At this point, it is useful to explore in more detail the possible connections between the

particle rotations and the loss of SE condition. For this purpose, we show in Fig. 8 the

appropriate shear components of the incremental modulus tensor for neo-Hookean elas-

tomers reinforced with dilute concentrations of prolate particles with w = 2, subjected to

aligned loading conditions. Thus, we observe from Fig. 8(a) that for pure shear loading

conditions both L̂c
1313 and L̂c

2323 decrease with increasing strain and actually vanish, but

at different levels of the applied strain ē. (Note that the corresponding moduli L̂c
3131 and

L̂c
3232 also vanish at the appropriate strains, but have very different behaviors tending to

increase or remain constant before vanishing.) On the other hand, we see from Fig. 8(b)

for axisymmetric shear loading conditions that L̂c
1313 and L̂c

2323 are identical by symmetry

and vanish at the same applied strain. ( L̂c
3131 and L̂c

3232 also vanish but exhibit different

trends.) In addition, it is noted that vanishing of L̂c
1313 implies that the particles can rotate

freely about the e2 axis (in the e1−e3 plane), while vanishing of L̂c
2323 allows the particles
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Figure 8. TSO estimates for the incremental shear moduli of particle-reinforced neo-Hookean composites with a dilute
concentration of prolate particles with aspect ratio w = 2 subjected to aligned loadings. (a) Results for pure shear loading
(λ̄1 = λ̄ , λ̄2 = 1). (b) Results for axisymmetric shear loading (λ̄1 = λ̄2 = λ̄ ).

to rotate freely about the e1 axis (in the e2 − e3 plane). Moreover, the onset of the sudden

rotations observed in Figs. 7(b) and (d) for pure shear and axisymmetric shear loading

conditions, respectively, are found to coincide precisely with the vanishing of the corre-

sponding incremental moduli (as shown in Figs. 8(a) and (b)). Thus, for pure shear, L̂c
1313

and L̂c
2323 vanish at different levels of the applied strain ē, and the particles can be seen

to start rotating about the e2 and e1 axes, respectively, at the corresponding values of the

applied strain ē. In this case, the loss of SE is associated with the first modulus to vanish

(in this case, L̂c
2323, corresponding to rotation of the particles out of the loading plane).

On the other hand, for the case of axisymmetric shear, L̂c
1313 = L̂c

2323, and the particles

can start rotating about any axis in the e1-e2 plane (because of the symmetry) at the same

value of the applied strain ē. In conclusion, it can be seen that the sudden rotation—or

flopping—of the fibers can be linked directly to the loss of ellipticity of the incremental

elasticity tensor of the composites (at least for dilute concentrations).

Figure 9 provides results for the TSO estimates for the effective response of a neo-

Hookean elastomer reinforced with oblate particles, under pure and axisymmetric shear

loadings at the fixed loadings angles, θ̄ = 0, 0+◦5◦, 45◦, 70◦. Results are shown for the

fixed aspect ratio w = 0.5, and a dilute concentration of particles, as functions of the

macroscopic logarithmic strain ē = ln(λ̄). Figures 9(a) and (b) show plots for the macro-

scopic stress S̄PS
0 and the rotation of the particles ψ̄ (2), respectively, for pure shear. Simi-

larly, Figs. 9(c) and (d) show corresponding plots for axisymmetric shear. As discussed in

the context of the previous figure for the prolate particles, the results of Fig. 9 put into evi-

dence the significant influence of the rotation of the particles on the effective response and

macroscopic stability of the particle-reinforced composites subjected to pure and axisym-

metric shear loadings. However, there are important differences between the oblate and

prolate particle cases. Thus, we observe from Fig. 9(a) that the most significant softening

in the macroscopic stress-strain relation, as well as the associated loss of strong elliptic-

ity, occur for compressive applied strains (ē < 0), in contrast with the prolate-particles

composites (where the most pronounced softening and associated instabilities take place

for tensile strains). In particular, Fig. 9(a) shows that, when a slightly misaligned pure

shear (θ̄ = 0+◦) is applied, a burst of softening occurs starting at a certain negative value

of the critical strain ēcr, which, as mentioned earlier, is concurrent with the large particle

rotations observed in Fig. 9(b). As also discussed earlier in the context of the composites

with prolate particles, this is entirely consistent with the development of flopping-type in-

stability at the critical strain ēcr. This softening, however, becomes less pronounced with
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Figure 9. TSO estimates for a particle-reinforced neo-Hookean composite with a dilute concentration of oblate particles
with aspect ratio w = 0.5 subjected to non-aligned loadings. Parts (a) and (b) show results for pure shear loading (λ̄1 =

