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Abstract 

Subject to a voltage, a dielectric elastomer can deform substantially, making it a desirable 

material for actuators.  Designing such an actuator, however, has been challenging due to 

nonlinear equations of state, as well as multiple modes of failure, parameters of design, and 

measures of performance.   This paper explores these issues, using a spring-roll actuator as an 

example.  We formulate the equations of state of two degrees of freedom, and describe the 

constraints due to several modes of failure of the elastomer, including electrical breakdown, 

electromechanical instability, loss of tension, and tensile rupture.  Also included is the 

compressive limit of the spring.  We show that, for spring-roll actuators, loss of tension in the 

axial direction will always precede electromechanical instability.  We then describe a procedure 

to maximize the range of actuation by choosing parameters of design, such as prestretches of the 

elastomers and stiffness of the springs. 
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I.  Introduction 

 Dielectric elastomer actuators have been intensely studied in the recent decade.1-15  

Possible applications include medical devices, energy harvesters, and space robotics. 16-27 The 

essential part of such an actuator is a membrane of a dielectric elastomer sandwiched between 

two compliant electrodes. When a voltage is applied between the electrodes, the elastomer 

reduces its thickness and expands its area, converting electrical energy into mechanical energy. 

Attractive features of dielectric elastomer actuators include large strain (>200%), fast response 

(<1 ms), and high efficiency (80 to 90%).2 

 Many types of dielectric elastomer actuators have been proposed. 18-27 The performance 

of a given type of actuators can be markedly enhanced by judicious choice of parameters of 

design.  However, choosing the parameters of design to optimize performance has been 

challenging, due to nonlinear equations of state, as well as multiple modes of failure, parameters 

of design, and measures of performance.  In the literature, the choice of parameters of design 

has been mostly made by experimental trial and error. 

 To explore some of the basic issues in design, we study one particular type of actuators, 

the spring-roll actuators.23-26 The construction of a spring-roll actuator is sketched in Fig. 1.  Two 

membranes of a dielectric elastomer are alternated with two electrodes.  The laminate is 

prestretched in two directions in the plane, and then rolled around a spring.  When the actuator 

is subject to an applied voltage and an applied axial force, the axial elongation couples the 

electrical and mechanical actions.  The parameters of design include prestretches of the 

elastomer and the stiffness of the spring.  We will formulate equations of state, and describe 

several modes of failure.  We then specify a measure of performance, the range of actuation, and 

choose the parameters of design to optimize the actuator. 
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II. Equations of state 

 This section models the spring-roll actuator as a thermodynamic system of two degrees 

of freedom.  We identify generalized coordinates, loading parameters, and parameters of design.  

We then prescribe the free energy of the actuator as a function of the generalized coordinates, 

and derive the equations of state.  Following a long tradition of thermodynamics, we represent 

the equations of state graphically on the plane spanned by the generalized coordinates. 

 With reference to Fig. 1, the electrodes are compliant and bear no mechanical load.  The 

relaxed elastomer is of thickness 3L  and sides 2L  and 1L .  The relaxed spring is of length 11 Lpλ .  

In fabrication, to fit side 1 of the elastomer to the length of the spring, one may choose to either 

prestretch the elastomer, or pre-compress the spring, or do some combination of both.  

Evidently, this choice in fabrication should not affect the actuator.  Fig. 1 illustrates the first 

choice, where one prestretches the elastomer to 22 Lpλ  and 11 Lpλ , and then rolls the elastomer 

around the relaxed spring.  The laminate may roll around the spring several times, but the total 

thickness of the elastomer in the roll is taken to be small compared to the diameter of the spring, 

so that the state of deformation in the elastomer is homogenous, from the innermost round to 

the outermost round.  When the actuator is subject to an applied voltage Φ  and an applied axial 

force P , the thickness of the laminate changes to 33Lλ , and the length of the spring changes to 

11Lλ .  However, side 2 of the laminate, 22 Lpλ , is constrained by the diameter of the spring and 

remains unchanged.  The elastomer is taken to be incompressible, so that 1321 =λλλ p .   

 During operation, the actuator varies its state in two ways, as specified by two 

generalized coordinates: the stretch 1λ  in the axial direction, and the charge Q on one of the 

electrode.  We assume the actuator to be held at a constant temperature, and prescribe the 

Helmholtz free energy A of the actuator as a function of the two generalized coordinates: 
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In prescribing the free-energy function (1), we have invoked several idealizations.   First, the 

elastomer is taken to be a cross-linked network of long and flexible polymers, obeying the 

Gaussian statistics28, with µ  being the shear modulus of the elastomer.  Second, following Refs. 

