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Abstract

In this paper, we formulate a continuum theory of solidification within the context of finite-strain
coupled thermoelasticity. We aim to fill a gap in the existing literature, as the existing studies on
solidification typically decouple the thermal problem (the classical Stefan’s problem) from the elasticity
problem, and often limit themselves to linear elasticity with small strains. Treating solidification as an
accretion problem, with the growth velocity correlated with the jump in the heat flux across the boundary,
it presents an initial boundary-value problem (IBVP) over a domain whose boundary location is a priori
unknown. This IBVP is solved numerically for the specific example of radially inward solidification in a
spherical container. Several parametric studies are conducted to compare the numerical results with the
rigid cases in the literature and gain insights into the role of elastic deformations in solidification.

Keywords: Accretion, ablation, surface growth, nonlinear elasticity, thermoelasticity, phase change, solid-
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1 Introduction

Various types of phase changes are observed in our surroundings, ranging from the freezing of seas [Stefan,
1891] and the polymerization of proteins within living cells [Fedosejevs and Schneider, 2022, Jiang et al.,
2015] to the ongoing solidification process in the Earth’s core [Buffett et al., 1992, 1996, 1993, Labrosse et al.,
1997, 2007]. In engineering, phase transitions are highly relevant in various contexts, including concrete
solidification [Bažant et al., 1997], the shape memory effect observed in polymers and alloys [Zarek et al.,
2016, Elahinia et al., 2016], cryopreservation [Mazur, 1970, Coussy, 2005], as well as the applications of phase
change materials in thermal energy storage and photonics [Pielichowska and Pielichowski, 2014, Wuttig et al.,
2017]. Several theoretical studies comprehensively categorize all such phase transition phenomena that are
observed in Nature [Landau, 1936, Jaeger, 1998, Binder, 1987, Stanley, 1971]. Without going into too much
detail, we specify that in this work our focus is on the liquid-to-solid phase transition, which is classified
as a first-order phase transition. These transitions are characterized by a finite discontinuity in the first
derivative of the free energy with respect to a specific thermodynamic variable. In the case of solidification,
this discontinuity manifests as a change in density, which can be heuristically related to the derivative of free
energy with respect to pressure. Such transitions involve the release of latent heat while the temperature
remains constant. This latent heat release causes a jump in the heat flux across the moving boundary, which
is typically known as Stefan’s condition.

The term Stefan’s problem broadly refers to the family of mathematical models describing physical
processes involving heat transfer, diffusion, and latent heat, which feature a moving boundary with an a priori
unknown location. The earliest known work in this field was a study conducted by Lamé and Clapeyron
[1831] on the cooling of a half-space filled with a homogeneous liquid at its solidification temperature.
They demonstrated that the thickness of the solidified crust is proportional to the square root of time.
However, it was when Stefan [1891] published his work on the formation of ice in polar seas that this type
of problem caught the attention of many researchers, and the field was named after him. The history of
what is now known as Stefan’s problem has been meticulously compiled in several texts [Rubinštĕın, 1971,
Rubinstein, 1979, Danilyuk, 1985, Vuik, 1993, Visintin, 2008, Gupta, 2017], all of which provide extensive
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and comprehensive bibliographies on the subject matter. Therefore, we do not attempt to provide a historical
survey here.

Over the past century, research on Stefan-type problems has predominantly fallen into the following
categories: mathematical modeling of natural and engineering processes involving moving interfaces [Horvay,
1962, Chambre, 1956, Crank and Gupta, 1972], investigations into the existence and uniqueness of solutions
[Rubinstein, 1947, Evans et al., 1951, Douglas, 1957, Olĕınik, 1960], development of efficient numerical
techniques for solutions of problems with an unknown moving boundary [Lotkin, 1960, Melamed, 1958, Budak
et al., 1965, Fasano and Primicerio, 1979], and generalizations such as extensions to higher dimensions.

Motivation of this study. Solidification plays a vital role in several manufacturing processes that con-
stitute the backbone of modern-day industries, such as traditional casting [Kou, 2015], injection molding
[Isayev and Crouthamel, 1984, Yang and Zhiwei, 2009], selective laser sintering [Mercelis and Kruth, 2006],
vat photopolymerization [Deore et al., 2021, Bachmann et al., 2021], and ice-templating [Shao et al., 2020].
However, within the setting of fully nonlinear and coupled thermoelasticity, there is a scarcity of studies
addressing the mathematical modeling of deformations and stresses during the solidification process. Such
modeling is important for the design and analysis of manufacturing processes involving solidification, where
molten materials cool to ambient temperatures. The substantial temperature drop in this process can result
in severe part distortion and the development of high residual stresses. It is equally important to obtain the
continuous evolution of thermal stresses and deformations throughout the manufacturing process to assess
the potential occurrence of mechanical instabilities and failures [DebRoy et al., 2018]. Residual stresses
play a vital role, as they dictate how manufactured components respond to external stimuli, including ser-
vice loads [Withers and Bhadeshia, 2001b]. Excessive residual and thermal stresses can give rise to issues
such as layer delamination during deposition and the formation of cracks as the part cools down [DebRoy
et al., 2018]. Moreover, thermal contraction can distort parts made through these processes, affecting their
geometric tolerance [Klingbeil et al., 2002]. While many methods exist for measuring thermal stresses dur-
ing fabrication or residual stresses post-fabrication, they typically measure the values at specific locations
due to the cost and time constraints [Withers and Bhadeshia, 2001a]. Thus, understanding the continuous
evolution of thermal stresses and residual stress distribution, whether through numerical or analytical tools
[Mukherjee et al., 2017b], is critical for designing manufacturing processes to mitigate geometric inaccuracies,
instabilities, and failures [Mukherjee et al., 2017a].

