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Abstract

This paper presents a stability analysis for fractal cracks. First, the Westergaard stress functions are
proposed for semi-infinite and finite smooth cracks embedded in the stress fields associated with the corre-
sponding self-affine fractal cracks. These new stress functions satisfy all the required boundary conditions
and according to Wnuk and Yavari [2003]’s embedded crack model they are used to derive the stress and
displacement fields generated around a fractal crack. These results are then used in conjunction with the
final stretch criterion to study the quasi-static stable crack extension, which in ductile materials precedes
the global failure. The material resistance curves are determined by solving certain nonlinear differential
equations and then employed in predicting the stress levels at the onset of stable crack growth and at the
critical point, where a transition to the catastrophic failure occurs. It is shown that the incorporation of
the fractal geometry into the crack model, i.e., accounting for the roughness of the crack surfaces, results
in: (1) higher threshold levels of the material resistance to crack propagation, and (2) higher levels of the
critical stresses associated with the onset of catastrophic fracture. While the process of quasi-static stable
crack growth (SCG) is viewed as a sequence of local instability states, the terminal instability attained at
the end of this process is identified with the global instability. Phenomenon of SCG can be used as an early
warning sign in fracture detection and prevention.
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1 Introduction

The phenomenon of slow stable crack extension, or subcritical crack growth so ubiquitous in ductile and quasi-
brittle fracture is not addressed in the Griffith’s theory of brittle fracture. Ultimately the analysis of this process
leads to solutions for advancing cracks, which significantly differ from those valid for stationary cracks. The effect
has been clearly noted in the antiplane case where continued crack advance is predicted under increasing load,
and fracture appears as an instability in the process [Hult and McClintock, 1956; McClintock, 1958; McClintock
and Irwin, 1965]. It has been shown that this instability behavior from McClintock’s antiplane analysis can
be formulated in terms of a universal resistance curve, much as proposed by Krafft et al. [1961]. Physically
this type of continuing crack growth resembles time-dependent or creep fracture observed in polymers. Studies
on the microstructural level of ductile fracture occurring in metals and metallic alloys have brought up certain
new mechanisms facilitating such growth as a sequence of debonding of the hard inclusions, followed by the
formation of voids and their plastic deformation, growth and coalescence [Rice, 1968]. Rice also noticed that
stable crack extension preceding instability is to be expected from the incremental and path-dependent nature
of the plastic stress-strain relations such as those given by the Prandtl-Reuss relations.

Since elasto-plastic stress-strain relations are incremental in nature and path dependent, the analysis based
on the continuum theory of plasticity (e.g. incremental flow theory of Prandtl-Reuss) is extremely difficult if
not feasible at all [Gross, 1990]. There are only two exceptions to this statement, namely: antiplane exact
formulation by Hult and McClintock [1956] and for the tensile fracture – analysis of Prandtl slip lines field
generated in front of a crack advancing in a rigid-perfectly plastic solid [Rice and Sorensen, 1978; Rice et al.,
1980]. Their governing differential equation, which defines the material resistance curve, is identical to the
results of Wnuk [1972, 1974, 1990] derived via application of the “cohesive” and then “structured cohesive”
crack model, see also Budiansky [1988] and Wnuk and Legat [2002]. When within the equilibrium cohesive
zone associated with a tensile crack a “unit step growth” or “process zone” is incorporated into the Barenblatt-
Dugdale model, and when Wnuk’s final stretch criterion of fracture initiation is employed, one can then apply
such novel “structured cohesive” model for analysis of continuing crack growth as a viable alternative to the
continuum approaches (which with very few exceptions are not available), compare Wnuk and Mura [1983]. In
this context the exact coincidence of the governing equations derived by Wnuk [1972] and that of Rice et al.
[1980] is rather encouraging. In more recent time Le et al. [2009] have connected the phenomenon of subcritical
crack growth in inelastic solids to the scale effects in lifetime and structural strength statistics. These authors
show that there would be no scale effect, observed experimentally, if the process of slow stable crack growth was
not accounted for.

Real fracture surfaces are rough and the traditional modeling of cracks as smooth surfaces is at best an
approximation. It is a known experimental fact that cracks in solids have rough surfaces and this “roughness”
evolves while a crack propagates (mirror-mist-hackle transition phenomenon). Irregular curves (surfaces) appear
in many natural phenomena and it turns out that in many cases these irregular (rough) objects have some
hidden degree of order. A fractal is a very special irregular set that has specific properties under scaling
transformations. Curiosity of some researchers and the quest for finding better fracture models motivated
several studies on modelling rough fracture surfaces with fractals. The experimental works started in the eighties
[Mandelbrot, et al., 1984] and today there is an overwhelming amount of experimental evidence that cracks in
real materials are fractals in a wide range of scales. Among the theoretical contributions we can mention
Mosolov [1991],Gol’dshtěin and Mosolov [1991], Gol’dshtěin and Mosolov [1992], Balankin [1997], Borodich
[1997], Cherepanov, et al. [1995], Xie [1989], Carpinteri [1994], Carpinteri and Chiaia [1996], Yavari [2002],
Yavari, et al. [2000, 2002a,b], Yavari and Khezrzadeh [2010], Wnuk and Yavari [2003, 2005, 2008, 2009]. The



2 Stress and displacement fields of smooth cracks 3

main results of these and related studies were the influence of fractality on the stress singularity at the crack tip,
appearance of new modes of fracture, possibility of crack propagation in uniform compression, crack roughening,
and the increase of the cohesive zone size. The results of the mathematical evaluations presented here are
subject to certain limitations. First, the range of the roughness parameter α is to be restricted to the interval
(0.40, 0.50), which means that the crack surfaces are of small or moderate ruggedness. Such limitation is dictated
by the confines of the “embedded crack model” of Wnuk and Yavari [2003] and the limit α ≈ 0.40 is justified
independently by the phenomenon of crack branching described by Yavari and Khezrzadeh [2010]. While there
are no restrictions imposed on the material ductility ρ defined in (5.6), satisfaction of Barenblatt’s condition of
small cohesive zone vs. crack length (R≪ a) is assumed throughout this paper.

The primary objective of crack stress field analysis is to obtain a characterization of the stress and strain
fields in the close vicinity of a crack-tip within which the progressive separation events occur. Characterization
in terms of stress intensity factor K, assuming linear-elastic behavior, only requires knowledge of stresses and
strains close to the crack-tip. However, studies of cracks often involve displacement calculations at some distance
from the crack-tip. Therefore, solutions of crack problems that permit stress and displacement calculations in
a finite domain around the crack tip is of interest. One effective way to solve the plane elasticity problems is
to use complex variables. Muskhelishvili [1933] noted certain analysis advantages in using complex variables in
solving plane elasticity problems. He showed that the solution of plane elasticity problem, ∇4Φ = 0, where Φ
is the Airy’s stress function, is the real or the imaginary part of

F = z∗ϕ(z) + χ(z), (1.1)

where z = x+ iy, z∗ = x− iy, and ϕ(z) and χ(z) are two arbitrary holomorphic functions. Westergaard [1939]
for some special types of crack problems proposed a simpler one-function approach. Westergaard discussed
several Mode I crack problems that can be solved using the following form of solutions:

Φ = Re ¯̄Z + y Im Z̄, (1.2)

where Z̄ = d ¯̄Z
dz , Z = dZ̄

dz , and Z is the Westergaard stress function, which is holomorphic.
In this paper we will find general solutions for fractal cracks in Mode I. To do so, first we will obtain the

close tip solutions for fractal cracks. Then we find the stress functions for a semi-infinite fractal crack and
a fractal crack of finite nominal length 2a, which are both under point loads. After obtaining these general
stress functions we will use them to obtain stress functions for some special cases, and then the corresponding
stress intensity factors and crack opening displacements (CODs). The aim of this paper is to study the effect
of ductility and roughness on fracture instability. We extend Wnuk’s work to self-affine fractal cracks and will
show that roughness has a profound effect on fracture instability.

This paper is organized as follows. In §2 we review general formulae required for the stress and displacement
fields analysis by the use of Westergaard stress functions. Then the Westergaard stress functions and smooth
crack field analysis results for the cases of semi-infinite and finite cracks of length 2a are briefly reviewed. In
§3 we propose Westergaard stress functions for three fractal crack cases: near-tip fields case, semi-infinite case,
and finite crack case. Using these Westergaard stress functions we determine the stress and displacement fields
by using the method of embedded crack [Wnuk and Yavari, 2003]. The stress fields are then used to determine
the fractal stress intensity factors. In §4 stability of crack propagation and different efforts in analyzing it are
discussed. §5 is devoted to extending the final stretch criterion of Wnuk [1972, 1974] for fractal cracks. Using
this criterion we carry out a stability analysis for fractal cracks. We discuss the terminal instability state in §6.
Conclusions are given in §7. Some of the required detailed formulae and expressions for the stability analysis
are given in Appendix A.

2 Stress and displacement fields of smooth cracks

If the elasticity problem can be arranged so that the crack of interest lies on a straight segment of the x-axis
(y = 0) according to Westergaard [1939] the stresses and displacements can be obtained from the stress function
Z(z) as:

σxx = ReZ − y ImZ ′, σyy = ReZ + y ImZ ′, σxy = −yReZ ′, (2.1)
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and
4Gu = (k − 1)Re Z̄ + 2y ImZ, 4Gv = (k + 1) Im Z̄ − 2yReZ, (2.2)

where Z = dZ̄
dz , Z

′ = dZ
dz and k = 3 − 4ν for plane strain and k = 3−ν

1+ν for plane stress. The term k+1
4G , which

appears in the crack opening displacement (COD) calculations can be simplified to 2/E′, where E′ = E/(1−ν2)
for plane strain and E′ = E for plane stress. In the following the results for smooth cracks are reviewed and
then fractal cracks are studied (Fig. 2.1). In each case we start with point loads as we are interested in having
the Green’s functions.
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Figure 2.1: (a) A semi-infinite self-affine fractal crack loaded by a pair of point loads, (b) a self-affine fractal crack of finite nominal
length 2a loaded by two pairs of point loads. Note that in the limit H = 1 these become their corresponding classical smooth cracks.