λ̄ , λ̄2 = 1) for the effective stress S̄PS
0 and the angle of rotation of the particles ψ̄ (2), respectively. Parts (c) and (d) show

results for axisymmetric shear loading (λ̄1 = λ̄2 = λ̄ ) for the effective stress S̄AS
0 and the rotation ψ̄ (2), respectively. The

results are shown for various angles θ̄ , as functions of the macroscopic logarithmic strain ē = ln(λ̄ ).

increasing loading angle θ̄ , due to the fact that the oblate particles will rotate more slowly

and thus accommodate a smaller portion of the macroscopic compressive strain for such

larger values of θ̄ . On the contrary, when the composite is subjected to tensile strains

(ē > 0), no softening phenomenon is observed (for the chosen loading angles), and the

composite exhibits a consistently stiffer response for smaller loading angles, once again,

due to the fact that the oblate particles rotate slower at a smaller θ̄ for tensile strains. On

the other hand, as seen in Fig. 9(c), no loss of ellipticity is detected for the composites

under axisymmetric loading, in agreement with the results in Fig. 1(d) for the case of

w = 0.5. The composites, nevertheless, show a systematically softer behavior in compres-

sion (ē < 0) when the particles undergo a faster and larger rotation. Finally, similar to the

case of prolate particles, we observe from Fig. 9 (b) and (d) that oblate particles also tend

to align (one of) their major axes with the tensile direction of the non-aligned loading as

the deformation increases, and thus we deduce that in this case ψ̄ (2) → θ̄ at ē >> 0, and

ψ̄ (2) → θ̄ −90◦ at ē << 0 (except for θ̄ = 0◦, π/2, when the particles do not rotate).

Figure 10 presents results for the TSO estimates for the effective response of incom-

pressible, neo-Hookean elastomers reinforced with rigid particles in dilute concentrations,

subjected to non-aligned pure and axisymmetric shear loadings at a fixed angle θ̄ = 25◦.

Results are shown for prolate particles with aspect ratios 1, 1.1, 2, 4 and 8, as functions
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Figure 10. TSO estimates for particle-reinforced neo-Hookean composites with dilute concentrations of prolate particles
subjected to non-aligned loadings at the fixed angle θ̄ = 25◦ . Parts (a) and (b) show results for the effective stress S̄PS

0 and

the angle of rotation of the particles ψ̄ (2), respectively, for pure shear loading (λ̄1 = λ̄ , λ̄2 = 1). Parts (c) and (d) show

results for the effective stress S̄AS
0 and the rotation ψ̄ (2), respectively, for axisymmetric shear (λ̄1 = λ̄2 = λ̄ ). The results are

shown for particle aspect ratios w = 1,1.1,2,4,8, as functions of the macroscopic logarithmic strain ē = ln(λ̄ ).

of the macroscopic logarithmic strain ē = ln(λ̄ ). Figures 10(a) and (b) show plots for the

case of pure shear loading for the macroscopic stress S̄PS
0 and the rotation of the particles

ψ̄ (2), respectively. Similarly, Figs. 10(c) and (d) show corresponding plots for the case

of axisymmetric shear loading. It can be seen from Fig. 10(a) and (c) that the effective

stress-strain plots (for pure and axisymmetric shear loadings) exhibit a softening effect

for tensile strains (ē > 0), which gets progressively more significant with increasing as-

pect ratio w. As discussed earlier, this effect is linked to the associated evolution of the

microstructure. In fact, for non-aligned loadings, the finite rotation of rigid particles (see

Figs. 10(b) and (d)) serves to accommodate some part of the total macroscopic deforma-

tion, so that smaller strains are produced in the elastomeric matrix phase. Interestingly,

the largest particle rotations corresponding to the largest aspect ratios can be correlated

with the strongest softening in the macroscopic stress-strain relations, for both pure and

axisymmetric shear loadings. It also should be remarked that, at the chosen loading angle

(θ̄ = 25◦), no loss of SE is detected for either loading conditions. The reason behind this,

as mentioned earlier, is that, at this relatively large value of θ̄ , the compression along the

major axis of particles never reaches the level required for loss of SE to occur.