The aim of the present work is to analyze stress and deformation during solidification and their residual
effects in a nonlinear thermoelastic framework. As new layers are deposited onto the surface of a solidifying
body, it gives rise to an accretion problem. Accretion (or boundary growth [Epstein, 2010]) refers to the
growth of a deformable body through the addition of material points on its boundary. Drawing inspiration
from Eckart [1948] and Kondo [1949], a natural approach to modeling accreting bodies is to treat them as
time-dependent Riemannian manifolds. The Riemannian metric for the new material points depends on the
state of deformation at that point during the accretion process. If the source of anelasticity in the problem
is time-independent, the metric at each point remains constant after attachment. However, in the case
of thermoelastic accretion, this metric is temperature-dependent and therefore evolves with time at each
material point. The geometric theory of accretion was initially formulated by Sozio and Yavari [2017] for
surface growth in cylindrical and spherical bodies. Several theoretical results related to accretion boundary-
value problems were discussed in [Sozio and Yavari, 2019]. This theory was later extended by Pradhan
and Yavari [2023] to include ablation, which refers to the removal of material points from the boundary.
Accretion of circular cylindrical bars under finite extension and torsion has been explored in studies by
Yavari et al. [2023] and Yavari and Pradhan [2022]. Further, Sozio et al. [2020] formulated a thermoelastic
accretion boundary-value problem using the geometric theory of thermoelasticity proposed by Ozakin and
Yavari [2010] and Sadik and Yavari [2017b]. In their work, Sozio et al. [2020] modeled the effects of heat
conduction and thermal expansion in an infinite cylinder and a 2D block undergoing accretion through the
addition of hot molten layers. However, the effect of phase transition was not taken into consideration, and
the accretion surface velocity was assumed to be externally controlled. In this paper, we model accretion
induced by solidification as a Stefan’s problem, where the accretion velocity is a priori unknown. We take
into account the effects of latent heat released during solidification, and the accretion velocity is related to
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the heat flux through Stefan’s condition.

Existing literature. One of the earliest studies of solidification that focused on mechanical stresses was
conducted by Rongved [1954], who examined the residual stresses generated during the quenching of glass
spheres. He modeled the viscoelastic behavior of glass similar to that of a Maxwell material with temperature-
dependent viscosity and provided an explicit solution for transient thermal stresses in a compressible sphere.
Weiner and Boley [1963] studied the one-dimensional growth of an elastic/perfectly-plastic slab that started
solidifying as the surface temperature of a molten liquid pool at one end was dropped below the melting
point. The liquid melt was assumed to be at a fixed temperature initially. The time evolution and spatial
variation of temperature in both phases were considered. They utilized Neumann’s solution [Carslaw and
Jaeger, 1959, p. 283] for the temperature field and the location of the moving boundary in one-dimensional
phase change problems. The slab was assumed to have vanishing stress at the moving interface and was
constrained against bending. Their problem was inspired by the early stages of solidification during the
metal casting process where temperatures are close to the melting point. Their findings revealed that plastic
flow can initiate right from the beginning on both the casting and solidification surfaces. Moreover, they
observed that the stresses at the casting surface were compressive.

Chambre [1956] conducted one of the earliest studies on the dynamics of liquid-to-solid phase change,
considering the density changes induced during solidification. He considered the convective motion in the
fluid near the interface, arising from the large density jumps across it, and modeled it using the incompressible
Navier-Stokes equations at constant pressure. Further, he assumed the solid to be rigid and have infinite
thermal conductivity so that it remained at the constant solidification temperature throughout the process.
However, in the present work, we neglect inertial effects in both the solid and the liquid phases, while still
considering a moderate density change across the solidification interface.

Tien and Koump [1969] studied the thermal stresses developed during the solidification of an elastic
beam with a temperature-dependent Young’s modulus. Richmond and Tien [1971] considered a nonlinear
viscoelastic model with a temperature-dependent Young’s modulus and viscosity to study the early stages
of solidification inside a rectangular mold with a uniform non-steady surface temperature and pressure. In
particular, they computed the stresses and deformations in the solidifying skin for slow cooling processes and
calculated the time required for the formation of air gap between the mold and the skin. O’Neill [1983] used
a boundary integral element method to study moving boundaries in phase change heat transfer problems.
The analysis was limited to problems with a very low Stefan’s number, meaning that the heat capacity
effects were negligible compared to the latent heat effects. In such cases, the temperature profiles within the
individual phases remain relatively constant over time. They investigated the radial freezing around a pipe
with a thin initial frozen layer surrounded by the unfrozen liquid initially at the freezing temperature. The
temperature history of the surface of the pipe was considered to be known and was assumed to decrease
with time. They examined the evolution of the freezing front radius until it became considerably large
compared to the pipe radius. They compared their numerical solution with the semi-analytical solution for
phase change around an annulus with an infinitesimally small radius. Although the semi-analytical solution
considered the transient heat equation in both phases while the numerical solution considered the steady
state heat equation only in the frozen state, there was still good agreement between the two. They also
studied the radial ablation of a pre-existing frozen layer around the same pipe, melting due to a specified
impinging surface flux. Furthermore, they studied radially-asymmetric freezing around a cold pipe passing
eccentrically through a drum containing fluid and compared their numerical solution with experimental
results. However, they did not consider stresses due to solidification and heat transfer.

Heinlein et al. [1986] investigated solidification stresses generated during 1D solidification of aluminum
bars using the boundary element method. An aluminum bar is assumed to be solidifying as it is chilled
at one end where the temperature is given as a function of time. The other end of the bar is the moving
solidification front, which is exposed to the hydrostatic pressure exerted by the liquid aluminum. They solved
the 1D transient heat equation by modifying the boundary integrals prescribed in [O’Neill, 1983]. For the
elastic analysis, they worked in the setting of small strains and linear elasticity theory. They assumed an
additive decomposition of the total strain into elastic, thermal and other non-elastic strains. Zabaras and
Mukherjee [1987] analyzed the motion of the phase-change interface in 2D problems. They considered the
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inward solidification of a liquid melt initially at its melting temperature inside a square cavity whose surface
is suddenly cooled down and maintained at a colder temperature. They used the boundary element method
to solve the transient heat equation. Zabaras et al. [1990] studied the evolution of deformations and thermal
stresses induced during radially inward solidification of a hypoelastic-viscoplastic circular cylinder. They used
finite elements that continuously move and deform to analyze boundary-value problems with an evolving
domain. They assumed an additive decomposition of the strain rate into elastic and non-elastic components
with a hydrostatic state of stress at the solidification interface. Zabaras et al. [1991] examined the residual
stresses generated during axially-symmetric solidification of cylinders for different cooling conditions using
the same FEM formulation.