2.1 A semi-infinite smooth crack

We start with the problem of a semi-infinite smooth crack loaded by a pair of point loads. This problem was
solved by Irwin [1957], and later on Tada, et al. [1985] added more details to this solution and derived exact
relations for the COD and displacements along (0, y). The stress function for the case of loading a semi-infinite
crack by a pair of point loads of magnitude P at the point x = −s (Fig. 2.1a and H = 1) as given by Irwin
[1957] reads

Z(z) =
P

π(z + s)

√
s

z
. (2.3)

The crack opening displacement resulting from this stress function has the following form:

v =
2
E′

P

π
ln

∣∣∣∣∣
√
|x| +

√
s√

|x| −
√
s

∣∣∣∣∣ x < 0. (2.4)

The stress function (2.3) is used as a Green’s function for determining stress functions for different loading
conditions on a semi-infinite smooth crack. For example, for the case of a semi-infinite smooth crack loaded by
a uniform pressure p along the segment −b < x < 0 the stress function is simply obtained by integrating (2.3)
multiplied by p with respect to x over the interval [−b, 0]. This yields the following stress function

Z(z) =
2p
π

{√
b

z
− tan−1

√
b

z

}
. (2.5)

The resulting crack opening displacement calculated from the stress function (2.5) reads

v =
2
E′

2pb
π

{√
|x|
b

+
(
1 +

x

b

) 1
2

ln

∣∣∣∣∣
√
|x| +

√
b√

|x| −
√
b

∣∣∣∣∣
}

x < 0. (2.6)
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The case of small scale yielding can be easily obtained from the above results. If we denote the length of the
yield zone ahead of the crack by R, and the restraining stress acting within this zone by σY , for small scale
yielding case (R≪ a) the stress function (2.5) reads

Z(z) =
2σY
π

tan−1

√
R

z
. (2.7)

The crack opening displacement at the beginning (mouth) of the yield zone is of interest in fracture mechanics
and is called crack tip opening displacement (CTOD). The resulting CTOD, δ for small scale yielding is δ = 8σY R

πE′

[Barenblatt, 1962; Irwin et al., 1969]. The size of the yield zone is obtained from the finiteness condition, which

yields the equilibrium length R = π
8

[
Kapplied

I

σY

]2
.

2.2 A finite smooth crack of length 2a

The stress function for the case of loading a crack of finite length 2a by two pairs of point loads of magnitude P
at the points x = ±s (Fig. 2.1b and smooth crack for which H = 1) has the following form [Irwin, 1957, 1958;
Erdogan, 1962; Sih, 1962, 1964; Paris and Sih, 1965]:

Z(z) =
2P
π

√
a2 − s2

(z2 − s2)
√

1 − (a/z)2
. (2.8)

The resulting COD from the above stress function reads

v =
2
E′

P

π
ln

∣∣∣∣∣
√
a2 − x2 +

√
a2 − s2√

a2 − x2 −
√
a2 − s2

∣∣∣∣∣ |x| < 0. (2.9)

The problem of a crack of length 2a in an infinite plate under tensile far field stresses can be solved by
superposition of two distinct problems: (i) an infinite plate without a crack under tensile stress σ applied on
its boundaries, and (ii) an infinite plate with free boundaries and a finite crack of length 2a, which is loaded by
uniform pressure σ on its faces. Superposing these two problems one reaches the following Westergaard stress
function

Z(z) =
σz√
z2 − a2

. (2.10)

For more details see Burdekin and Stone [1966] and Anderson [2004].

A cohesive crack. Let us consider a cohesive crack for which the lengths of the extended and physical cracks
are 2c and 2a, respectively. Stress function for constant tensile stress σY applied along the cohesive zone is
obtained again by integrating the Green’s function (2.8) over a < |s| < c, which for arbitrary R/c ratios yields

Z(z) = −2σY
π

[
z√

(z2 − c2)
cos−1

(a
c

)
− tan−1

(
z

a

√
c2 − a2

z2 − c2

)]
. (2.11)

By superimposing the stress functions (2.10) and (2.11), the strip yield solution for the finite smooth crack is
obtained. To do so we need to have the size of the cohesive zone ahead of the crack. As stated earlier, the size
of the cohesive zone is chosen so that the stresses at the tips of the extended crack (of length 2a) are finite,
which corresponds to satisfying the finiteness condition: Kapplied

I +Kcohesive
I = 0. The ratio of the size of the

physical crack to the size of the extended crack (a/c) is obtained as:

h =
a

c
= cos

(
πσ

2σY

)
. (2.12)
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Now by substituting the ratio a/c in (2.10) and (2.11) and after some algebraic manipulations one reaches the
following expression for the crack opening displacement:

v =
4σY
πE′

[
a coth−1

(
1
c

√
c2 − z2

1 − h2

)
− z coth−1

(
h

z

√
c2 − z2

1 − h2

)]
, |z| ≤ c. (2.13)

By substituting z = a in the above equation the CTOD, δ is obtained as

δ =
8aσY
πE′ ln

(
1
h

)
. (2.14)

When the Barenblatt’s condition (c − a)/c ≪ 1 is satisfied, the expressions for the size of cohesive zone and δ
reduce to

c− a

a
=

1
2

(
πσ

2σY

)2

, δ =
8(c− a)σY

πE′ . (2.15)

We will denote the size of the cohesive zone (i.e. c− a) by R throughout the paper.

3 Stress and displacement fields for fractal cracks

In the following we obtain approximate stress and displacement fields for fractal cracks by embedding an auxiliary
smooth crack in the stress field of a fractal crack according to the method of embedded crack [Wnuk and Yavari,
2003]. We will then obtain the appropriate stress functions for this auxiliary smooth crack.

3.1 Near tip solutions for a fractal crack

From many investigations on fractal cracks it has been found that the order of singularity of stress around a
fractal crack tip is different from that of a smooth crack [Mosolov, 1991; Gol’dshtěin and Mosolov, 1991, 1992;
Balankin, 1997; Yavari, et al., 2000; Yavari, 2002; Yavari and Khezrzadeh, 2010]. The order of stress singularity
for fractal cracks depends on the degree of roughness, which is quantified by the roughness (Hurst) exponent H
for self-affine fractal cracks. The order of stress singularity α resulted from asymptotic analysis for a self-affine
fractal crack reads α = 2H−1

2H ( 1
2 < H ≤ 1). Throughout the paper we refer to α as “roughness index” or

“fractality index”.
Asymptotic analysis gives important information about the dominant terms in the close vicinity of the crack

tip, however it can not give the complete field solutions. As stated earlier, a complete field analysis requires
an appropriate choice of stress functions. A stress function must satisfy some conditions and once it is found
one can argue that it gives the unique solution of the problem because of the uniqueness of linear elasticity
solutions. The stress function must satisfy the following conditions: (i) Stress function must be singular of
order α at the crack tip. (ii) The stress function must result in stress components with the correct physical
dimensions. Because the order of stress singularity is different for fractal cracks special care must be taken into
account in choosing a stress function. (iii) Any problem can be easily broken up into superposition of an infinite
body with a crack that is loaded on its faces and has free boundaries and an infinite body without a crack that
is loaded on its boundaries (far-field loading). What we are interested in is the first problem. To satisfy the
conditions of free boundaries at infinity for this problem it is required to have zero stresses for z → ∞. (iv) On
the crack faces traction vector must vanish. Because the stresses on the crack faces (y = ±0 and x < 0) depend
only on the real part of Z(z) (see (2.1)), the stress function must have a vanishing real part on the crack faces.
(v) Because of symmetry, vertical displacements must be symmetric with respect to the x-axis. Therefore, for
x > 0 on the x-axis the vertical displacement resulted from the stress function must be zero. By referring to
(2.2) we find that this condition is satisfied if Im Z̄ = 0. (vi) For H = 1 the stress function should be reduced
to that of the corresponding smooth crack, which is [Williams, 1957; Irwin, 1958]: Z(z) = KI√

2πz
. The stress

function must also be a smooth function of roughness exponent H.
Considering the above conditions we propose the following stress function for the dominant term of the stress
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function around the tip of a fractal crack:

Z(z;α) =
1

ei(
1
2−α)θ

Kf
I

(2πz)α
. (3.1)

In polar coordinates this reads Z(r, θ;α) = Kf
I

(2πr)αeiθ/2 . It can be easily checked that this stress function satisfies
all the above conditions. It should be noted that what we have suggested here is very similar to the close
tip stress function proposed earlier in [Wnuk and Yavari, 2003]. In fact the only difference between the two
expressions is the pre-factor 1/ei(

1
2−α)θ. The expression proposed by Wnuk and Yavari [2003] is real-valued on

the line (x > 0 and y = 0) and is identical to our stress function, but elsewhere it does not satisfy some of the
required conditions of a stress function. For example, it gives both real and imaginary parts on the crack line
(x < 0 and y = 0), which is not correct. In this new stress function the issues of the previous stress function
of Wnuk and Yavari [2003] have been resolved by introducing a pre-factor. We will compare the two resulting
stress intensity factors at the end of this section.

To find the stress field we need the derivative of the stress function (3.1), which reads

Z ′(r, θ;α) =
−α
r

Kf
I

(2πr)αei3θ/2
. (3.2)

The terms that are needed to determine the stress field can be easily extracted from the above stress functions.
These are:

ReZ =
Kf
I

(2πr)α
cos

θ

2
, ReZ ′ =

−α
r

Kf
I

(2πr)α
cos

3θ
2
, ImZ ′ =

α

r

Kf
I

(2πr)α
sin

3θ
2
. (3.3)

Using (2.1), we obtain the following expressions for the stress distribution in the close vicinity of the crack tip

σxx =
Kf
I

(2πr)α

[
cos

θ

2
− α sin θ sin

3θ
2

]
, σyy =

Kf
I

(2πr)α

[
cos

θ

2
+ α sin θ sin

3θ
2

]
, σxy =

Kf
I

(2πr)α
α sin θ cos

3θ
2
.

(3.4)
The stress components in polar coordinates read:

σrr =
Kf
I

(2πr)α
(1 + α− α cos θ) cos

θ

2
, σθθ =

Kf
I

(2πr)α
(1 − α+ α cos θ) cos

θ

2
, σrθ =

Kf
I

(2πr)α
2α cos2

θ

2
sin

θ

2
. (3.5)

In the sequel we will find the near tip crack opening displacement. We first need to find the antiderivative
of (3.1).1 To do so we rearrange the stress function (3.1) as follows:

Z(r, θ;α) =
Kf
I e
iθ/2

(2πr)α
e−iθ. (3.6)

Thus, Z̄(r, θ;α) reads

Z̄(r, θ;α) =
r1−αKf

I e
iθ/2

(1 − α)(2π)α
. (3.7)

By extracting the real and imaginary parts of the above equation on the crack face (θ = π, y = 0) we obtain
the following expression for the COD:

v =
2Kf

I

E′(2π)α
r1−α

1 − α
. (3.8)

As it can be seen the above COD reduces to its classical counterpart for a smooth crack (α = 1
2 ). As expected

a weaker stress singularity results in smaller (normalized) close tip displacements (see Fig. 3.1).

1Note that stress functions are analytic and single valued in the domain of interest (−π < θ < π). The crack line is a branch cut
in the complex plane. This means that all the integrals in the domain of analyticity of the stress functions are path independent.
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Figure 3.1: Normalized crack opening displacement near the tip of a fractal crack for different values of roughness exponent H.

3.2 A semi-infinite fractal crack

In this section we estimate the stress field around a semi-infinite fractal crack under a pair of point loads. To
do so we again use the method of embedded crack. We obtain the stress functions for various types of loadings
using this (Green’s function) solution. The following conditions must be satisfied by the stress function: (i)
Stress function must be singular of order α at the crack tip and singular of order 1 at the loading point. (ii)
Stress function must result in stress components with the correct physical dimensions. (iii) On the crack faces
traction vector must vanish.2 Because only the real part of Z(z) contributes to stresses on the crack faces
(y = ±0 and x < 0) (see (2.1)), the stress function must have a vanishing real part on the crack faces. (iv)
Because of symmetry, vertical displacements must be symmetric with respect to the x-axis. Therefore, for x > 0
on the x-axis the vertical displacement resulted from the stress function must be zero. Referring to (2.2) we
find that this condition is satisfied if Im Z̄ = 0. (v) For H = 1 the stress function must be reduced to that of a
smooth crack, i.e. [Irwin, 1957; Tada, et al., 1985]: Z(z) = P

π(z+s)

√
s
z .