[14,15,20], we assume that the dielectric behavior of the elastomer is liquid-like, unaffected by 

the deformation, so that the free energy of the elastomer is the sum of the elastic energy and the 

dielectric energy, with ε  being the permittivity of the elastomer.  Third, the spring is taken to 

obey Hooke’s law, with k  being the stiffness of the spring.  Of course, a spring-roll actuator in 

reality may deviate from these idealizations.  Any such deviation can be accounted for by 

modifying the free-energy function, but should not alter the procedure of analysis described 

below. 

 When the actuator is in a state ( )Q,1λ , in equilibrium with the applied force P  and the 

applied voltage Φ , for any small change in the stretch and charge, 1λd  and dQ , the change in 

the Helmholtz free energy equals the work done by the applied force and the voltage, namely 29,  

  dQdPLdA Φ+= 11 λ . (2) 

Consequently, the force and the voltage are the partial differential coefficients of the free-energy 

function ( )QA ,1λ .  The axial force is work-conjugate to the elongation: 
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11
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λ
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∂
=

L

QA
P . (3) 

The voltage is work-conjugate to the charge: 
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where ( ) ( )321 / LLkL µα =  is a dimensionless ratio between the stifness of the spring and that of 

the elastomer.  Equation (5) shows that the axial force is balanced by contributions of three 

origins:  the elasticity of the elastomer, the permittivity of the elastomer, and the elasticity of the 

spring.  Equation (5) can also be obtained by invoking the Maxwell stress.23-26  

 Inserting (1) into (4), we obtain that 
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Equation (6) recovers the familiar equation for an incompressible dieletric liquid, ED ε= , 

where ( )33/ LE λΦ=  is the true electric field, and ( )2211/ LLQD pλλ=  is the true electric 

displacement. 

 The actuator has three dimensionless parameters of design:  the prestretches in the two 

directions in the plane of the elastomer, p
1λ  and p

2λ , as well as the normalized stiffness of the 

spring, α .  These parameters of design are prescribed once the actuator is constructed.  

Equations (5) and (6) are the equations of state, relating the dimensionless loading parameters, 

( )32/ LLP µ  and ( )εµ // 3LΦ , to the dimensionless generalized coordinates, 1λ  and 

( )εµ21/ LLQ .   
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 These nonlinear equations of state can be displayed graphically on a plane spanned by 

the two dimensionless generalized coordinates (Fig. 2).   Plotted on this plane are the lines of 

constant force and the lines of constant voltage.  When the applied force is fixed, both the axial 

stretch and the charge increase with the voltage.   When the voltage is fixed, both the axial 

stretch and the charge increase with the applied force.  Fig. 2 can be used to locate the state of 

the actuator under prescribed axial force and voltage.  For example, in the absence of the 

external loads, 0=P  and 0=Φ , the charge also vanishes, and the intersection between the line 

of zero force 0=P  and the vertical axis 0=Q  gives the stretch 82.01 ≈λ .  In plotting the 

equations of state in Fig. 2, we have set the parameters of design to a particular set of values, as 

indicated Fig. 2.  

 

III.  Modes of failure 

 The range of operation of an actuator is limited by various modes of failure. Each mode 

of failure restricts the state of the actuator to a region on the plane of the generalized 

coordinates.  The common region that averts all modes of failure constitutes the set of allowable 

states.   To illustrate the procedure to construct the region of allowable states, we next consider 

several representative modes of failure.1,6,14    

 First we consider electromechanical instability (EMI) of the elastomer.  As the applied 

voltage is increased, the elastomer reduces its thickness, so that the voltage induces a high 

electric field. The positive feedback between a thinner elastomer and a higher electric field may 

cause the elastomer to thin down drastically, resulting in an electrical breakdown.  This 

electromechanical instability can be analyzed by using a standard method in thermodynamics.  

14,15,30 

 Consider a three-dimensional space, with the generalized coordinates 1λ  and Q being 

the horizontal axes, and the Helmholtz free energy A being the vertical axis.  In this space, the 
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free-energy function ( )QA ,1λ  is a surface.  A point on the surface represents a state of the 

actuator, and a curve on the surface represents a path of actuation.  Imagine a plane tangent to 

the surface at a state ( )Q,1λ .  The slopes of this tangent plane are 1PL  and Φ , according to (3) 

and (4).   