Inspired by applications in cryobiology, Rubinsky et al. [1980] and Rabin and Steif [1998] examined
the stresses generated during inward freezing of a sphere. The stresses induced due to the freezing of
water in a biological material can be a source of damage in an organ. Rubinsky et al. [1980] considered a
homogeneous spherical organ, initially near its freezing temperature, which is frozen by the application of a
constant cooling rate on its outer surface. They modeled ice as a perfectly elastic medium and computed
the temperature and stress distributions. Rabin and Steif [1998] considered an inviscid liquid initially at
its solidification temperature occupying a spherical domain whose outer surface is subsequently cooled and
forcibly maintained at a fixed temperature. They regarded the frozen portion as an elastic/perfectly-plastic
material, and conducted parametric studies to examine the mechanical stresses within the solid and the
hydrostatic pressure within the fluid as the freezing front advances. They showed that in materials with
physical properties resembling water, the stresses arising from thermal expansion in the solid state were
notably lower in comparison to the stresses resulting from volumetric expansion during phase transition.
They demonstrated that following the completion of the freezing process, a substantial portion of the frozen
region is occupied by a plastic zone. They concluded that the potential for tissue destruction was inevitable,
regardless of the speed at which the freezing process was conducted, as long as there was a substantial
expansion associated with phase transition.

Chan and Tan [2006] conducted experiments to study the solidification of n−hexadecane inside a sphere
by keeping the surface temperature constant. They observed that the solidification front starts to propagate
inward in a spherically-symmetric fashion. Later, the phase-change interface loses its spherical symmetry
and develops some irregularity/eccentricity as the shrinkage in the solidified material causes the formation
of voids. The rate of solidification is very high initially and reduces subsequently. However, they did not
consider stresses generated during the process. Numerous studies have explored the inward solidification of a
spherical liquid domain initially at its freezing temperature [Pedroso and Domoto, 1973a, Riley et al., 1974,
Stewartson and Waechter, 1976, Soward, 1980]. However, their main focus was to improve the approximation
of the temperature profile as the phase change interface neared the center of the sphere. Another example
of such a study is the asymptotic analysis conducted by McCue et al. [2003] who investigated the 2D inward
solidification of a melt within a rectangular domain at its fusion temperature. For a large Stefan’s number,
they computed the time required for complete solidification and observed that the phase change interface
forms an exact ellipse as it approaches the center. In none of these studies, mechanical stresses were taken
into account in their analyses. Pedroso and Domoto [1973b] studied the stresses generated during the inward
solidification of spheres. The state of stress at the freezing front was assumed to be hydrostatic, determined
by the corresponding pressure in the fluid, and the stress inside the solid was modeled using linear isotropic
thermoelasticity equations. They showed that the solid is residually stressed after the inner liquid pressure
and outer tractions were removed. They also investigated the effects of different liquid compressibility,
freezing temperature, and liquid pressure.

Abeyaratne and Knowles [1993] investigated solid-solid phase transitions in a one-dimensional domain by
deriving a kinetic relation for the motion of the phase-change interface that allowed them to be influenced
by local stress states. This kinetic equation related the interface velocity to the thermodynamic driving
force using the second law of thermodynamics. They also analyzed the onset of thermally or mechanically
induced phase transitions in thermoelastic solids via a nucleation criterion. Hodge and Papadopoulos [2010]
considered the configurations of an accreting body at discrete instances of time and analyzed the deformation
map between these instances. This map was decomposed multiplicatively into elastic and anelastic parts
for each incremental step, and the theory was applied to study deformations in 1D examples. They also
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mentioned the idea of an evolving reference configuration, though their theory treated this evolution to be
discrete in time. This idea was separately formulated in a much more general setting by Yavari [2010] in
the context of bulk growth, modeling the reference configuration as a Riemannian manifold with a time-
dependent metric.

Tomassetti et al. [2016] studied accretion-ablation induced by diffusion. They considered a thick per-
meable spherical shell that has grown on the surface of a rigid spherical substrate. The spherical shell is
surrounded by a fluid medium with free particles that diffuse into the permeable shell to reach the surface of
the spherical substrate where they polymerize and attach to the spherical shell. As this accretion occurs at
the fixed inner boundary some of the particles on the outer boundary are ablated out into the fluid medium.
Accretion and ablation are governed by the following factors: strain energy of the solid shell, external me-
chanical power, and the difference in chemical potential of the particles when they are free as compared to
when they are attached to the solid shell. The driving force—a measure of deviation from thermodynamic
equilibrium—is assumed to have a linear relationship with the flux of particles at the accretion-ablation
boundaries. The accretion-ablation rates are thermodynamically determined in terms of the chemical poten-
tial of the particles and strain energy density of the shell. They studied accretion-ablation in a treadmilling
regime and simply considered the steady state solution of the diffusion equation. A more general analysis
would take into account the time-evolution of particle flux and stresses in the solid due to transient diffusion.

Inspired by Brown and Goodman [1963], Zurlo and Truskinovsky [2017] studied accretion by analyzing
the incremental deformation and stress and their accumulation over time. The deformation increment is
the velocity of a point integrated over time, and the Cauchy stress increment is the stress rate of the point
integrated over time. The balance of linear momentum in this incremental theory requires the time derivative
of the Cauchy stress to be divergence-free in the absence of external body forces. They studied accretion in
hollow cylindrical tubes manufactured by winding infinitesimally thin layers under extremely small tangential
loads and analyzed the conditions under which a single cut renders a residually-stressed tube stress-free.
Further, Zurlo and Truskinovsky [2018] calculated growth-induced inelastic strain in 1D examples, such as
a growing bar attached to a Winkler foundation. The formulation of Zurlo and Truskinovsky [2017, 2018]
was based on linear elasticity, which was subsequently generalized to finite deformations in [Truskinovsky
and Zurlo, 2019]. Truskinovsky and Zurlo [2019] studied stress distributions in various examples of radial
accretion. These included a hollow sphere where the outer growth surface is exposed to controlled pressure,
and the cases of outward and inward accretion through a rigid spherical surface. They also modeled 2D
disks manufactured by winding infinitesimally-thin layers through accretion, and illustrated the 3D shapes
that alleviate the residual stresses in such structures.