Considering the above conditions we propose the following stress function for a semi-infinite fractal crack
loaded by a pair of concentrated loads of magnitude P at a distance s from the crack tip:

Z(z;α) =
1

ei(
1
2−α)θ

P

π(z + s)
sα

zα
. (3.9)

Its anti-derivative Z̄ reads

Z̄(z;α) =
P

π(1 − α)
1

ei(
1
2−α)θ

(z
s

)1−α
f
(
1 − α, 1, 2 − α;−z

s

)
=

P

πei(
1
2−α)θ

(
z

s

)1−α ∫ 1

0

(1 − t)−α
(
1 +

z

s
t
)α−1

dt, (3.10)

where

f(ϕ, χ, ψ;x) =
Γ(ψ)

Γ(χ)Γ(ψ − χ)

∫ 1

0

tχ−1(1 − t)ψ−χ−1(1 − tx)−ϕdt, ψ > χ > 0. (3.11)

The real and imaginary parts of the above function can not be easily obtained; we use Mathematicar. The
Green’s function (3.9) can be used to determine stress functions in other loading conditions. For uniform

2Note that in the close vicinity of the crack faces and at the point where the load is applied σyy is singular.
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pressure σ along the segment −b < x < 0 the stress function reads

Ẑ(z;α) =
σ

π

1

ei(
1
2−α)θ

1
(1 + α)

(
b

z

)1+α

f

(
1 + α, 1, 2 + α;− b

z

)
=

σ

π

1

ei(
1
2−α)θ

(
b

z

)1−α ∫ 1

0

(1 − t)α
(

1 +
b

z
t

)−(1+α)

dt. (3.12)

The resulting normalized CODs are plotted in Fig. 3.2 for different values of roughness exponent H.
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Figure 3.2: Crack opening displacement in a semi-infinite fractal crack under uniform pressure along the segment −1 < x/b < 0
for different values of roughness exponent H.

Stress functions can be used to obtain the stress intensity factors. The fractal stress intensity factor is
defined as [Wnuk and Yavari, 2003]

Kf
I = lim

ξ→0
(2πξ)α ReZ. (3.13)

The stress intensity factor for the case of point loads of magnitude P applied at the point x = −s of the
semi-infinite fractal crack are obtained from the stress function (3.9) as follows:

Kf
I = lim

ξ→0
(2πξ)α ReZ = lim

ξ→0
(2πξ)α

P

π(ξ + s)

(
s

ξ

)α
=

2αP
(πs)1−α

. (3.14)

This serves as a Green’s function for other loading conditions, i.e. stress intensity factor from a general loading
p(x) can be simply obtained by integrating the above Green’s function multiplied by p(x), which gives

Kf
I =

∫ 0

−∞

2αp(x)
(π|x|)1−α

dx. (3.15)

As an example, for the case of constant pressure loading σ∞ along the segment −b < x < 0 we obtain the
following stress intensity factor:

Kf
I =

∫ 0

−b

2ασ∞dx

(π|x|)1−α
=

2ασ∞bα

απ1−α . (3.16)

3.3 A fractal crack of finite nominal length 2a

In this section we estimate the stress field around the tip of a fractal crack of finite nominal length. The
following conditions must be satisfied by the stress function: (i) Stress function is expected to be singular of



3.3 A fractal crack of finite nominal length 2a 10

order α at the crack tips and singular of order 1 at the loading points (x = ±s). (ii) The stress function should
result in stress components with the correct physical dimensions. (iii) On the crack faces traction vector should
vanish. Because only the real part of Z(z) contributes to stresses on the crack faces (y = ±0 and −a < x < a),
the stress function must have a vanishing real part on the crack faces (see (2.1)). (iv) Because of symmetry,
vertical displacements must be symmetric with respect to the x-axis. Therefore, for (x > a and x < −a) on the
x-axis the vertical displacement resulting from the stress function must be zero. By referring to (2.2) we find
that this condition is satisfied when Im Z̄ = 0. (v) For H = 1 the stress function should reduce to that of the
corresponding smooth crack, which is [Irwin, 1957, 1958; Erdogan, 1962; Sih, 1962, 1964; Paris and Sih, 1965]:
Z(z) = 2P

π

√
a2−s2

(z2−s2)
√

1−(a/z)2
. It is expected to be a continuous function of α or H.

Considering the above conditions we propose the following stress function for the case of symmetric loading
by two pairs of concentrated forces P at the points ±s:

Z(z;α) =
P

π

1

ei(
1
2−α)2|π/2−θ|

(a− s)α(a+ s)α

(z − a)α(z + a)α
2z

z2 − s2
. (3.17)

It is easy to check that this stress function satisfies all the above conditions. Westergaard stress functions for
different loading conditions on the finite fractal crack can be obtained by using the Green’s function (3.17). If
we denote the loading on the crack faces by p(x), the corresponding Westergaard stress function is obtained as:

Z(z;α) =
1

ei(
1
2−α)2|π/2−θ|

∫ a

−a

p(x)
π(z − x)

(a− x)α(a+ x)α

(z − a)α(z + a)α
dx. (3.18)

For the case of constant pressure σ∞ along the segment (a < |x| < c) the result of integration is:

Ẑ(z;α) =
σ∞

ei(
1
2−α)2|π/2−θ|

1
2(z2 − c2)α

{
1
α

[(
−1

(a− z)2

)−α

g

(
−2α,−α,−α, 1 − 2α,

z + c

z − a
,
z − c

z − a

)

−
(

−1
(a+ z)2

)−α

g

(
−2α,−α,−α, 1 − 2α,

z − c

z + a
,
z + c

z + a

)]

+2(−1)αΓ(−2α)Γ(1 + α)
[(

1
c− z

)−2α

f

(
−2α,−α, 1 − α, 1 +

2c
z − c

)
−
(

1
c+ z

)−2α

f

(
−2α,−α, 1 − α, 1 − 2c

z + c

)]}
, (3.19)

where f(ϕ, χ, ψ;x) was defined in (3.11) and g(ϕ, χ1, χ2, ψ;x, y) is the Appell hypergeometric function of two
variables [Weisstein, 2003; Slater, 2008].

By definition the stress intensity factor for a fractal crack is related to the stress function [Wnuk and Yavari,
2003]:

Kf
I = lim

ξ→a
[2π(ξ − a)]α ReZ. (3.20)

Hence, the fractal stress intensity factor is obtained from (3.18) as follows:

Kf
I = lim

ξ→a
[2π(ξ − a)]α

∫ a

−a

p(x)
π(ξ − x)

(a− x)α(a+ x)α

(ξ − a)α(ξ + a)α
dx =

∫ a

−a

p(x)
π1−αaα

(a+ x)α

(a− x)1−α
dx. (3.21)

Assuming an even distribution of pressure on the crack faces will result in the following fractal stress intensity
factor:

Kf
I =

∫ 0

a

p(−x′)
π1−αaα

(a− x′)α

(a+ x′)1−α
(−dx′) +

∫ a

0

p(x)
π1−αaα

(a+ x)α

(a− x)1−α
dx =

( a
π

)1−α ∫ a

0

2p(x)
(a2 − x2)1−α

dx. (3.22)

It should be noted that the above relation is just an approximation for the fractal stress intensity factor and
increasing roughness its accuracy decreases. There is another approximation for the fractal stress intensity factor
that was proposed earlier by Wnuk and Yavari [2003]. To compare our results with the fractal stress intensity
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factor of Wnuk and Yavari [2003], we first simplify (3.22) for the case of uniform pressure. The resulting stress
intensity factor for a fractal crack reads

Kf
I =

( a
π

)1−α ∫ a

0

2σ∞

(a2 − x2)1−α
dx =

aαπα−
1
2 Γ(α)σ∞

Γ(α+ 1
2 )

. (3.23)

This can be rewritten as
Kf
I = ξ(α)σ∞

√
πa2α, (3.24)

where

ξ(α) =
πα−1Γ(α)
Γ(α+ 1

2 )
. (3.25)

The normalized results (with respect to σ∞aα) from the above relation and that of Wnuk and Yavari [2003]
are plotted in Fig. 3.3. This new fractal stress intensity factor goes to infinity for H = 0.5 but it should be
noted that since there exists a limiting roughness for a fractal crack3, reaching such a highly irregular form is
physically impossible. We should also note that the method of embedded crack is a good approximation only
for moderately rough cracks. For moderately rough cracks within a considerable range of the fractality index α
(0.25 < α < 0.5) the graphs in Fig. 3.3 show excellent agreement.
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∞

K
f
I
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∞

Figure 3.3: Comparison of fractal stress intensity factors from Eqs.(3.29) and (3.24).

The reason for the difference between the two stress intensity factors. Let us now explain why our
fractal stress intensity factor is different from that given by Wnuk and Yavari [2003]. Wnuk and Yavari [2003]
introduced a Westergaard stress function, which for |x| > a and y = 0 is identical to our stress function (3.17).
Then they used an approximation to determine the stress intensity factor, namely they defined the following
function:

K̂f
I =

1
(πa)α

∫ a

−a
p(x)

[
a+ x

a− x

]α
dx. (3.26)

In this paper, we have directly calculated the stresses from a Westergaard stress function of a fractal crack
with no approximations and arrived at the expression (3.24). Let us briefly recall the steps taken by Wnuk
and Yavari [2003] in the evaluation of FSIF. Assuming an even distribution of traction p(x), i.e. p(−x) = p(x),

3There are many researchers who argue that there exists a universal roughness for fracture surfaces. Their studies on the
fracture surfaces of different materials indicate that for both quasi-static and dynamic fracture a universal roughness exponent (H)
of approximate value 0.8 is observed for values of ξ (scale of observation) greater than a material-dependent scale, ξc[Bouchaud,
et al., 1990; Bouchaud, 1997, 2003; Måløy, et al., 1992; Daguier, et al., 1996, 1997; Ponson, et al., 2006]. Recently, Yavari and
Khezrzadeh [2010] using a branching argument showed that there is a limiting roughness and estimated it.
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evaluation of the integral (3.26) results in

K̂f
I =

1
(πa)α

∫ a

0

p(x)
(a− x)2α + (a+ x)2α

(a2 − x2)α
dx. (3.27)

However, the dimension of K̂f
I is not consistent with dimension of FSIF defined by (3.20). To resolve this

inconsistency they defined a pre-factor C(α, a), which was obtained from a dimensional analysis and it reads

C(α, a) =
(

a√
π

)2α−1

. (3.28)

Finally, multiplying (3.27) by (3.28) gives the following relation for the FSIF as presented in [Wnuk and Yavari,
2003]:

K̃f
I =

aα−1

π2α−1/2

∫ a

0

p(x)
(a− x)2α + (a+ x)2α

(a2 − x2)α
dx. (3.29)

The normalized FSIF resulting from this expression is compared with the one defined by (3.24) in Fig. 3.3.
In summary, the cause of the difference between the two expressions for the fractal stress intensity factors is
that in [Wnuk and Yavari, 2003] an approximate expression was used for calculating the stress intensity factor
(3.26), while in the present work we have calculated stresses directly from the Westergaard stress function.
Interestingly, as mentioned earlier the two expressions of FSIF show excellent agreement within the physically
acceptable range of roughness exponent.