In addition, consistent with earlier observations, it can be seen from Figs. 10(b) and (d)
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that the particles tend to align themselves with the tensile loading axis, so that the average

rotation of the particles for this particular loading angle (θ̄ = 25◦) exhibits the asymptotic

behaviors: ψ̄ (2) → −65◦ as ē → ∞, and ψ̄ (2) → 25◦ as ē → −∞. In this connection, it

should be mentioned that results have also been included in Figs. 10(b) and (d) for the ro-

tation of a “Material Line Element,” labeled MLE, for comparison purposes. These curves

correspond to the rotation of a typical material line element that is initially aligned with

the longest axis of the particles (in this case, the axis e3) in the undeformed configuration,

and are determined by the expressions

ψ̄PS
MLE =−arctan

(
sin(θ̄)cos(θ̄)(e2ē −1)

sin2(θ̄)e2ē + cos2(θ̄)

)
, ψ̄AS

MLE =−arctan

(
sin(θ̄)cos(θ̄)(e3ē−1)

sin2(θ̄)e3ē + cos2(θ̄)

)

(18)

for pure and axisymmetric shear loadings, respectively. Note that the TSO estimates for

the particle rotations are consistent with these results in the limit as the prolate particles

become needles (w → ∞).
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Figure 11. TSO estimates for particle-reinforced neo-Hookean composites with dilute concentrations of oblate particles
subjected to non-aligned loadings at the fixed angle θ̄ = 25◦ . Parts (a) and (b) show results for the effective stress S̄PS

0 and

the angle of rotation of the particles ψ̄ (2), respectively, for pure shear (λ̄1 = λ̄ , λ̄2 = 1). Parts (c) and (d) show results for

the effective stress S̄AS
0 and the rotation ψ̄ (2), respectively, for axisymmetric shear (λ̄1 = λ̄2 = λ̄ ). The results are shown for

particle aspect ratios w = 1,0.9,0.5,0.25,0.125, as functions of the macroscopic logarithmic strain ē = ln(λ̄ ).

Figure 11 presents results for the TSO estimates for the effective response of incom-

pressible, neo-Hookean elastomers reinforced with a dilute concentration of oblate rigid
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particles, under non-aligned pure and axisymmetric shear loadings at the fixed loading

angle θ̄ = 25◦. Results are shown for aspect ratios w equal to 1, 0.9, 0.5, 0.25 and 0.125,

as functions of the macroscopic logarithmic strain ē = ln(λ̄ ). Figures 11(a) and (b) show

plots for the macroscopic stress S̄PS
0 and the rotation of the particles ψ̄ (2), respectively,

for pure shear loading. Similarly, Figs. 11(c) and (d) show corresponding results for ax-

isymmetric shear. Compared to the previous results for prolate particles, the results of

Fig. 11 for oblate particles are roughly the opposite. Thus, the particles in this case un-

dergo the largest rotations (in the opposite direction) for compressive strains (ē < 0), and

the rotations are faster for the smallest aspect ratios. In addition, the particles tend to the

asymptotic values (ψ̄ (2) → 25◦ as ē → ∞, and ψ̄ (2) →−65◦ as ē →−∞), as long as the

aspect ratio w is different from unity (when the particles do not rotate). Correspondingly,

the plots for the effective stress-strain relations of the composites exhibit softening for

compressive strains (ē < 0), and the level of softening increases with decreasing values

of the aspect ratio w. On the other hand, the (positive) particle rotations for tensile strains

(ē > 0) can be seen to lead to a stiffening of the macroscopic stress-strain relation, which

becomes progressively more significant, the smaller the aspect ratio.

In Figs. 11 (b) and (d), we have also included plots for the rotation of the normal to a

“material surface element” (MSE) whose normal is initially aligned with the e3 axis. This

rotation can be expressed as

ψ̄PS
MSE = arctan

(
sin(θ̄)cos(θ̄)(e2ē−1)

sin2(θ̄)+ e2ē cos2(θ̄)

)
, ψ̄AS

MSE = arctan

(
sin(θ̄)cos(θ̄)(e3ē −1)

sin2(θ̄)+ cos2(θ̄)e3ē

)

(19)

for pure and axisymmetric shear loading, respectively. In this connection, it is noted that

the TSO estimates for the rotation of oblate particles become consistent with these results

for MSEs in the limit as the aspect ratio w → 0.