Ganghoffer and Goda [2018] studied accretion in the framework of irreversible thermodynamics and
configurational forces. They distinguished between accretion and surface growth: simple material deposition
on a boundary is referred to as pure accretion, while pure surface growth involves isolated growth on a
particular surface, where material points in the layer are not conserved as the layer regenerates within
itself, causing incompatibility with other layers. They identified the driving forces incorporating mechanical,
chemical, and thermal effects for both accretion and surface growth phenomena. Drawing inspiration from
fluid-structure interactions, Naghibzadeh et al. [2021, 2022] studied accretion in a Eulerian framework,
bypassing the explicit identification of a reference configuration. They worked with an evolution equation

for the elastic part of the deformation gradient (i.e.,
e

F in F =
e

F
a

F), which was their sole kinematic descriptor

besides the velocity field. However,
a

F was assumed to be constant over time for a given particle. Later, in
[Naghibzadeh et al., 2021, 2022], they recovered several results of Sozio and Yavari [2017] and extended their
theory to include ablation.

Abeyaratne et al. [2022a] studied the stability of a pre-stressed elastic half space accreting due to steady-
state diffusion of free particles from the other half space. They reported that such surface growth of a half
space with surface tension is not always stable if the accretion interface is traction-free. Abeyaratne et al.
[2022b] examined the stability of a similar prestressed elastic half space accreting by diffusion, while the
other half space containing the free particles is assumed to be compliant and provide some resistance to
growth.

Fekry [2023] examined the evolution of stresses in a thermoviscoelastic cylinder manufactured via the
process of selective laser melting. He modeled the process of additive manufacturing as the accretion of
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discrete layers on the cylindrical boundary. Furthermore, Lychev and Fekry [2023a,b] studied the evolution
of temperature and stress, as well as residual stresses and distortions in a thermoelastic cylindrical bar
manufactured by lateral sintering. In the context of small deformations and temperature gradients, they
formulated discrete accretion as a recursive problem in terms of strain and stress increments. However, the
effects of latent heat during solidification was not considered in these works.

Rejovitzky et al. [2015] formulated a continuum theory to study the stresses generated during the deposi-
tion of solid electrolyte interphase layers, which play a significant role in the degradation of Li-ion batteries.
Based on the experimental results of Smith et al. [2011], they assumed the thickness of the accumulated
layer to be proportional to the square root of time, thus avoiding the complexity of obtaining it through the
use of the diffusion equation and reaction kinetics. They modeled the electrolyte as a linear elastic material
with a small Young’s modulus and vanishing Poisson’s ratio. The state of the attaching layers at the time of
deposition was considered as the stress-free reference configuration for the points within it. The deformation
gradient of the attaching layer, relative to this configuration, was then decomposed multiplicatively into
growth and elastic parts, with the growth part corresponding to the inelastic deformation induced within
each layer during attachment. They demonstrated the capability of their formulation by simulating the
evolution of Cauchy stress in the deposited layers during charging and discharging cycles on deformable
spheroidal anodes.

Polymerization is an example where phase transformation occurs as the result of an exothermic reaction
converting a partially cured gel to fully cured polymer. Kumar et al. [2021] provided analytical estimates for
the velocity of the reaction front propagating steadily in a 1D adiabatic domain. Kumar et al. [2022] studied
the evolution of mechanical stresses and large deformations that are induced due to phase transformation by
polymerization. Their thermo-chemo-mechanical model involves a coupled system of the following equations:
the balance of linear momentum, the transient heat equation and the reaction kinetics, where the unknowns
are the deformation field, the temperature field, and the degree of cure. The reaction kinetics are assumed
to be unaffected by mechanical deformations based on experimental observations. Since the polymerization
reaction is extremely exothermic and fast, no mechanical effects on the reaction kinetics were observed.
However, a clear thermo-mechanical coupling is evident in their formulation. They considered the example
of a 2D adiabatic domain and observed that the reaction interface travels at an almost constant speed. Li
and Cohen [2024] examined the propagation of reaction fronts in the process of polymerization, where a
minimal energy input transforms monomers at a soft gel-like state to a stiffer solid polymer. They used
the same polymer as Kumar et al. [2022], but cured to a higher degree in its initial state, making the front
speed more sensitive to deformations and heat loss. In a slender one-dimensional body under axial load,
they studied the influence of mechanical properties on the propagation of the reaction front, considering
the effects of thermal expansion and density changes resulting from the reaction. Using both experimental
and theoretical analyses, they demonstrated that the propagation of the reaction front can be quenched by
the application of mechanical loads, establishing a clear thermo-mechanical coupling. In particular, they
observed that below a critical applied load, the reaction front moves at an almost constant speed, but slows
down abruptly above this critical load.

Problem overview. In this paper, we consider the solid and liquid phases as homogeneous, isotropic,
compressible, hyperelastic materials that are rigid heat conductors. We neglect the inertial effects in both
phases. Additionally, we do not account for the influence of pressure on the phase change temperature. To
be specific, our study focuses on the inward solidification of a liquid inclusion initially at its solidification
temperature, trapped within a deformable solid body that is being externally cooled, with both phases
composed of the same material. For such problems, we calculate the evolution of deformation, stresses,
and temperature field inside the solid, as well as the location of the phase change front as it progresses
inward. We consider the solidification process until the radius of the inclusion reaches a certain small value.
This is because surface stresses are known to dominate when the inclusion size decreases beyond a certain
limit [Bico et al., 2018]. Since surface stresses have not been considered in this work, the numerical solutions
corresponding to very small liquid inclusions would be physically irrelevant. Furthermore, in materials where
the liquid phase is denser than the solid phase near the melting point, the pressure in the liquid inclusion
induced by compressive stresses significantly increases as the phase change front approaches the center of
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the sphere. Therefore, the accretion process is terminated with a certain time margin prior to achieving
full solidification. Finally, the resulting body is detached from the rigid container, drained of any remaining
liquid, and then cooled to an ambient temperature. The residual stresses and distortions are subsequently
computed for this configuration.