4 Stability considerations for quasi-static cracks

In LEFM and the related generalizations of it there is only one point of instability defining the transition from a
stationary to a catastrophically propagating crack. The criteria used to determine this instability point for brittle
and quasi-brittle solids are well known and can be described as follows: (i) Griffith’s energy criterion, resulting
in the relation between a critical stress and the length of the pre-existing crack a of the form σcritical ∝ 1√

a
.

(ii) Irwin’s criterion, according to which the stress intensity factor K at the onset of crack propagation is set
equal to the fracture toughness: K(σ, a, geometry) = Kc , or equivalently the crack driving force G is set equal
to its critical value: G(σ, a, geometry) = Gc. (iii) For nonlinearly elastic or ductile solids that obey Hencky-
Ilyushin (deformation) theory of plasticity the Irwin energy release rate G should be replaced by Eshelby-Rice’s
J-integral: J(σ, a, geometry) = Jc. (iv) For ductile materials Wells [1963] suggested a criterion based on the
crack tip opening (COD or δ) criterion, namely δ(σ, a, geometry) = δc . This concept, if interpreted in the
framework of the cohesive crack model, may be shown to be equivalent to Eshelby-Rice’s criterion for onset of
fracture propagation.

It can be readily shown that for the brittle limit of material behavior all the above four criteria reduce to
the Griffith’s equation. In the late sixties a new concept of a “stable quasi-static” crack was introduced by
McClintock [1958] and extensively studied by various researchers. According to these studies the critical point
(onset of catastrophic crack propagation) is preceded by propagation of a quasi-static crack that slowly increases
in length but remains in equilibrium with the applied external load. Therefore, at any instant during this pre-
fracture phase of deformation process, the applied driving force, measured by Kapplied, Gapplied, or Japplied,
equal their respective material counterparts Kmaterial, Gmaterial, or Jmaterial. These material characteristics are
no longer just single numbers but are certain functions of the crack length a. These functions represent material
resistance to crack extension (or “tearing” process) and are usually denoted by the index R. Thus, during the
quasi-static crack growth process the following equalities are satisfied.

K(σ, a, geometry) = KR(a), G(σ, a, geometry) = GR(a), J(σ, a, geometry) = JR(a). (4.1)

The expressions on the right hand sides of these equations describe the so-called material resistance curves,
or “material signature” curves. Since both G and J can be expressed by the first derivatives of the potential
energy of a cracked body and the external loadings, it is noted that one may utilize this fact to determine the
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transition from stable to unstable crack growth by enforcing equalities between the second derivatives, namely

−∂
2Π
∂ℓ2

=
∂G

∂ℓ

∣∣∣
constant stress (or fixed grips)

=
dGR(ℓ)
dℓ

,

(4.2)

−∂
2Π
∂ℓ2

=
∂J

∂ℓ

∣∣∣
constant stress (or fixed grips)

=
dJR(ℓ)
dℓ

.

Here for a finite crack of length ℓ = 2a. The boundary conditions imposed on the surfaces of the solid body
are either “constant stress” or “fixed grips”. Conditions (4.1) are satisfied throughout the stable crack growth
phase. When both (4.1) and (4.2) are satisfied simultaneously the process of stable crack growth ends and the
catastrophic propagation of fracture begins. The critical states so determined are characterized by the final
effective fracture toughness attained during the slow crack growth process and by the final crack length. In
this way the critical stress level can be determined. For ductile solids (or for very rough cracks) this σcritical

substantially exceeds the stress at the onset of crack propagation σinitial. It will be shown that the σcritical vs.
a curve, as defined in the classical studies of quasi-brittle fracture, undergoes a separation as it splits into two
distinct curves. Therefore, instead of one curve (such as the final result of the Griffith’s theory) one obtains
two curves; one serves as a lower bound of the critical stress (onset of stable growth) and the other one as an
upper bound (onset of catastrophic fracture). Such a phenomenon is illustrated in Fig. 5.5 in the next section.
Study of the effects of material ductility and roughness of the crack surfaces on the slow crack growth and the
attainment of the terminal instability is the primary objective of the present work.

To mathematically describe pre-fracture processes that involve quasi-static cracks we apply Wnuk’s criterion
of “delta COD” derived from the concept of “structured cohesive zone” associated with a moving crack [Wnuk,
1972, 1974]. Quasi-static crack extension process in ductile solids is somewhat analogous to the time-dependent
fracture in visco-elastic solids [Wnuk, 1974]. For the purpose of stability considerations we view the propagating
crack as a sequence of local instability states, while the terminal instability is considered as a global instability
tantamount to the onset of the catastrophic fracture. It is noted that for brittle solids the phenomenon of stable
crack extension disappears altogether; this can be determined by the initial slope of the R-curve. Positive slope
means that the slow growth is possible, while negative slope signifies absence of the slow crack growth process.
This is the case of perfectly brittle fracture described by Griffith [1921]. In order to determine the transition
from stable to unstable crack extension, the JR(a) material resistance curve will be represented4 by the length
of the cohesive zone R shown as a function of the current crack length, R(a). This curve will be described by a
non-linear differential equation, which in the limiting case of a smooth crack reduces to the Wnuk-Rice-Sorensen
differential equation [Wnuk, 1972; Rice and Sorensen, 1978; Rice et al., 1980].

5 Transition from stable to unstable propagation of a quasi-static
fractal crack

Stability problems for a quasi-static smooth crack have been studied in the past by Wnuk and Knauss [1970],
Wnuk [1972, 1974], Rice [1968]; Rice and Sorensen [1978]; Rice et al. [1980], and Budiansky [1988]. Wnuk and
Budiansky used the “final stretch” (or so-called “delta COD”) criterion governing the propagation of a quasi-
static crack, proposed by Wnuk [1972], which is identical to the differential equation describing the material
R-curve derived independently by Rice and Sorensen [1978] six years later in 1978 and by Rice et al. [1980].
Their derivation was based on the analysis of the Prandtl slip line field in a rigid-plastic solid body weakened
by a slowly propagating crack.

4When working with the cohesive crack model – and only within the small-scale-yielding restrictions (when the Barenbaltt
condition is satisfied, R ≪ a) it turns out that there exists a direct proportionality between the CODcohesive − J-integral and the
length of the cohesive zone R. If the Barenblatt condition is not satisfied, this is no longer so simple. Instead one can provide
certain nonlinear equations, which connect all the three entities J , R and δ. In this context, instead of J-integral one may focus on

R, because they differ only by a multiplicative constant, i.e. J = 8S2

πE′ R.
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5.1 Final stretch criterion

Wnuk’s criterion is linked to a structured cohesive crack model equipped with a process zone of finite size ∆.
According to this criterion it is not the COD, but an increment of the COD measured at the outer edge of the
process zone associated with the propagating crack (labeled with name “State 1” in Fig. 5.1). It is postulated
that this increment, denoted by û, remains constant throughout the stable phase of the continuing subcritical
growth of the crack, see Fig. 5.1 for details. As the cohesive crack model relates the energy release rate,
measured by the J-integral, to the COD measured at the physical tip of the cohesive (extended) crack, say δt
(alternatively to the length of the cohesive zone R) we can write:

J = Sδt =
8S2R

πE′ , (5.1)

where E′ is the Young modulus adjusted for either plane stress or plane strain, while S denotes the constant
cohesive stress or the yield point depending on the range of the considered material ductility.
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R
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Figure 5.1: Distribution of the COD within the cohesive zone corresponding to two subsequent states in the course of quasi-static
crack extension (Wnuk’s criterion of delta COD).

It is possible to express the first and the second derivatives of the potential energy Π associated with a solid
body weakened by a crack and subjected to external loading in terms of the CODcohesive. It turns out that for
a fractal crack the functional relation between the CODcohesive and the distance x1 measured from the physical
tip of the propagating quasi-static crack (see Figs. 5.1 and Fig. A.1) is remarkably similar to the one obtained
for the smooth crack, provided that Barenblatt’s condition of small size of the cohesive zone relative to the
crack length is satisfied. In fact our calculations show that the CODf

cohesive is related to the smooth case by
a pre-factor κ(α) and redefining the size of the cohesive zone ahead of a fractal crack (Rf )(see Appendix A).
The end result of the solution pertaining to the CODf

cohesive of a fractal crack obtained by an application of the
Wnuk-Yavari model reads5

vf (x1, R
f ) = κ(α)

4S
πE′

[√
Rf (Rf − x1) −

x1

2
ln

(√
Rf +

√
Rf − x1√

Rf −
√
Rf − x1

)]
. (5.2)

Here the symbol x1 is used to denote the distance measured from the tip of the physical crack while the fractal
constraint factor κ(α) is defined in (A.12) and the ratio of the length Rf associated with a fractal crack to the

5For the details on the calculation of the CODcohesive see Appendix A, where we have derived the expressions for crack opening
displacement for a fractal crack.
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length R is defined in (A.6). Combining these equations results in

vf (x1, R, α, β) =
4SN(α, β)R

πE′ κ(α)

√1 − x1

N(α, β)R
− x1

2N(α, β)R
ln

1 +
√

1 − x1
N(α,β)R

1 −
√

1 − x1
N(α,β)R

 , (5.3)

or

vf (λ) = vftip

√1 − λ

N(α, β)
− λ

2N(α, β)
ln

1 +
√

1 − λ
N(α,β)

1 −
√

1 − λ
N(α,β)

 , (5.4)

where
vftip = N(α, β)κ(α)vtip, Rf = N(α, β)R, vtip =

4SR
πE′ . (5.5)

Functions N(α, β) and κ(α) are defined in the appendix. Here the modulus E′ = E for plane stress and
E/(1 − ν2) for plane strain, while x1 has been replaced by a non-dimensional coordinate λ = x1/R. The
entity vftip represents half of the CTOD of a fractal crack, for which the degree of fractality is quantified by
the exponent α and the ratio β = σ/σY . For any given set of (α, β) one may construct a plot of the opening
displacement associated with a fractal crack, CODcohesive . The plots of this kind are shown in Fig. 5.2. Note
that each curve begins at a certain point on the vertical axis equal or less than one and ends to zero at the end
of the extended crack (tantamount to the end of the cohesive zone). This means that the plots show the ratios
vf (λ)/vtip. The differences between the curves shown in Fig. 5.2 appear significant, and we proceed to show
that they lead to substantial differences in the stability properties of quasi-static rough cracks, as compared to
a smooth crack. To substantiate this statement we shall now apply the delta COD criterion and determine the
motion of the subcritical crack by establishing the governing equation for the JR–∆a curve.
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Figure 5.2: Distributions of the CODcohesive for smooth and rough cracks (α = 0.5, 0.45, and 0.4) for (a) β = 0.2, (b) β = 0.4.