Finally, Fig. 12 provides results showing the influence of the particle volume fraction on

the TSO estimates for the effective response of the composites subjected to non-aligned

pure and axisymmetric shear loadings. The results in this figure are shown for an in-

compressible, neo-Hookean elastomer reinforced with rigid, prolate particles with a fixed

aspect ratio, w = 2, and three concentrations, c = 0.05, 0.15, 0.25. In addition, the results

are shown for two loading angles θ̄ = 5◦ and 25◦, as functions of the macroscopic loga-

rithmic strain ē = ln(λ̄ ). Similar to the previous figures in this subsection, parts (a) and

(b) show pure shear results for the macroscopic stress S̄PS
0 and the rotation of the particles

ψ̄ (2), respectively, while parts (c) and (d) show the corresponding results for axisymmetric

shear. The main observation from these figures is that the particle concentration c has a

relatively small effect on the particle rotations (in fact, for small strains the particle ro-

tations are completely insensitive to c), while it has a significant effect on the effective

stress-strain relations for the composites. Thus, we can see that, as expected, increasing

values of c result in stiffer responses both in tension and compression, as well as for both

pure and axisymmetric shear. On the other hand, we also observe that the initial loading

angle has a significant effect on the particle rotations, but a relatively small influence on

the macroscopic stress-strain relation for the composite. In addition, consistent with the

results of Fig. 4, it can be seen that the reinforced elastomers become less stable with in-

creasing particle volume fractions, while the response of these composites is more stable

for the larger loading angle (25◦), where loss of ellipticity is not detected for the levels of

strain considered.
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Figure 12. TSO estimates for a particle-reinforced neo-Hookean composite with prolate particles of aspect ratio w = 2
subjected to non-aligned loadings at the angles θ̄ = 5◦, and 25◦ . Parts (a) and (b) show results for the case of pure shear

loading (λ̄1 = λ̄ , λ̄2 = 1), respectively for the effective stress S̄PS
0 and the angle of rotation of the particles ψ̄ (2). Parts (c) and

(d) show results for the case of axisymmetric shear loading (λ̄1 = λ̄2 = λ̄ ), respectively for the effective stress S̄AS
0 and the

rotation ψ̄ (2). The results are shown for particle volume fractions c = 0.05, 0.15, and 0.25, as functions of the macroscopic
logarithmic strain ē = ln(λ̄ ).

4. Concluding Remarks

In this paper, we made use of the tangent second-order (TSO) constitutive model pre-

sented in Part I to generate estimates for the homogenized stress-strain relation, the evo-

lution of microstructure, and the onset of macroscopic instabilities in particle-reinforced

elastomeric composites consisting of an incompressible Gent/neo-Hookean matrix and

random distributions of aligned spheroidal particles of aspect ratio w. The estimates pre-

sented in this paper provide a broad picture of the influence of the macroscopic loading

conditions, matrix properties and microgeometry (including particle volume fractions and

shapes) on the effective behavior and the possible onset of macroscopic instabilities in

the composites. Explicit results are given for composites with both prolate and oblate

spheroidal shapes, subjected to aligned and non-aligned pure shear and axisymmetric

shear loading conditions. These results generalize the recent results of Avazmohammadi

and Ponte and Castañeda [3] for elastomers reinforced with random distributions of spher-

ical particles (w = 1), as well as earlier results of Lopez-Pamies and Ponte Castañeda [8]

for 2-D composites reinforced with elliptical fibers. In addition, the results of this work

are consistent with earlier results for laminated elastomers [4, 11] and for continuous-
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fiber-reinforced elastomers [1] in the limits as the aspect ratio w tend to zero and ∞,

respectively.

Concerning the results for the overall behavior, we begin by emphasizing that the TSO

model predictions are in very good agreement with available numerical results [7] for

spherical particles (w= 1), up to fairly large strains. Similarly, the TSO results were found

to be in excellent agreement with FEM results [13] for the transverse shear response of

continuous-fiber-reinforced elastomers (w → ∞). In particular, it should be emphasized

that the new choice for the response of the neo-Hookean matrix phase, as given by ex-

pression (3), leads to estimates for the macroscopic stress-strain relation that do not lock

up at finite strains. This is different from the corresponding expressions given in [3], which

tend to lock up at a finite strain that becomes smaller with increasing particle volume frac-

tion, even for neo-Hookean matrix behavior. Although a very minor change relative to the

expressions originally given in [3] (nothing else changes!), the use of the new expression

does give much better agreement with the available numerical results, especially at the

larger volume fractions. It should be noted, however, that the corresponding results for re-

inforced Gent elastomers do exhibit significant stiffening due to the particles, and tend to

lock up at strains that are smaller than for the elastomeric matrix material and that become

smaller with increasing particle volume fraction.