This paper is organized as follows. First, the general theory of thermoelastic accretion is described in
§2. The balance laws—including the conservation of mass, linear and angular momenta, the heat equation,
and Stefan’s condition—are discussed in §3. In §4, radially inward solidification in a cold rigid container
is modeled as a thermoelastic accretion problem with an unknown accretion velocity, and the numerical
results for the corresponding non-dimensionalized moving boundary-value problem are discussed in detail.
Conclusions are given in §5

2 Thermoelastic accretion induced by phase change

This section provides a concise overview of nonlinear thermoelasticity, the mechanics of accretion and the
application of Stefan’s condition in solidification problems. For a thorough analysis of geometric thermoe-
lasticity, see [Ozakin and Yavari, 2010, Sadik and Yavari, 2017b]. In-depth insights into accretion mechanics
are available in [Sozio and Yavari, 2019]. For a comprehensive understanding of the Stefan’s problem the
reader is referred to the texts by Rubinštĕın [1971] and Gupta [2017].

Consider the phase transition of a finite quantity of liquid undergoing cooling and solidification, either
within a rigid container or as an inclusion within a deformable solid. As the liquid solidifies and attaches
to the surface of the container or the deformable body, the body grows via accretion. In other words, the
solidifying body undergoes accretion and the adjacent fluid undergoes ablation, while the set of material
points in the solid-liquid system as a whole remains conserved.

Let S denote the three-dimensional ambient Euclidean space, with g representing its standard flat metric.1

Both the solid and liquid phases assume their respective deformed configurations endowed with this ambient
Euclidean metric. Those parts of the solid-liquid (pair) composite body which remain unaffected by phase
transformation are equipped with a temperature-dependent metric, which is flat at the initial temperature.
The individual reference configurations of the solid and liquid phases evolve as material points are transferred
from one phase to the other. The material metric for an accreting layer is a priori an unknown field and is
determined by its temperature and state of deformation at the time of attachment.

2.1 The solidifying body

Consider a solid body B0 with a liquid inclusion L0, both initially stress-free.2 The initial solid-liquid body
Z = B0 ∪L0 inherits a flat metric from the ambient Euclidean space. Assume that solidification (accretion)
begins at t = 0. Let M ⊃ Z denote the ambient material space, which is any connected and orientable
three-dimensional manifold embeddable in ℝ3 that includes Z. Let the map τ : L0 → [0,∞) assign a time
of solidification (attachment) to every fluid point. The accreting solid and the ablating fluid are identified
with their respective time-dependent material manifolds Bt and Lt (Figure 1).3 They are defined as follows

Bt = B0 ∪ τ−1[0, t] , Lt = L0 \ τ−1[0, t) . (2.1)

Note that Bt⊔Lt = B0⊔L0, although (Bt,Lt) ̸= (B0,L0). It is assumed that the differential dτ never vanishes,
i.e., at any moment during the solidification process, a smooth surface is being solidified. Let Ωt ⊂ ∂Bt be
the accretion surface where the solidifying material is about to attach. The level sets Ωt = τ−1(t) are

1g is a symmetric second-order tensor field on S. An explicit representation of g depends on the local coordinate chart.
At a point x ∈ S, and in a local chart {xa}, { ∂

∂xa
} is a coordinate basis for the tangent space TxS. The corresponding basis

for the cotangent space T ∗
xS is {dxa}. With respect to this coordinate chart, the metric has the following representation:

g = gab dx
a ⊗ dxb. This representation is independent of whether the metric is flat. If a Cartesian coordinate system is chosen

for the ambient space, then g = δab dx
a ⊗ dxb = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3. As another examnple, if cyclindrical

coordinates {r, θ, z} are considered, then g = dr ⊗ dr + r2 dθ ⊗ dθ + dz ⊗ dz.
2The effect of gravity is neglected, and hence, there is no pressure caused by the self-weight of the liquid.
3It should be emphasized that working with only a single attachment map implies that we are not considering ablation

(melting).
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assumed to be 2−manifolds, which are diffeomorphic to each other for all t ≥ 0. This assumption ensures
the existence of a material motion Φ : Ω0 × [0, te] → M, which is a diffeomorphism such that Φ(Ω0, t) = Ωt,
where te is the time at which solidification ends. The assumption dτ ̸= 0 implies that the solidified body is
a union of smooth surfaces. Each surface has a unique time of attachment and that implies existence of a
diffeomorphism Φ. The deformation map φt : Z → S is assumed to be a homeomorphism for each t, with
the restrictions φt

∣∣
Bt

and φt
∣∣
Lt

being C1 on the respective solid and liquid domains.

2.2 Kinematics of accretion

The kinematic quantities described in this subsection are specialized for the accreting domain (i.e., the solid
portion Bt in this case) but are identical for the ablating domain (i.e., the liquid portion Lt in this case). The
only difference is that for the ablating domain, the initial material metric is known; it is the flat Euclidean
metric. In the case of melting, the liquid domain would be accreting, and the formalization presented in this
subsection would directly apply to the liquid.