While brittle materials fracture at almost no irreversible strains, the ductile solids attain large strains prior
to fracture. Ductility as a material property describes the ability of the material to undergo large irreversible
strains before onset of fracture. Following Hult and McClintock [1956] and Rice [1968], who defined “ductility”
in terms of the shear strains at the onset of yield (γY ) and at fracture (γf ) in Mode III fracture, and Wnuk and
Mura [1981], who defined ductility for Mode I fracture in terms of strains ϵY and ϵf , we shall use the following
definition of ductility

ρ =
Rinitial

∆
=
ϵf

ϵY
= 1 +

ϵfpl
ϵY
. (5.6)

Here ϵfpl denotes the plastic component of the strain at fracture. It is noted that when ρ ≫ 1 we deal with
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ductile materials, while for ρ approaching one we have the brittle limit of material behavior. In the limit of
ρ = 1, the entire nonlinear theory presented here reduces to the Griffith case, which exhibits no slow crack
growth phenomenon.

5.2 Motion of a subcritical crack

Let us first recall that potential energy of a cracked linearly elastic solid is written as

Π(σ, ℓ) =
1
2

∫
V

σijεijdV −
∫
ST

TiuidS − SE(ℓ). (5.7)

J-integral is defined as

J = −∂Π
∂ℓ
. (5.8)

Symbol SE(ℓ) in (5.7) denotes the surface energy due to a crack of length ℓ generated within a solid body. For
a Griffith crack ℓ = 2a. Replacing the J-integral by 2vtipS, where vtip stands for the CTOD of the cohesive
crack and S denotes the constant cohesive stress, we focus our attention on the crack tip opening displacement
CODcohesive expressed by (5.4). As it turns out, it is sufficient to use just the two quantities R and ∆ and the
two auxiliary functions κ(α) (A.10) and N(α, β) (A.6). These functions stem from the fractal geometry, which
has been incorporated into the structured cohesive crack model. Here α is a measure of roughness of the crack
surface, and β is the stress ratio β = σ/σY – alternatively – β = σ/S, if the magnitude of cohesive stress S rather
than the yield point σY is chosen to represent the constant restraining stress within the end-zone. The length
characteristics involved in the representation of the opening displacement within the cohesive zone are R and
∆; the first denotes the equilibrium length of the cohesive zone and the latter describes the inner structure of
the end-zone associated with a propagating quasi-static cohesive crack. Once the opening displacements within
the cohesive zone are evaluated, one may proceed to apply the Wnuk’s criterion of the final stretch governing
the phenomenon of the continuing quasi-static crack motion.[

vf2 (t− δt, 0) − vf1 (t,∆)
]
P

= û. (5.9)

Here P denotes the control point shown in Fig. 5.1, while the constant û represents the “final stretch”, also
shown in Fig. 5.1. Using (5.2) and expanding the function R(x1 = 0) into a Taylor series around the point
x1 = ∆ the two functions vf2 and vf1 above are evaluated as follows

vf2 (P ) = v[0, Rf (0)] = κ(α)
4S
πE′R

f (0) = κ(α)
4S
πE′

[
Rf (∆) +

dRf

dℓ
∆
]
, (5.10)

vf1 (P ) = v[∆, Rf (∆)]

= κ(α)
4S
πE′

[√
Rf (∆)[Rf (∆) − ∆] − ∆

2
ln

(√
Rf (∆) +

√
Rf (∆) − ∆√

Rf (∆) −
√
Rf (∆) − ∆

)]
. (5.11)

It is noted that for a moving crack both x1 and Rf are time dependent, see Fig. A.1. Using (5.10) and (5.11)
we subtract vf1 from vf2 and apply the criterion (5.9) to obtain

Rf + ∆
dRf

da
−
√
Rf (Rf − ∆) +

∆
2

ln

(√
Rf +

√
Rf − ∆√

Rf −
√
Rf − ∆

)
= û

πE′

4Sκ(α)
. (5.12)

Hence, a nonlinear ordinary differential equation follows

dRf

da
=

û

∆
πE′

4Sκ(α)
− Rf

∆
+

√
Rf

∆

(
Rf

∆
− 1
)
− 1

2
ln

(√
Rf +

√
Rf − ∆√

Rf −
√
Rf − ∆

)
. (5.13)
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Denoting the group of material constants appearing as the first term on the right hand side of (5.13) by the
“tearing modulus” M , and using (A.6) to relate Rf and R, we obtain

dR

da
=

1
N(α, β)

M − N(α, β)R
∆

+

√
N(α, β)R

∆

(
N(α, β)R

∆
− 1
)
− 1

2
ln


√

N(α,β)R
∆ +

√
N(α,β)R

∆ − 1√
N(α,β)R

∆ −
√

N(α,β)R
∆ − 1

 .
(5.14)

The initial condition needed for integrating the ODE (5.14) is R(a0) = Rinitial , where Rinitial = (8/π)(Kc/S)2.
The first term in the bracket on the right side of (5.14) represents the tearing modulus for the material, in which
a rough quasi-static crack is propagating. The constant M is defined as

M =
û

∆
πE′

4Sκ(α)
. (5.15)

We will show that this material constant strongly depends on material ductility ρ = Rinitial/∆. We note that
for a smooth crack the factor κ(α), and the ratio factor N(α, β) are both equal to one, and (5.14) reverts to
the Wnuk [1972] equation. The nonlinear ODE (5.14) can readily be solved numerically (see Appendix A for
details). We will use the following non-dimensional variables in the solution procedure of the nonlinear ODE:

ρ =
Rinitial

∆
, Y =

R

Rinitial
, X =

a

Rinitial
,

Rf

∆
= ρN(α, β)Y, (5.16)

where

N(α, β) = 4π
1
2α−2

[
αΓ(α)

Γ(1/2 + α)

] 1
α

β1/α−2, β =
σ

S
. (5.17)

Using these non-dimensional variables, one can rewrite (5.14) in the following form

N(α, β)
dY

dX
= M − ρN(α, β)Y +

√
ρN(α, β)Y [ρN(α, β)Y − 1]

− 1
2

ln

(√
ρN(α, β)Y +

√
ρN(α, β)Y − 1√

ρN(α, β)Y −
√
ρN(α, β)Y − 1

)
. (5.18)

When the non-dimensional variables are used, the initial condition reads: Y (X0) = 1. Eq. (5.18) can be
abbreviated as follows6

dY

dX
= F (Y, ρ, α, β(X)), (5.19)

where

F (Y, ρ, α, β(X)) =
1

N(α, β(X))

[
M − ρN(α, β(X))Y +

√
ρN(α, β(X))Y [ρN(α, β(X))Y − 1]

− 1
2

ln

(√
ρN(α, β(X))Y +

√
ρN(α, β(X))Y − 1√

ρN(α, β(X))Y −
√
ρN(α, β(X))Y − 1

)]
. (5.20)

The next step is to find the solution of (5.19). Since it can not be obtained in closed form we use Mathematicar.
Solving this equation we obtain the unknown material resistance function Y = Y (X). Interestingly, there exists
a certain threshold for the tearing modulus M , referred to as Mminimum, below which the phenomenon of stable
crack growth is not possible. Parametric studies show that the influence of α on the minimum tearing modulus
is negligible. Therefore, using α = 0.5 and requiring the slope dY/dX in (5.19) to be positive, we obtain a
relation between Mminimum and the ductility parameter ρ, namely

Mminimum(ρ) = ρ−
√
ρ(ρ− 1) +

1
2

ln
(√

ρ+
√
ρ− 1

√
ρ−

√
ρ− 1

)
. (5.21)

6During the subcritical growth of cracks β is a function of the crack nominal length X. For more details see Appendix A.
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In the calculations that follow we assume that the actual tearing modulus M is ten percent higher than the
minimum value determined by (5.21), i.e.7

M(ρ) = 1.1Mminimum(ρ). (5.22)

Now by having M(ρ) it is possible to solve (5.18). The details of the solution procedure are described in
Appendix A. We have plotted the solution of (5.18) in several different ways. In Fig. 5.3 the non-dimensional
material resistance parameter Y (X) is plotted as a function of crack nominal length for different values of
roughness exponent when ρ = 10 and X0 = 10. It is seen that the slope of the material resistance curve is
higher for rougher cracks, so the material resistance to fracture for rougher cracks is higher. Another important
information that can be extracted from the solution of (5.18) is the dependence of the external load on the
current crack length developed during the phase of stable crack growth. As we have shown in Appendix A,
during the stable crack growth phase, the loading ratio β = σ/S is a function of X. The resulting β(X) curve is
shown in Fig. 5.4. As it can be seen in this figure the required applied loading for rougher cracks is higher than
that of a smooth crack. Finally in Fig. 5.5 we have shown the maximum and minimum values of β attained in
the process of subcritical crack growth. These limits are important in the stability analysis, since for loadings
exceeding βinitial the stable crack growth takes place and when β reaches βmaximum the catastrophic failure
begins. In Fig. 5.5 these parameters are shown as functions of X0 and α. The plots show that for cracks with
higher initial length X0 the sustainable loading is lower, but it always exceeds the catastrophic load predicted
for a smooth crack.
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Figure 5.3: Material resistance curves obtained for X0 = 10, ductility index ρ = 10, and three values of the fractal exponent
α = 0.50, 0.45 and 0.40. It should be noted that for the rougher crack surfaces the slope of the R-curve increases. The R-
curves shown here depend on the material properties (such as ductility) and fractal geometry only, but the location of the terminal
instability point is also influenced by geometrical configuration of a pre-cracked specimen. For the Griffith crack configuration
the transition between stable and unstable crack growth is defined by two coordinates: crack length at fracture Xf , and material
toughness at fracture Yf . With the ductility index ρ = 10 and the initial crack length X0 = 10 the terminal states were found to be:
for α = 0.5, Xf = 11.764 and Yf = 1.287; for α = 0.45, Xf = 12.542 and Yf = 1.620; for α = 0.4, Xf = 12.862 and Yf = 2.045.
These points are shown by little circles inserted in the graphs representing the R-curves.

It is noted that the differential equation (5.18) can be considerably simplified for the limiting case R ≫ ∆,
which corresponds to a more ductile behavior of the material during the fracture process. When the right hand
side of (5.18) is expanded into a Taylor series and the terms of the order O((∆/R)2) are neglected, the following
simplified form of the governing equation is obtained

dRf

da
= M(ρ) − 1

2
− 1

2
ln
(

4Rf

∆

)
. (5.23)

7We simply assume that the tearing modulus is slightly higher than the minimum tearing modulus Mminimum, because without
such an assumption there will be no stable crack growth prior to catastrophic fracture.
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Figure 5.4: During stable crack growth stage the non-dimensional loading ratio β = σ
S

= 2
π

q

2Y (X)
X

is a monotonically increasing

function of either toughness (Y) or the current crack length (X) up to the critical point designated by the maximum on each curve.
Maxima shown on the loading curves correspond to the terminal instability states. For the ductility index ρ = 10 and the initial
crack length of X0 = 10, the applied stress at the onset of crack growth is σinitial = 0.285S. The critical stress σcritical attained at
the end of the slow crack growth process equals 0.297S when α = 0.5, then 0.324 for α = 0.45, and 0.359 for α = 0.40. For α = 0.5
we have 4.5% increase in the applied load, for α = 0.45 this increase is 13.6%, and for α = 0.4 it is 26.1%.