 For a state ( )Q,1λ  to be stable against arbitrary small perturbation in the generalized 

coordinates, the surface ( )QA ,1λ  must be convex at point ( )Q,1λ .  This condition of stability is 

equivalent to the following set of inequalities:   
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Of the three inequalities, (7a) ensures mechanical stability, (7b) electrical stability, and (7c) 

electromechanical stability.  Using (1), we can confirm that (7a) and (7b) are satisfied for all 

values of ( )Q,1λ , but (7c) is violated for some values of  ( )Q,1λ .  A combination of (1) and (7c) 

shows that the electromechanical instability sets in when 
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This equation corresponds to the curve marked by EMI in Fig. 3. The curve divides the ( )Q,1λ  

plane into two regions.  Above the curve, the actuator is stable against small perturbation of the 

generalized coordinates.   Below the curve, the actuator undergoes electromechanical instability. 

 We now turn to electrical breakdown (EB) of the elastomer. Even before the 

electromechanical instability sets in, the electric field in the elastomer may become too high, 
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leading to localized conduction path through the thickness of the elastomer.  The microscopic 

process of electrical breakdown can be complex, and will not be studied in this paper.  To 

illustrate the procedure of design, here we assume that electrical breakdown occurs when the 

true electric field exceeds a critical value cE . For the ideal dielectric elastomer, ED ε= , where 

the true electric displacement is ( )2121/ LLQD Pλλ= , the condition for electric breakdown is   

  
µ
ελλ

ε C
P E

LLµ

Q
21

21

= . (9) 

Equation (9) corresponds to the straight line marked by EB on the ( )Q,1λ  plane in Fig 3. The 

actuator in a state in the region above this straight line will not suffer electrical breakdown.  The 

straight line in Fig. 3 is plotted by using representative values kPa100=µ , V/m108=CE  and 

04εε = , with F/m1085.8 12
0

−×=ε  being the permittivity of the vacuum. 

 We next consider loss of tension of the elastomer  When the voltage Φ  is large, or axial 

force P  is compressive and of a large magnitude, the stress in the plane of the elastomer may 

cease to be tensile.  This loss of tension will cause the elastomer to buckle out of the plane, so 

that elastomer will no longer generate force of actuation.  To avert this mode of failure, we 

require that the stress be tensile in every direction in the plane of the elastomer.  That is, both 

the stress along the axial direction and the stress in the circumferential direction are required to 

be tensile, 01 >s  and 02 >s .  Following Ref. [14], we obtain the nominal stress in the axial 

direction in terms of the two generalized coordinates:  
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Setting the critical condition 01 =s  in (10), we obtain that 
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Similarly, we can obtain the nominal stress 2s  in terms of the two generalized coordinates: 

  ( ) ( ) 2
1

3

2

2

21

2
1

3

22
2 −−−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞⎜

⎝
⎛ −= λλ

µε
λλλ

µ
ppp

LL

Qs
. (11) 

Setting the critical condition 02 =s  in (11), we obtain that 
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The critical conditions for loss of tension, 01 =s  and 02 =s , are plotted in Fig. 3.  A 

comparison of (8) and (10a) shows that, for spring-roll actuators, loss of tension in the axial 

direction will always precede electromechanical instability.  By contrast, other types of dielectric 

elastomer actuators may fail by electromechanical instability. 1,6,14,30 

 We next consider tensile rupture of the elastomer.  When an elastomer is stretched too 

severely, the elastomer may rupture.  The critical condition for tensile rupture is not well 

quantified.  Here we will use the simple criterion that the elastomer will rupture when either 

stretch, 1λ  or 2λ , exceeds a critical value cλ .  A representative value 5=cλ  is included in Fig. 3. 

 We finally consider the compressive limit of the spring. The spring in the spring-roll 

actuator is designed to be under compression.  When the spring is compressed excessively, 

however, it may deform plastically. The length of the spring at its relaxed state is 11 LPλ , and the 

length of  the actuated spring is 11 Lλ . We assume that the spring deforms plastically when 

11 /λλP  exceeds a critical value c, which we set to be 4=c . In the ( )Q,1λ  plane, Fig. 3, the region 

above the line cP /11 λλ =  will guarantee that the spring remains elastic. 

 The modes of failure discussed in this section are all averted in the shaded region in Fig. 

3.  As evident from the above discussion, this region of allowable states will depend on the 

critical conditions for various modes of failure.  Furthermore, when a new mode of failure is 

identified, another curve will be added to the diagram, so that the region of allowable states may 
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recede.  In the remainder of the paper, to illustrate the procedure of design, we will confine our 

attention to the modes of failure and the critical conditions listed in this section.    