For an accreting solid, the deformation map φt : Bt → S is a C1 homeomorphism for each t. The so-called
deformation gradient Ft = Tφt (Tφt is the derivative of the deformation mapping [Marsden and Hughes,
1983], and sometimes the notation dφt is used instead) is a two-point tensor Ft : TXBt → TxCt, where
x = φt(X) and Ct = φt(Bt).4 The material and spatial velocity fields are defined as V(X, t) = ∂

∂tφ(X, t)

and vt = Vt ◦ φ−1
t , respectively. More specifically, the material and spatial velocities of the solid and fluid

particles are defined as

Vs(X, t) =
∂

∂t
φs(X, t) , vs

t = Vs
t ◦ (φs

t)
−1 , Vf(X, t) =

∂

∂t
φf(X, t) , vf

t = Vf
t ◦ (φf

t)
−1 , (2.3)

where φs = φ
∣∣
Bt

and φf = φ
∣∣
Lt
. Note that the deformation gradient Ft and the spatial velocity vt, defined

separately for the liquid and for the solid, are not necessarily continuous across the solidification interface.
Similarly, the material and spatial acceleration fields are defined as A(X, t) = ∂

∂tV(X, t) and At = at ◦φ−1
t ,

respectively.5

The map φ̄(X) = φ(X, τ(X)) records the placement of X at its time of attachment. In general, φ̄ :
L0 → S is not injective. Moreover, the frozen deformation gradient F̄(X) = Fτ(X)(X), which captures the
deformation gradient at the time of attachment, is not the tangent of an embedding, in general. Even when
φ̄ is an embedding, T φ̄ is not equal to F̄. In fact T φ̄ = F̄ + V̄ ⊗ dτ [Sozio and Yavari, 2019]. While F̄ is
compatible within each individual layer Ωt,

6 it is incompatible, in general. The incompatibility of F̄ (and
more precisely of the accretion tensor Q that explicitly depends on F̄) is the fundamental reason behind the
existence of local anelastic distortions in accreting bodies, and hence the presence of residual stresses.

Let ωt = φt(Ωt) denote the accretion surface in the deformed configuration. The growth (accretion)
velocity ut is a vector field that describes the velocity at which new material is being added onto ωt, i.e.,
−ut is the velocity of accreting particles relative to ωt just before attachment.7 The material growth velocity,
denoted as Ut, is a vector field that characterizes the time evolution of the layers Ωt within the material

4Let {XA} and {xa} be local coordinate charts on Bt and Ct ⊂ S, respectively. The deformation gradient is represented as

F =
∂φa

∂XA

∂

∂xa
⊗ dXA . (2.2)

We use the flexible notations φt(X) = φ(X, t) and Ft(X) = F(X, t). Note that
{

∂
∂xa

}
and {dXA} form the bases for TxCt and

T ∗
XBt, respectively. It should be emphasized that the term “deformation gradient” is misleading as F is not a gradient as it is

metric independent. However, this term is commonly used in the literature, and we have chosen to use it in this paper as well.
5In components, Aa = ∂V a

∂t
+ γabcV

bV c and aa = ∂va

∂t
+ ∂va

∂xb
vb + γabcv

bvc. Here, γabc denote the Christoffel symbols for

the Levi-Civita connection ∇g, i.e., ∇g
∂

∂xb

∂
∂xc

= γabc
∂
∂xa

. Similarly, the Christoffel symbols of ∇G are denoted as ΓABC ,

i.e., ∇G
∂

∂XB

∂
∂XC = ΓABC

∂
∂XA .

6Recall that each layer Ωt is a smooth surface.
7For an observer in the solid phase, solidification is an accretion process. A liquid particle that is about to solidify has

velocity −ut relative to the solidification surface ωt. This implies that −ut = vf
t

∣∣
ωt

−w, and hence ut = wt−vf
t

∣∣
ωt

, where wt

is the velocity of the solidification surface. Note that Wt(X) = Fs(X, τ(X))Ut(X) +Vs
t(X), and hence, wt = F̄Ut ◦ φt + vs

t.
Thus, ut = F̄Ut ◦ φt + vs

t

∣∣
ωt

− vf
t

∣∣
ωt

.

9



Figure 1: Motion of an elastic solid with a liquid inclusion.

ambient space. The vector field Ut is not uniquely determined and can be selected from an equivalence class
of material growth velocities that correspond to isometric material manifolds. Let wt and Wt be the spatial
and referential depictions of the total velocity of the accretion surface ωt, i.e., Wt ◦φt = wt. It can be shown
that Wt = F̄Ut +Vt, where the term F̄Ut accounts for the influence of accretion.

The accretion-induced anelasticity is modeled by the accretion tensor Q, which is a time-independent
two-point tensor, defined as

Q(X) = F̄(X) +
[
uτ(X)(φ̄(X))− F̄(X)Uτ(X)(X)

]
⊗ dτ(X) , X ∈ L0 . (2.4)

Since ⟨dτ,U⟩ = 1, it follows that QU = u. Although the accretion tensor Q is compatible within each
individual layer, it is not the tangent map of any embedding. For more details, see [Sozio and Yavari, 2019].

Remark 2.1. Let us consider a foliation chart8 {Ξ1,Ξ2, τ} induced by the time of attachment map τ
in the ambient material manifold M and a local chart {x1, x2, x3} in the ambient Euclidean manifold
S. The accretion tensor has the following representation with respect to the frames

{
∂
∂Ξ1 ,

∂
∂Ξ2 ,

∂
∂τ

}
and{

∂
∂x1 ,

∂
∂x2 ,

∂
∂x3

}
[Sozio and Yavari, 2019]

[
QiJ

]
=


∂φ̄1

∂Ξ1
∂φ̄1

∂Ξ2 u1τ ◦ φ̄
∂φ̄2

∂Ξ1
∂φ̄2

∂Ξ2 u2τ ◦ φ̄
∂φ̄3

∂Ξ1
∂φ̄3

∂Ξ2 u3τ ◦ φ̄

 . (2.5)

2.3 Material metric for thermoelastic accretion

Consider a time-dependent material manifold (Bt,G), where the metric G measures distances corresponding
to the relaxed state, taking into account the thermal history of the body. In geometric thermoelasticity, the
metric G is a function of temperature T (X, t), and is given as [Sadik and Yavari, 2017b, Sozio et al., 2020]

G(X,T ) = eω
⋆(X,T )G0(X) eω(X,T ) , (2.6)

8Let M be an 3-dimensional manifold. A 2-foliation, or a foliation of codimension 1, is an atlas of charts (Ua,Ξa) where a
belongs to some index set I, such that Ξa(Ua) = Va× Ia with Va ⊂ ℝ2 and Ia ⊂ ℝ being open sets. The charts Ξa are referred
to as foliation charts. Under this condition, M is partitioned into a collection {Ωt}t∈ℝ of embedded submanifolds of dimension
2, known as the leaves of the foliation [Camacho and Neto, 2013].
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where ω is a
(
1
1