Here the tearing modulus M is renamed as M(ρ) and is defined by the following expression

M(ρ) = 1.1
[
1
2

+
1
2

ln (4ρ)
]
. (5.24)

Thus, (5.23) is rewritten in the following form

dR

da
=

1
N(α, β(X))

[
M(ρ) − 1

2
− 1

2
ln
(

4ρN(α, β(X))R
∆

)]
. (5.25)

Non-dimensional governing ODE. Using the non-dimensional variables defined in (5.16), the differential
equation (5.25) can be recast into a form containing only dimensionless quantities Y, X, ρ, α, and β as

dY

dX
=

1
N(α, β(X))

[
M(ρ) − 1

2
− 1

2
ln [4ρN(α, β(X))Y ]

]
. (5.26)

Some further algebraic transformations allow one to reduce this equation to a form equivalent to the Wnuk-
Rice-Sorensen equation describing motion of a stable quasi-static smooth crack. Rewriting (5.26), which is valid
for a fractal crack, one obtains the following form for the governing differential equation:

dY

dX
=

1
2N(α, β(X))

ln
[
m(ρ, α, β(X))

Y

]
, (5.27)

where

m(ρ, α, β(X)) =
e2M(ρ)−1

4ρN(α, β(X))
. (5.28)

If the right hand side of (5.26) is denoted by RF(Y, ρ, α, β(X)), the governing differential equation (5.26) reads
dY/dX = RF(Y, ρ, α, β(X)). The function RF defines the slope of the R-curve and is illustrated in Fig. 5.6
(bottom). Note that RF for ρ ≫ 1 very closely approximates the function F (Y, ρ, α, β(X)) defined in (5.19)
and valid for an arbitrary value of the ductility index ρ.
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Figure 5.5: Top) Loading curves corresponding to three values of initial crack length (X0 = 10, 30 and 60). Maxima shown on
the loading curves correspond to the terminal instability states. Bottom) The loci of βinitial and βmaximum for different values

of roughness exponent α and ρ = 10 shown as functions of X0. Note that βinitial = 2
π

q

2
X0

, while the tearing modulus M =

1.1Mminimum.

Note that for a smooth crack the ratio factor N(0.5, β) = 1 and thus the expressions in (5.27) and (5.28)
reduce to the Wnuk-Rice-Sorensen equation describing the material R-curve that results from considerations of
the stable crack extension phenomenon for a smooth crack. Here the function m(ρ, α, β(X)) is a measure of
the ratio of the steady-state length of the cohesive zone attained as an asymptotic value of an uninterrupted
stable crack growth, Rsteady state to the threshold value of R, labeled Rinitial. In fact, for the smooth crack, when
α = 0.5 and κ = 1, the formulae given in (5.27) and (5.28) degenerate into the simple form given by Wnuk
[1972, 1974] and valid for a smooth crack, namely

dY

dX
=

1
2

ln
[
n(ρ)
Y

]
, n(ρ) =

Rsteady state

Rinitial
=

1
4ρ
e2M(ρ)−1. (5.29)

Presence of roughness not only leads to a higher effective material toughness, but it also raises the critical
nominal crack length and the critical stress attained at the end of the slow crack growth process. Another
suitable parameter useful for estimating material resistance to subcritical crack propagation is the initial slope
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Figure 5.6: Top: Slopes of the material resistance curves associated with smooth crack (the lowest curve) and rough cracks. Higher
slope of the R-curve signifies more pronounced subcritical crack propagation leading to higher values of the effective toughness and
the critical crack length attained at the end of stable crack growth phase. Value of the function F at Y = 1 denotes the initial
slope of the R-curve and in engineering applications it is used as a measure of “tearing resistance” of the material. For all the
three curves shown the initial crack length is X0 = 10, while the ductility index is ρ = 2. When these slopes are negative, stable
crack growth is not possible. Bottom: Slopes of the JR (or just R) material resistance curves shown as functions of the effective
toughness, which reflects enhancement of the initial toughness due to the process of slow crack extension, shown for ρ = 10 and
three different values of the roughness parameter α.

of the R-curve, namely

dY

dX

∣∣∣fractal
initial

=
1

N(α, β(X0))

{
M(ρ) − 1

2
− 1

2
ln [4ρN(α, β(X0))]

}
=

1
2N(α, β(X0))

ln [m(ρ, α, β(X0))] . (5.30)

And
dY

dX

∣∣∣smooth

initial
= M(ρ) − 1

2
− 1

2
ln(4ρ) =

1
2

ln [n(ρ)] . (5.31)

The initial slope (5.30) ia plotted in Fig. 5.7 for different values of α. These plots demonstrate that the initial
slope (dY/dX)initial is somewhat higher for a fractal crack, and this suggests another observation of physical
significance: A body containing a fractal crack provides a higher effective resistance against crack propagation.

Paris, et al. [1977] and Hutchinson and Paris [1977] have connected the tearing modulus TJ present in the
differential equation defining a material R-curve in terms of JR = JR(a), to the initial slope of the JR curve,
(dJR/da)initial, as follows

TJ =
E′

σ2
Y

(
dJR
da

)
initial

=
π

8

(
dR

da

)
initial

. (5.32)

It is easily seen from Fig. 5.7 that an increase in the material ductility and/or the degree of fractality (roughness
of the crack surface) substantially enhances the tearing modulus. Physically it means appearance of a more
pronounced stable crack growth and the ensuing reduction of the danger of the catastrophic fracture. The
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Figure 5.7: The initial slopes of the R-curve for different values of roughness index α as a function of ductility index ρ.

parameter TJ is used in the design for residual strength in pressure vessels and other high reliability components
used in the nuclear power plants based on the R-curve approach.

6 Terminal Instability State

Finding the coordinates (Xf , Yf ) characterizing the terminal instability state is of great importance in the
stability analysis. Because of the complexity of the governing differential equations for the fractal crack problems
it is necessary to find these points by numerical methods. We have described the method of solution in detail
in the last part of Appendix A. The method of finding the terminal instability state for two different ductile
materials is shown graphically in Fig. 6.1. The terminal instability states can be found from the intersection
points between two sets of curves. The first curve, which is denoted by F (RF for high material ductility),
stands for the slope of the material resistance curve and is determined either from (5.20) or (5.26) depending
on the problem, while the second curve, which is denoted by FAP (RAP for high ductility indices) and stands
for the partial derivative of the applied energy release rate indicated by (A.16) and (A.17). Note that an almost
linear relation between dY/dX and Y seen in Fig. 6.1 was confirmed experimentally for ductile grades of steel
by Michel [1991].

Using the described procedure, we have plotted the results predicting the coordinates of the terminal insta-
bility states (Xf , Yf ) as functions of roughness index α (Fig. 6.2), material ductility ρ (Fig. 6.3), initial crack
length X0 (Fig. 6.4), and the stress ratio β. It is also worth noting that while for the quasi-brittle and brittle
materials (for which ∆ and R are of the same order of magnitude, i.e. R ∼ ∆) the extent of the stable crack
growth and the characteristics of the terminal instability point are described by the governing equation (5.19).
A more frequently encountered case in materials engineering, for which Barenblatt’s condition R≫ ∆ holds, can
be described by the simplified equations (5.26) or (5.27). Comparison of the results from the numerical solutions
of (5.19) and (5.27) obtained at various values of parameters ρ, α, and β shows that for a large material ductility
index ρ (say ρ > 6) the difference between the results of the two formulae becomes negligible. At this point it is
noted that the following four variables: (i) material ductility, ρ = Rinitial/∆, (ii) roughness measure of the crack
surface, α = (2−D)/2 or α = (2H−1)/2H, where 1 < D < 2 and 1

2 < H < 1, (iii) ratio of applied stress to the
yield stress β = σ/σY , and (iv) initial size of the crack-like defect, X0 = a0/Rinitial have a pronounced effect on
the slope of the material resistance curve JR–∆a and on the ensuing characteristics determining the terminal
instability point, defined as the apparent toughness measure by J fracture

R (or just Rfracture or the non-dimensional
equivalent entity Yf ) and the critical nominal crack length afracture (or the non-dimensional Xf ).

The trends observed in these studies of the slope of the material JR–∆a curves are consistent with the
physical phenomena studied experimentally and described in a recent paper by Alves et al. [2010]. These
authors have shown that the slopes of the JR–∆a curves obtained via an energy approach significantly increase
when the roughness of the crack surface is accounted for. We obtain a similar result in the present work. In
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Figure 6.1: The intersection points of the two sets of curves (top)(F ,FAP ) and (bottom)(RF ,RAP ) define the terminal instability
states, see Eq. (6.1). The F and RF functions represent the material resistance curve slope (dY/dX) (see (5.20) and (5.26)) while
FAP and RAP have been used for the determination of dY/dX resulted from applied loading (see (A.18)). Each critical state is
determined by the final effective material toughness (Yf ) and the critical crack length (Xf ). The curves shown are obtained for
the initial crack length X0 = 10 and three values of the roughness index α, and the ductility parameter ρ = 2 (top) and ρ = 10
(bottom). Tearing modulus M is assumed to be ten percent higher than Mminimum.

addition to this observation, it is shown that there exist substantial effects due to the initial crack size and due
to the material ductility (Rinitial/∆). Introduction of ∆ (process zone size in the context of this work) allows
one to extend the results of the previous works into the domain of discrete (or quantized) fracture mechanics,
say QFM, as suggested by Pugno and Ruoff [2004], Taylor, et al. [2005], and also by Wnuk and Yavari [2009].
It is only for certain ranges of the pertinent variables such ρ, α, and X0 that the effects we describe here are
visible. These effects are of particular importance in the nano-range of the pre-existing crack sizes. Similar
observations can be made regarding the effects due to the material ductility and the roughness parameter on
the characteristics of the terminal instability point. Interestingly, the minute variations in the latter result in
large alterations of the final value of the material toughness and the critical crack length attained at the end of
the slow stable crack growth process. These preliminary findings encourage further studies of failure instability
problems exploring the QFM representation of fracture process.