 

 

IV. Choose parameters of design to maximize the range of actuation 

 We now combine the graph for the equations of states (Fig. 2) and the graph for the 

modes of failure (Fig. 3).  Consider an actuator subject to a fixed axial force (i.e., a dead weight), 

( ) 2/ 32 −=LLP µ .  Fig. 4a includes the line of constant force, as well as the critical conditions for 

various modes of failure.  As the voltage increases, the state of the actuator moves along the line 

of constant force, starting at the state of zero charge, and ending at the state when 01 =s .  That 

is, of all modes of failure considered above, loss of tension in the axial direction limits the range 

of operation.  Diagram like Fig. 4a can be constructed for other sets of parameters of design.  For 

example, with a second set of parameters of design in Fig. 4b, the range of operation is limited 

by electrical breakdown.  With a third set of parameters of design in Fig. 4c, the line of constant 

force falls outside of the region of allowable state, indicating that the actuator so designed will 

not function.     

 How does one choose the parameters of design to optimize a actuator?  To optimize an 

actuator, one needs to specify what is to be optimized for.  That is, one needs to specify a 

measure of performance.  In practice, one might need to consider several measures of 

performance, and choose the parameters of design to compromise.  To illustrate the basic 

procedure, here we specify a particular measure of performace as follows.   

 As illustrated in Fig. 4, for a given set of the parameters of design, ( )αλλ ,, 21
pp , and a 

prescribed value of the axial load, ( )32/ LLP µ , when the applied voltage increases, the state of 

the actuator moves along the line of constant force, starting at the state of zero charge, and 
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ending at the critical state where one failure mode sets in.  We define the range of actuation, η , 

by the stretch of the critical state with respect to the state of zero voltage, namely, 
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=
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, (12)   

where 
01 =Φ

λ  is the axial stretch at zero voltage, and fail
1λ  is the stretch at which the actuator 

fails.   

 The stretch at zero voltage is determined by (5) by setting 0=Q , so that   
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This nonlinear equation can be solved numerically to determine 
01 =Φ

λ .  As illustrated by the 

counter example in Fig. 4c, to ensure that the line of constant force falls inside the region of 

allowable states, we require that 
01 =Φ

λ  be above all failure criteria specified in Section III when 

0=Q . 

 The stretch fail
1λ  is limited by one of the modes of failure, namely, 
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These critical stretches are determined by inserting the various failure criteria in Section III into 

(5).  The results are as follows.  The critical stretch for electromechanical instability is 
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The critical value of 1λ  for electrical breakdown is solved from fourth-order algebric equation: 
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The critical stretch for loss of tension is given by 
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  Now we study the effect of parameters of design on the range of actuation η .  To gain 

insight into the behavior, we will now fix two of the three parameters of design ( )αλλ ,, 21
pp , and 

vary the third.  In addition, the axial force is held at ( ) 2/ 32 −=LLP µ .  Fig. 5 shows the effect of 

p
1λ  on the range of actuation, plotting in Fig 5(a) the critical stretches set by various mode of 

failure, and in Fig. 5(b) the range of actuation. The allowable region of actuation is the region 

below the critical stretches and above 
01 =Φ

λ .  As shown in Fig 5(a), 
0101

1 =Φ=
< λλ

s
 when 

75.11 <
pλ .  For such a low prestretch, the actuator fails by loss of tension under the axial force 

even without any voltage.  When 375.1 1 << pλ , the loss of tension is still the upper limit for the 

range of actuation, but now the actuator can work under voltage. When 31 >pλ , the range of 

actuation is limited by electrical breakdown. 

  Fig. 6 shows the effect of p
2λ  on the range of actuation.  In this case, loss of tension sets 

the upper limit for the range of actuation. Furthermore, the range of actuation increases 

monotonically with p
2λ .  
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  Fig. 7 shows the effect of the normalized stiffness of the spring, α , on the range of 

actuation.  In this case the loss of tension in the axial direction limits the range of actuation. The 

range of actuation, however, is not a monotonic function of α  .  For small α , the spring is so 

compliant that the elastomer loses tension readily under the dead load, and the range of 

actuation is small.  For large α , the spring is so stiff that the voltage cannot increase elongation 

much, and the range of actuation is also small.  The range of actuation η  peaks at an 

intermediate value of α . 

 Finally, we vary all three parameters of design ( )αλλ ,, 21
pp  to maximize the range of 

auction η , subject to the constraint of all the modes of failure.  We proceed as follows.  For a 

given value of  ( )32/ LLP µ , we calculate the function ( )αλλη ,, 21
pp  according to the above 

procedure.  We then locate the maximum value of η  and the associated values of ( )αλλ ,, 21
pp .  