)
-tensor characterizing thermal expansion properties in the solid and G0 is a temperature-

independent metric.9 The volumetric coefficient of thermal expansion β(X,T ) is given by

β(X,T ) =
∂

∂T
trω(X,T ) . (2.9)

For a time-independent reference temperature field T0(X), it is assumed that ω
(
X,T0(X)

)
= 0, and hence

G
(
X,T0(X)

)
= G0(X). In the thermally accreted part of the body, T0(X) is assumed to be the temperature

of the attached material at its time of attachment. However, in the initial body B0, T0(X) represents the
initial temperature. The material metric G

(
X,T0(X)

)
for the accreted portion is calculated by pulling back

the Euclidean ambient metric g via the accretion tensor Q:

G
(
X,T0(X)

)
= Q⋆(X)g

(
φ̄(X)

)
Q(X) . (2.10)

The temperature-dependent material metric is therefore given by

G(X,T ) = eω
⋆(X,T )Q⋆(X)g

(
φ̄(X)

)
Q(X)eω(X,T ) . (2.11)

Let dv and dV denote the spatial and material volume elements, respectively. They are related via the
Jacobian as dv = J dV , where

J =

√
detg

detG
detF =

√
detg

detg ◦ φ̄
detF

detQ
e−trω . (2.12)

Remark 2.2. For a thermally isotropic and homogeneous body, (2.6) is simplified as

G(X,T ) = e2ω(T )G0(X) , (2.13)

where the scalar ω(T ) is related to the coefficient of thermal expansion α(T ) as

ω
(
T (X)

)
=

∫ T (X)

T0(X)

α(η) dη . (2.14)

The volumetric coefficient of thermal expansion in dimension three is β = 3α.

Remark 2.3. Let nτ and Nτ denote the unit normals to ωτ and Ωτ , with respect to the metrics g and
G, respectively. The growth (accretion) velocities in the deformed and material configurations can be
decomposed as follows

u = u∥ + u⊥ = u∥ + un n , U = U∥ +U⊥ = U∥ + UN N , (2.15)

where ⟨⟨u∥,n⟩⟩g = ⟨⟨U∥,N⟩⟩G = 0. Moreover, QU∥ = u∥, QN = n and UN = un ◦ φ > 0 [Sozio and Yavari,
2019].

3 Balance laws

The balance laws for the solid and liquid domains are presented here in a generic manner, without any
distinction between the phases.

9The adjoint of deformation gradient F⋆(X, t) : T ∗
xCt → T ∗

XBt is defined such that

⟨α,FW⟩ = ⟨F⋆α,W⟩ , ∀ W ∈ TXBt , α ∈ T ∗
xCt , (2.7)

where ⟨ . , . ⟩ is the natural paring of 1-forms in T ∗
xCt with vectors in TxCt, i.e., ⟨α,w⟩ = αa wa. F⋆ is a

(1
1

)
-tensor with the

following coordinate representation

F⋆ =
∂φa

∂XA
dXA ⊗

∂

∂xa
. (2.8)
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3.1 Conservation of mass

Let the material and spatial mass densities be denoted by ρ(X, t) and ϱ(x, t), respectively. Let ρ0(X)
represent the material mass density corresponding to the metric G0. The mass of a sub-body U ⊂ Pt is
calculated as ∫

φt(U)

ϱdv =

∫
U
ρdV =

∫
U
ρ0dV0 , (3.1)

where dV0 is the volume element corresponding to the stress-free material metric, and is related to dV as

dV =
√

detG
detG0

dV0. The mass densities are related as Jϱ = ρ and ρ0
√
detG0 = ρ

√
detG, i.e.,

J(X, t) ϱ
(
φ(X, t), t

)
= ρ(X, t) = e− trω(X,T (X,t))ρ0(X) . (3.2)

The material mass continuity equation is written as10

ρ̇+
1

2
ρ trG Ġ = 0 , (3.3)

while the spatial mass continuity equation reads11

ϱ̇+ ϱ divg v = ϱ,t + divg(ϱv) = 0 . (3.4)

Here, ( )̇ = ∂
∂t

∣∣
X
( ) represents the material time derivative, while ( ),t represents the partial derivative

∂
∂t

∣∣
x
( ).

3.2 Stress and strain tensors

The right and left Cauchy-Green strains are defined asC = FTF and b = FFT, respectively.12 In components

CAB = GAMF aM gabF
b
B , bab = F aAG

ABF cBgcb . (3.6)

Further, their inverses are denoted by B = C−1 and c = b−1, respectively. Note that C♭ is the pull-back of
the spatial metric g via the deformation map φ (i.e. C♭ = φ∗g) and c♭ is the push-forward of the material
metric G via φ (i.e. c♭ = φ∗G).13 Moreover, b♯ = φ∗(G

♯) and B♯ = φ∗(g♯).14 In components

CAB = gabF
a
AF

b
B , cab = GABF

−A
aF

−B
b , BAB = gabF−A

aF
−B

b , bab = GABF aAF
b
B , (3.9)

10For a material tensor field K with components KAB , trG K = KAB GAB = G♯ :K♭. Similarly, for a spatial tensor field k
with components kab, trg k = kab g

ab = g♯ :k♭.
11Note that divg v = trg ∇gv, where ∇g is the Levi-Civita connection corresponding to the metric g. In a coordinate chart

{xa}, divg v = va|a = va,a + γaab v
b, where γabc = 1

2
gak

(
gkb,c + gkc,b − gbc,k

)
are the Christoffel symbols corresponding to

the metric g.
12The transpose of the deformation gradient FT(X, t) : TxCt → TXB is defined such that

⟨⟨FW,w⟩⟩g = ⟨⟨W,FTw⟩⟩G , ∀ W ∈ TXBt , w ∈ TxCt . (3.5)

In components,
(
FT

)A
a = GABF bB gba. Thus, F⋆ and FT are related as FT = G♯F⋆g.