During the process of the stable growth of a quasi-static crack the rate of energy supply is always equal to the
rate of energy demand. This kind of equilibrium between the two rates ensures the stability of the subcritical
crack. However, at the end of this stable growth phase, when the transition to an unstable propagation occurs,
it is necessary to use two conditions involving the rates of the energy supply and energy demand that must be
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Figure 6.2: Coordinates of the terminal instability point (Xf , Yf ) shown as functions of fractal roughness parameter α. Top:
Critical crack length attained at the end of stable crack growth phase. Bottom: Effective material toughness attained at the end of
stable crack growth phase.

simultaneously satisfied, namely

J(ℓ, σ, geometry) = JR(ℓ) and − ∂2Π
∂ℓ2

=
∂J

∂ℓ

∣∣∣
constant stress (or fixed grips)

=
dJR(ℓ)
dℓ

. (6.1)

Geometrical interpretation of these two equations consists in a requirement that the crack driving force J-ℓ
curve touches tangentially the material resistance curve JR(ℓ). Calculations underlying the design of machine
elements involving the residual strength concepts are made much less cumbersome if the terminal instability
point is determined as the point of intersection between the curves independently representing the left hand
sides and the right hand sides of the expressions given in (6.1) as functions of either X or Y , cf. the graphs in
Fig. 6.1. The graphs shown in these figures may be constructed only after the governing differential equation
is solved for Y = Y (X) revealing the function that determines the material resistance curve. By using this
approach one may evaluate the coordinates of the respective intersection points, which represent the critical
states. The coordinates of a critical state are: effective material toughness Yf , final crack length Xf , and the
critical load σcritical – all of them attained at the end of the pre-fracture slow crack extension process, Figs. 5.3,
5.4, and 5.5.
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Figure 6.3: Coordinates of the terminal instability point (Xf , Yf ) shown as functions of material ductility. Top: Critical crack
length attained at the end of stable crack growth phase. Bottom: Effective material toughness attained at the end of stable crack
growth phase.

7 Conclusions

First, the stress functions for different fractal crack problems are presented with the help of the approximate
Green’s functions. These Green’s functions are useful in the analytical treatment of bodies with fractal cracks.
Next, using these stress functions the complete (and not asymptotic) expressions for the stress and strain fields
around fractal cracks are obtained. Also the Green’s functions needed for the evaluation of the fractal stress
intensity factors (FSIF) in general cases are given. Then, these functions are utilized in the classical final stretch
criterion of Wnuk [1972, 1974] applied to fractal cracks. In summarizing the essential results of the present
work on the stability analysis the following two differential equations may be recalled

dY

dX
= F (Y (X), ρ, α, β(X)) (arbitrary ρ), (7.1)

dY

dX
= RF (Y (X), ρ, α, β(X)) (ρ≫ 1). (7.2)

These are two forms of the governing nonlinear ODE defining the material resistance curve in a ductile solid
weakened by a propagating rough subcritical crack when described by a self-affine fractal curve. They reduce
to the well-known equations of the smooth case α = 0.5. The factor m(ρ, α, β), which is defined in (5.28), can
be interpreted as the ratio of the material toughness developed at the steady state level, say Rsteady state, to
Rinitial – the toughness measured by the length of the cohesive zone present at the onset of crack growth when
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Figure 6.4: Coordinates of the terminal instability point (Xf , Yf ) shown as functions of initial crack length. Top: Critical crack
length attained at the end of stable crack growth phase. Bottom: Effective material toughness attained at the end of stable crack
growth phase.

K = Kc. It is noted that while (7.1) is valid for arbitrary values of the ductility index ρ (this includes the
limiting case of brittle fracture when ρ → 1), (7.2) holds for ductile materials for which ρ ≫ 1. All the results
obtained in this study are subject to the restriction imposed by the Barenblatt condition, R ≪ a. We have
demonstrated that the material ductility and/or roughness of the crack surfaces have a significant influence on
enhancement of the characteristics pertinent to the terminal instability state. This influence becomes even more
pronounced for very short cracks that compare in size with the characteristic length of the material; Rinitial at
the meso-level and ∆ for the nano-level. It is noteworthy that while for ductile solids these two material length
characteristics differ significantly, they converge to a common value in the limit of a perfectly brittle material.
In the limiting case of perfectly brittle fracture both ∆ and Rinitial acquire the sense of the quantum fracture
a0 [Wnuk and Yavari, 2009]. Higher values of the critical crack length attained at the end of the slow crack
growth process (Xf ) are related to larger equilibrium cohesive zones ensuing at the terminal instability state.
The lengths (Rfracture or Yf ) are used in our model as the measure of the effective material toughness developed
during the pre-fracture crack extension process is clearly seen in Fig. 5.3 and in Figs. 6.1, 6.2, 6.3, and 6.4.
These conclusions are entirely consistent with the findings of Wnuk and Yavari [2009].

As was mentioned earlier, analysis of (7.1) and (7.2) gives valuable information on the contribution of the
parameters pertinent in the subcritical crack growth studies. These parameters and their effects are briefly
recalled here as follows

i) Roughness measure of the crack surface, α = (2 − D)/2 or α = (2H − 1)/2H, where 1 < D < 2 and
1
2 < H < 1: Our analysis shows that the slope of material resistance curve for rougher cracks is higher.
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Consequently, the loading at which catastrophic failure occurs σmaximum will be higher for rougher cracks.
Roughness of the cracks also affects the critical crack length Xf . As it is seen in Figs. 6.2 and 6.3 rougher
cracks lead to larger critical lengths.

ii) Material ductility, ρ = Rinitial/∆: Material ductility has a significant effect on the resistance of a cracked
solid to fracture propagation. As expected the terminal instability point is higher for materials with higher
ductility.

iii) Initial nominal crack length, X0: Increasing the initial size of the crack leads to a decrease of the stress
at fracture onset in a manner similar to the case of Griffith’s crack.
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Gol’dshtěin R.V., Mosolov A.B., Cracks with a fractal surface, Soviet Physics Doklady 36(8)(1991):603-5.



REFERENCES 28
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A Auxiliary expressions needed for stability analysis of fractal cracks

In this appendix we derive some expressions that are needed for the stability analysis of fractal cracks. It should
be noted that our stability analysis is based on the assumption of small scale yielding, which corresponds to
R≪ a, where R is the length of the yield zone ahead of the crack. First we determine the length of the cohesive
zone ahead of a fractal crack (Rf ). The size of the cohesive zone can be determined by enforcing the following
finiteness condition at the crack tip:

K
f(applied)
I +K

f(cohessive)
I = 0. (A.1)

From (3.16) the cohesive fractal stress intensity factor is calculated as:

K
f(cohessive)
I = −

2αS
(
Rf
)α

απ1−α . (A.2)

A.1 Size of the fractal yield zone

The applied fractal stress intensity factor (FSIF) depending on the problem can be calculated from either (3.15)
or (3.22)8. Now by the use of (A.1) the length of the plastic zone ahead of the fractal crack (Rf ) is obtained as:

Rf =

(
απ1−α)1/α

2

[
K
f(applied)
I

S

]1/α

. (A.3)

8A couple of remarks are in order. We assume small scale yielding because the size of the yield zone is very small compared to
the nominal size of the crack half-length (a). This means that we should use the semi-infinite crack stress intensity factor formula

to determine K
f(cohessive)
I and K

f(applied)
I . If load is applied in the close vicinity of the crack tip and the length of the loaded zone

is small compared to a, using the semi-infinite crack formula (3.15) is adequate. However, if load is applied along large segment(s)
of the crack, or at points distant from the crack tip, the finite crack solution for fractal stress intensity factor (3.22) is required.
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The expressions for R and Rf are given in Table 1. Thus, Rf/R reads

Rf

R
=

(απ1−α)1/α

2

[
K

f(applied)
I

S

]1/α
π
8

(
Kapplied

I

S

)2 . (A.4)

This ratio can be simplified using (3.22)9 to read

Rf

R
= 4α1/αS2−1/α

(∫ 1

0
2p(t)

(1−t2)1−α dt
)1/α

(∫ 1

0
2p(t)√
1−t2 dt

)2 . (A.5)

As it is seen Rf/R depends not only on α but also on S and p(x). For uniform pressure distribution p(x) = σ
this ratio is simplified as follows:

Rf

R
= N(α, β), (A.6)

where β = σ
S and

N(α, β) = 4π
1
2α−2

[
αΓ(α)

Γ(1/2 + α)

] 1
α

β1/α−2. (A.7)

Γ stands for the Gamma function, while N(α, β) is referred to as the “ratio factor”.

Smooth Case Fractal Case

Zapplied = Kapplied
I√
2πζ

Zfapplied = 1

e
i( 1

2−α)θ
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I

(2πζ)α
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π
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√
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Table 1: Required functions and expressions for strip yield model in both smooth and fractal crack cases.

A.2 Fractal COD

After finding the length of the cohesive zone ahead of a fractal crack, it is required to derive the expression
representing the COD within the cohesive zone. In Table 1 the basic expressions required for determination of
the COD within the cohesive zone are gathered. Vertical displacements (v or vf for the fractal case)10 inside
the cohesive zone can be calculated using Table 1 for both smooth and fractal cases. The results are as follows:
- Smooth case (Barenblatt [1962]; Irwin et al. [1969])

vtotal =
2S
πE′

(
2
√
R|ξ| − (R+ ξ) ln

∣∣∣∣∣
√
|ξ| +

√
R√

|ξ| −
√
R

∣∣∣∣∣
)

ξ < 0, (A.8)

9Note that

Kf
I =

“ a

π

”1−α
Z a

0

2p(x)

(a2 − x2)1−α
dx =

“ a

π

”1−α
Z 1

0

2p(t)

a2−2α(1 − t2)1−α
adt =

aα

π1−α

Z 1

0

2p(t)

(1 − t2)1−α
dt,

where t = x/a.
10Note that crack opening displacement COD is related to the vertical displacement by: COD= 2v.
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where ξ is the coordinate of a point inside the cohesive zone (at the tip of the cohessive crack ξ = 0 and at the
tip of the physical crack ξ = −R), i.e. |ξ| = R− x1 (see Fig. A.1).

Crack front End of plastic zone

x ,1 ξ

y1
η

Process zone Control point (P)

Plastic zone

R( )t

x ( )1 t

Δ

a( )t

Figure A.1: Front of an advancing crack and the associated yield (or crazed) zone.