Inspecting the critical conditions for electromechanical instability, electrical breakdown, and 

loss of tension, we observe that for each of these modes the maximum allowable charge 

increases with p
2λ .  Consequently, in our optimization we set p

2λ  to the maximum allowable 

value 52 =pλ .  Fig. 8 plots the results for various level of prescribed axial force.  In the absence 

of the applied force, ( ) 0/ 32 =LLP µ , the combination of  11 =pλ , 52 =pλ  and 0=α  gives the 

optimal range of actuation 2.4≈η . As the compressive force increases, one needs to increase 

both p
1λ  and α   to maximize the range of actuation.  

 

VI. Concluding remarks 

 This paper describes an approach to design dielectric elastomer actuators to optimize 

performance.  Using the spring-roll actuator as an illustration, we construct the equations of 

state by modeling the actuator as a thermodynamic system of two degrees of freedom, identify a 
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set of design variables, and determine the region of allowable states according to several modes 

of failure.   We then specify a measure of performance, the range of actuation, and choose the 

deign parameters to optimize the actuator.  This approach may be adapted in practice to other 

types of dielectric elastomer actuators, new modes of failure, other parameters of design, and 

other measures of performance.  We eagerly await the use of this approach in designing next 

generation of dielectric elastomer actuators. 
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FIG. 1.  The construction of a spring-roll actuator. Two membranes of a dielectric elastomer are 
alternated with two electrodes.  The laminate is first prestretched and then rolled around a 
relaxed spring.  When the spring roll is subject to a voltage and an axial force, the length of the 
spring couples the electrical and mechanical actions. 
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FIG. 2.  A graphic representation of the equations of state.  When the design variables ( )pp
21 ,, λλα  

are prescribed, the state of the actuator is characterized by two generalized coordinates: the 
stretch 1λ  in the axial direction, and the charge Q on one of the electrode.  In the ( )Q,1λ  plane, a 
point represents a state of the actuator, and a curve represents a sequence of states.  Plotted on 
the plane are lines of constant force and lines of constant voltage. 
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FIG. 3.  A graphic representation of modes of failure.  Plotted on the ( )Q,1λ  plane are the 
critical conditions for several modes of failure:  electromechanical instability (EMI), electrical 
breakdown (EB), loss of tension ( 01 =s  and 02 =s ), and compressive failure of the spring 

( cp /11 λλ = ).  All these modes of failure are averted in the shaded region marked as the 
allowable states.  For the set of parameters of design indicated in the inset, the allowable states 
are bounded above by tensile rupture, and bonded below by loss of tension and electrical 
breakdown. 
 

             

Allowable states 
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FIG. 4.  A line of constant force ( ) 2/ 32 −=LLP µ  is plotted along with the critical conditions for 

failure.  When the voltage increases, the state of actuator moves along the line of constant force, 
beginning at 0=Q , and ending at a critical state set by one mode of failure.  The region of 
allowable states varies with the parameters of design.  (a) For one set of parameters of design, 
the range of actuation is limited by the loss of tension in the axial direction.  (b) For a second set 
of parameters of design, the range of actuation is limited by electrical breakdown. (c) For a third 
set of parameters of design, the line of constant force falls outside the region of allowable states, 
so that the actuator so constructed will not function. 
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FIG. 5.  The effect of prestretch p
1λ  on the range of actuation.  (a) The values of 1λ  under the 

critical conditions for various modes of failure:  electromechanical instability (EMI), electrical 
breakdown (EB), loss of tension  ( 01 =s  and 02 =s ), and compressive limit of the spring 

( cp /11 λλ = ).  Also included is 1λ  under the condition 0=Φ .  (b) The range of actuation as a 

function of p
1λ .   
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FIG. 6.  The effect of prestretch p
2λ  on the range of actuation.  (a) The values of 1λ  under the 

critical conditions for various modes of failure:  electrical breakdown (EB), loss of tension  
( 01 =s  and 02 =s ), and compressive limit of the spring ( cp /11 λλ = ).  Also included is 1λ  
under the condition 0=Φ .    For this set of parameters of design, electromechanical instability 

(EMI) does not occur. (b) The range of actuation as a function p
2λ . 
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FIG. 7.  The effect of the stiffness of the spring, α , on the range of actuation.  (a) The values of 

1λ  under the critical conditions for various modes of failure:  electromechanical instability 

(EMI), electrical breakdown (EB), loss of tension  ( 01 =s  and 02 =s ), and compressive limit of 

the spring ( cp /11 λλ = ).  Also included is 1λ  under the condition 0=Φ .    (b) The range of 
actuation as a function of α . 
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FIG. 8.  The optimal design of the actuator subject to various levels of the axial force.  (a),(b),(c) 
The optimal choice of the parameters of design.  (d) The maximum range of actuation.   