Compared to the results for spherical particles, it is found that the corresponding results

for prolate, or oblate particles generally result in stiffer responses when the reinforced

elastomers are loaded in pure shear or axisymmetric shear aligned with the particle axes,

and the amount of stiffening increases with increasing (decreasing) aspect ratio for pro-

late (oblate) particles. However, when the loading axes are not aligned with the particle

axes, it is found that the particles may undergo significant rotations tending to align their

long axes with the tensile axes of loading; this phenomenon in turn may lead to signifi-

cant softening, which becomes more pronounced as the particle shape moves away from

spherical. In fact, when the tensile loading axis is nearly orthogonal to the long axes of

the particles, the particles can suddenly undergo large rotations at a certain critical amount

of straining, which is found to be coincident (at least for dilute concentrations) with the

vanishing of the shear component of the incremental effective elasticity tensor transverse

to the long particle axis of the reinforced elastomer. Thus, the reinforced elastomers with

spheroidal particles can undergo shear localization instabilities, which are captured by

loss of ellipticity of the associated effective incremental modulus tensors, and correspond

physically to the sudden collective rotation—or flopping—of the particles to try to ac-

commodate the imposed deformation. These flopping-type macroscopic instabilities in

short-fiber-reinforced elastomers were first predicted theoretically in the context of model

2-D composites by Lopez-Pamies and Ponte Castañeda [8] and verified numerically by

Michel et al. [12] for the same type of 2-D composites. Although the physical mechanism

for these symmetry-breaking instabilities is essentially the same for the more realistic 3-

D composites considered in this work, the behavior is a bit richer for the 3-D composites

when subjected to general 3-D loadings since the particles tend to flop in the softest direc-

tion (the one associated with the first transverse shear modulus to vanish). Also, consistent

with earlier findings for the 2-D composites, the reinforced elastomers become more un-

stable (i.e., they develop instabilities for smaller strains) as the particle shape moves away

from the perfectly symmetric spherical shapes and as the volume fraction of the particles

increases.

Finally, it should be emphasized that although the constitutive models developed in

this work are approximate, they have significant advantages relative to full field numer-

ical simulations. First, the numerical simulations of these problems are difficult due to

the large stretches involved (requiring remeshing and other sophisticated numerical tech-

niques) and are computationally very intensive (in practice, relatively small numbers of

particles can be considered and ensemble averages would be required). As a consequence,
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to the knowledge of the authors, results are not yet available beyond the already mentioned

results for spherical particles and model 2-D composites. Second, in practical applications,

it is necessary to solve boundary value problems with non-uniform boundary conditions

and complicated geometries. This requires the use of the finite element method, and for

this purpose, it is crucial to be able to determine the homogenized response of the com-

posite material accurately and efficiently under general loading conditions. Clearly, this

is something that would be difficult to accomplish numerically with current codes and

computational power for these highly nonlinear, anisotropic materials, but is something

that would be feasible using the analytical constitutive models developed in this work.

It should be also noted that the results obtained in this work could be generalized to ac-

count for more general microstructures, including random particle orientations, as well as

other phases (e.g., voids [9, 10]), by making use of suitable “linear comparison media” in

the context of the tangent second-order homogenization technique. In addition, the mod-

els developed in this work could be used directly to generate corresponding models for

magneto-active elastomers (or dielectric elastomer composites) by means of the partial

decoupling approximation [14, 15]. These and other applications will be the subject of

future work.
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[1] Agoras, M., Lopez-Pamies, O., Ponte Castañeda, P., 2009a. A general hyperelastic model for incompressible fiber-
reinforced elastomers. J. Mech. Phys. Solids 57, 268–286.
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[8] Lopez-Pamies, O., Ponte Castañeda, P., 2006b. On the overall behavior, microstructure evolution, and macroscopic
stability in reinforced rubbers at large deformations: II — Application. J. Mech. Phys. Solids 54, 831–863.
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