- Fractal case11

vftotal =
2S
πE′

{
Rf

α(1 − α)

(
|ξ|
Rf

)1−α

− Im
[

Rf

α(1 + α)

(
Rf

ξ

)α
f

(
1, α, 2 + α;−R

f

ξ

)]}
ξ < 0, (A.9)

where the function f was defined in (3.11). The expression for vftotal is not in the form of elementary functions,
so we have determined its values using Mathematicar. Interestingly, our calculations show that for moderately
rough cracks the fractal vertical displacement (vf ) can be related to the classic result for a smooth crack v as
shown by (5.4). For conversion of the smooth crack result (A.8) into the fractal crack case two functions are
needed: κ(α) and N(α, β) (see (A.7)). Denoting

κ(α) =
vftip
vtip

R

Rf
, (A.10)

vftotal is now written as

vftotal = κ(α)
4S
πE′

(√
N(α, β)R|ξ| − N(α, β)R+ ξ

2
ln

∣∣∣∣∣
√
|ξ| +

√
N(α, β)R√

|ξ| −
√
N(α, β)R

∣∣∣∣∣
)

ξ < 0. (A.11)

Both functions κ(α) and N(α, β) are illustrated in Fig. A.2.
There are many experimental results [Bouchaud, et al., 1990; Bouchaud, 1997, 2003; Måløy, et al., 1992;

Daguier, et al., 1996, 1997; Ponson, et al., 2006] that report the existence of a limiting roughness for the fracture
surfaces. Considering these studies the practical range of fractal exponent is approximately 0.4 < α < 0.5. In
the stability analysis we have used this range. The graph of the function κ(α) (we call it “fractal constraint
factor”) is shown in Fig. A.2 for the physically acceptable range of α. After some algebraic manipulations the

11The vertical displacement inside the cohesive zone of a crack satisfying the small-scale yielding condition is calculated as follows.
As we are assuming the small-scale yielding condition, for the points close to the crack tip we use the close tip stress function (Row
1 in the Table 3) to determine the stresses and displacements (as derived in Row 4 of the Table 3). In fact the close tip solution
is used for applying the effect of far-field loading. In addition to the far-field loading effects, we must model the effect of material
resistance in the cohesive zone. To do so we use the semi-infinite stress functions (Row 2 in the Table 3) because the cohesive zone
is just located ahead of the crack tip. The vertical displacement resulted from the cohesive forces (Row 5) should be subtracted
from the vertical displacement resulted from the close tip solution in order to reach the final results for the vertical displacement
inside the cohesive zone. For the case of a fractal crack we have a closed-form solution for the displacement resulting from the
close tip stress function but cannot find a closed-form solution for the case of semi-infinite stress function; we use Mathematicar
to determine the resulting vertical displacement.
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Figure A.2: Graphs of the fractal constraint factor κ(α), and the ratio factor N(α, β) for β = 0.2, 0.4 for different values of
roughness index. Functions κ(α) and N(α, β) appear in the expressions for the opening displacement within the cohesive zone
associated with a fractal crack.

following expression for κ(α) is obtained

κ(α) = −−1 + α+ (α− 1) Im ((−1)α(1 + α))
2α(α2 − 1)

=
1 + (α− 1) sin(πα)

2α(1 − α)
. (A.12)

As stated earlier the function κ(α) relates the COD at the tip of a fractal crack to the COD at the tip of the
corresponding smooth crack. Our studies show that for moderately rough cracks (H > 0.8) the COD within the
whole cohesive zone can be approximated simply by multiplying the COD of the corresponding smooth crack
by κ(α).

By moving the origin from the tip of the cohesive crack to the tip of the real crack and denoting the distance
from the physical crack tip by x1, the vertical displacement inside the cohesive zone of a fractal crack can be
written as:

vf [x1, R
f (x1)] = κ(α)

4S
πE′

[√
Rf (x1) [Rf (x1) − x1] −

x1

2
ln

(√
Rf (x1) +

√
Rf (x1) − x1√

Rf (x1) −
√
Rf (x1) − x1

)]
, (A.13)

for 0 < x1 < Rf and Rf (x1) = N(α, β)R(x1).

A.3 Fractal loading parameter

Another important parameter in the stability analysis of fractal cracks is the loading parameter, which we
denote by Qf . When Wnuk’s model of the structured cohesive zone is applied to study the stability problems
associated with ductile fracture, the following relations will replace (4.2). First, it is noticed that for the small
scale yielding case, when the Barenblatt condition is satisfied, J-integral is directly proportional to the length
of the cohesive zone R associated with a propagating crack; in the classic case when R is multiplied by a
dimensionless constant 8S2/πE′, then one obtains J . Let us focus on Rfapplied. From the cohesive model of
Dugdale-Barenblatt for a fractal crack it follows that:

Rfapplied =

(
απ1−α)1/α

2

[
K
f(applied)
I

S

]1/α

=

(
απ1−α)1/α

2

[
ξ(α)σ

√
πa2α

S

]1/α

=
1
2
a
(
Qf
) 1

α . (A.14)
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The symbol Qf is a non-dimensional loading parameter defined as

Qf =
α
√
πΓ(α)

Γ(1/2 + α)
σ

S
, (A.15)

where σ is the applied stress and S is the cohesive strength. Because during all of the stable growth phase,
according to equations (4.1) one has

Rfapplied = Rfmaterial, (A.16)

we can drop the indices “applied” and “material”, and simply use R. The derivatives (dR/da)applied and
(dR/da)material must be computed. For the applied driving force expressed in terms of R as in (A.14), we have

∂Rfapplied

∂a
=

1
2
(
Qf
) 1

α =
Rfapplied

a
. (A.17)

In the non-dimensional form

∂Y fapplied

∂X
=
Y fapplied

X
=

Y f

X(Y f , ρ, α, β,X0)
. (A.18)

For the material resistance associated with quasi-static growth of a fractal crack the following expression was
derived (see (5.14))

dRfmaterial

da
= N(α, β)F (R, ρ, α, β), (A.19)

where

F (R, ρ, α, β) =
1

N(α, β)

[
M(ρ) − N(α, β)R

∆
+

√
N(α, β)R

∆

(
N(α, β)R

∆
− 1
)

− 1
2

ln


√

N(α,β)R
∆ +

√
N(α,β)R

∆ − 1√
N(α,β)R

∆ −
√

N(α,β)R
∆ − 1

]. (A.20)

In its equivalent non-dimensional form the above equation reads

dY

dX
= F (Y, ρ, α, β(X)), (A.21)

in which the function F is defined in (5.20). The simplified versions of this equation was obtained for ρ ≫ 1,
and in order to use it one only needs to replace F by RF , see (5.26) and (5.27). The derivation of the functions
F and RF are described in §5, while the non-dimensional length of the cohesive zone and the non-dimensional
crack length are defined as Y = R/Rinitial and X = a/Rinitial. The material constant ρ is defined as Rinitial/∆
or 1 + εplf /ε0, and it is named “ductility index” as suggested by Wnuk and Mura [1981]. For brittle materials
ρ is close to one, while for ductile solid ρ≫ 1. The other parameter α denotes the fractality exponent, related
to the dimension of the fractal representing a rough crack, and it is used here as a measure of the degree of
roughness of the crack surfaces.

The loading parameter β = σ/S is a function of the current crack length X during the entire process of
subcritical crack growth, and it needs to be determined. There is no restriction on the values of β per se, but
when we are studying the subcritical growth process, the condition Rfapplied = Rfmaterial should be satisfied at
every instant of the process and therefore β will become a function of X. By the use of (A.15), (A.17), and
(A.18) we reach the following expression for β during the subcritical growth:

β(X) =
Γ(1/2 + α)
α
√
πΓ(α)

[
2Y (X)
X

]α
N(α, β(X))α. (A.22)
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If we substitute N(α, β(X)) from (A.7) in the above equation after some algebraic manipulations, we reach the
following well-known equation for the stress ratio during the subcritical crack growth phase under small-scale
yielding restriction

β(X) =
2
π

[
2Y (X)
X

]1/2
. (A.23)

It is seen that β for the fractal case is identical in form to that for the smooth case. However, it should be noted
that the nominal crack length at the end of stable crack growth phase Xf explicitly depends on α and hence
roughness of the crack affects the results for stress ratio during the subcritical growth of rough cracks (see Figs.
5.4 and 5.5). Another parameter required in the calculations is the length of the cohesive zone at the onset of
crack growth Rinitial corresponding to the requirement K = Kc, and used as the normalizing constant for both
R and a.

A.4 Motion of a subcritical fractal crack

To describe the slow motion of a subcritical crack, its length X is used as a time-like variable. Therefore, all
pertinent quantities such as the applied load β (or Q) and the material toughness Y should be viewed as certain
functions of X, namely β = β(X), Q = Q(X), and Y = Y (X). During the stable crack extension the equalities
described in (4.1) must be satisfied. Consistent with notation used here the conditions (4.1) read

1
2
Q(X)2X = D(α)2Y (X), (A.24)

where

D(α) =
2αΓ(α)√

πΓ(1/2 + α)
. (A.25)

Now with Q replaced by β, we can write

π2

8
β(X)2X = Y (X). (A.26)

Equations (A.24) and (A.26) are set up in such a way that the external effort, or “crack driving force” is placed
on the left hand side, while the quantity shown on the right hand side represents nondimensional material
resistance to fracture. As can readily be seen, this resistance is not constant, as it is commonly assumed in
the classical formulations of fracture mechanics; it is a certain function of the current crack length, and it
varies within the range Yinitial and Yf > Yinitial. The extent of this interval depends on the tearing modulus
of the cracked solid. For a smooth crack the initially unknown function Y = Y (X) can be determined from
the governing differential equation of Wnuk-Rice-Sorensen (5.29). For stable crack growth to occur the tearing
modulus M has to exceed the minimum modulus Mminimum, which is a known function of material ductility
index ρ, namely 1/2 + 1/2 ln(4ρ), cf. Wnuk [1972]. The material ductility index has been related by Wnuk and
Mura [1981] to the yield strain ϵY and the plastic component of the strain at fracture ϵfpl; ρ = 1 + ϵfpl/ϵY . In
this study we have suggested an extension of the governing equation (5.29) valid for a fractal crack, see (7.1)
and (7.2). The governing differential equation for the case of a fractal crack reads

dY

dX
= F (X, ρ, α, β(X)), (A.27)

for an arbitrary value of the ductility index ρ, and

dY

dX
= RF (X, ρ, α, β(X)), (A.28)

for ductile materials for which ρ≫ 1. Functions F and RF have been defined in terms of the roughness measure
α and the material ductility index ρ, cf. §7.

At the end of the stable crack growth phase, when the terminal instability occurs, it is required that in
addition to conditions (A.24) or (A.26) certain additional conditions are satisfied. To set up these conditions
one needs to compare the second derivatives of the elastic potential of the cracked body and that of the
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corresponding entity representing material resistance, see (4.2). In terms of the nondimensional functions this
statement can be expressed as given in (7.1) and (7.2). These equations allow one to determine the set of critical
values of crack length Xf and material toughness Yf prevailing at the point of terminal instability. Numerical
solutions to these equations have been found and they are best illustrated by the graphs depicted in Fig. 6.1.
To establish the state of the terminal instability a technique of “intersecting curves” has been used, see §6 for
the analysis and Fig. 6.1 for a graphical interpretation.

In closing we outline an alternative approach useful in the analysis pertinent to predicting the terminal
instability. As the state of the terminal instability is approached, the slope of the Q vs. X (or β vs. X)
curves tends to zero. Using (A.24), Q(X)2 = 2D(α)2Y (X)/X and differentiating both sides of this equation
(prime denotes the derivative with respect to X) we obtain 2QdQ = D(α)2(2XY ′ − 2Y )dX/X2. Therefore, the
derivative dQ/dX (or dβ/dX) is readily determined as

dQ

dX
= D(α)2

XY ′ − Y

X2Q
. (A.29)

Replacing Y ′ by either F or RF provided in the governing equations (7.1) and (7.2) and setting dQ/dX equal
to zero, yields two simple equations equivalent to (7.1) and (7.2)

F (Y (X), ρ, α, β(X))X − Y (X) = 0 (arbitrary ρ), (A.30)
RF (Y (X), ρ, α, β(X))X − Y (X) = 0 (ρ≫ 1). (A.31)

We were unable to find closed form solutions to these equations and thus some numerical solutions are provided
instead. Effects of the roughness of crack surfaces, material ductility, and the initial crack size on the character-
istic parameters describing the state of the terminal instability have been demonstrated graphically; see Figs.
6.2, 6.3, and 6.4.
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