13Given a diffeomorphism (a differentiable map with differentiable inverse) φ : B → C, a tensor field K on B has a unique
corresponding natural tensor field k = φ∗K—the push-forward of the tensor field K by the map φ. Similarly, a tensor field l
on C, has a unique corresponding tensor field L = φ∗l on B—its pull-back by the map φ.

14Here, the musical symbols ♭ and ♯ denote the flat and sharp operators that lower and raise tensor indices, respectively.
Recall that a Riemannian metric induces natural isomorphisms between the tangent space and the cotangent space, namely the
flat operator that maps a vector u to its corresponding covector (1-form) u♭:

♭ : TxC −→ T ∗
xC

u = ua
∂

∂xa
7−→ u♭ = gab u

b dxa ,
(3.7)

and the sharp operator that maps a covector (1-form) α to its corresponding vector α♯:

♯ : T ∗
xC −→ TxC

α = ωa dx
a 7−→ α♯ = gabαb

∂

∂xa
.

(3.8)
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where F−A
a are the components of F−1. The principal invariants of the right Cauchy-Green strain read

I1 = trC = trG C♭ , I2 =
1

2

(
I21 − trC2

)
, I3 = detC =

detC♭

detG
. (3.10)

With respect to a coordinate chart {XA}, I1 = CAA and I2 = 1
2

(
I21 − CABC

B
A

)
. Note that

√
I3 = J =√

det g
detG detF. The constitutive model for hyperelastic materials is given by a free energy density function

W = W̃ (X,T,F,g,G) = Ŵ (X,T,C♭,G),15 per unit undeformed volume, i.e., volume calculated using the
metric G. The Cauchy stress tensor σ, the first Piola-Kirchhoff stress tensor P, and the second Piola-
Kirchhoff stress tensor S are related to the free energy function as16

σ =
2

J

∂W̃

∂g
, P = g♯

∂W̃

∂F
, S = 2

∂Ŵ

∂C♭
. (3.12)

In components17

σab =
2

J

∂W̃

∂gab
, P aA = gab

∂W̃

∂F bA
, SAB = 2

∂Ŵ

∂CAB
. (3.13)

Note that P = JσF−⋆ and S = F−1P.

Remark 3.1. The free energy function for an isotropic hyperelastic solid is a function of the principal
invariants of C, i.e., W = W̌ (X,T, I1, I2, I3), and the Cauchy stress is represented as [Doyle and Ericksen,
1956, Simo and Marsden, 1984]

σ =
2√
I3

[(
I2
∂W̌

∂I2
+ I3

∂W̌

∂I3

)
g♯ +

∂W̌

∂I1
b♯ − I3

∂W̌

∂I2
c♯
]
. (3.14)

Remark 3.2. The free energy function for hyperelastic fluids has the functional form W = W̆ (X,T, J),
where W̆ is a smooth, strictly convex function of J that tends to infinity as J approaches 0 [Podio-Guidugli
et al., 1985]. Thus, the Cauchy, the first and the second Piola-Kirchhoff stress tensors are written as

σ =
∂W̆

∂J
g♯ , P = J

∂W̆

∂J
g♯F−⋆ , S = J

∂W̆

∂J
F−1g♯F−⋆ . (3.15)

Note that one must have ∂W̆
∂J < 0, as hydrostatic stresses are compressive in fluids.

The free energy function for homogeneous materials is independent of X, i.e., W = Ŵ (T,C♭,G) for
hyperelastic solids and W = W̆ (T, J) for hyperelastic fluids.

15Free energy (a scalar) depends on F (a two-point tensor). To make a scalar out of a two-point tensor, one would need
metrics of both the reference and current configurations [Marsden and Hughes, 1983].

16The relationship between stress and strain measures in hyperelasticity are obtained either using a Coleman and Noll [1963]
argument, which gives (3.12)2 (or (3.12)3) or covariance of energy balance [Marsden and Hughes, 1983, Yavari et al., 2006] that
gives the Doyle-Ericksen formula (3.12)1. Let us start with the Doyle-Eticksen formula and recall that C♭ = F∗g = F⋆gF,
and hence

∂W̃

∂g
=

∂Ŵ

∂C♭
:
∂C♭

∂g
= F

∂Ŵ

∂C♭
F⋆ . (3.11)

Knowing that S = JF−1PF−⋆, one obtains (3.12)3.
17In the standard notation of nonlinear elasticity, one simply writes P = ∂W̃

∂F
, which has components PaA. When this

two-point tensor acts on a unit normal vector N in the reference configuration, it gives a co-vector in the current configuration

t♭—the traction co-vector. The corresponding two-point tensor g♯ ∂W̃
∂F

acting on the same unit vector N gives the corresponding
vector t—the traction vector. In the standard notation of nonlinear elasticity, either Cartesian coordinates are used, or the
physical components of tensor fields are implicitly assumed. In the presence of eigenstrains (sources of residual stresses), a
global reference configuration would have a non-trivial geometry, and it is important to ensure that the tensorial character of
all the physical fields is clearly understood.
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3.3 Balance of linear and angular momenta

The localized forms of the balance of linear momentum in terms of the Cauchy and the first Piola-Kirchhoff
stress read18

divg σ + ϱb = ϱa , DivP+ ρB = ρA , (3.17)

where b is the spatial body force (per unit mass), while B is body force referred in material coordinates,
i.e., B(X, t) = b(φt(X), t). In components

σij |j + ϱ bi = ϱ ai , P iI |I + ρBi = ρAi . (3.18)

The balance of angular momentum in local form reads

σij = σji , P iJF jJ = P jJF iJ . (3.19)

Note that for slow accretion, the inertial effects can be disregarded.
Let t be the spatial traction field. Consider a material surface element dA with unit normal N, which

gets mapped to the element da with unit normal n in the deformed configuration. The traction is related
to the Cauchy stress as t = σn♭ = ⟨⟨σ,n⟩⟩g. The material traction field is denoted by T and is related to

the first Piola-Kirchhoff stress as T = PN♭ = ⟨⟨P,N⟩⟩G.19 Note that t da = σn♭ da = JσF−⋆N♭ dA =
PN♭ dA = TdA.20 Therefore, the force on the surface element in consideration is t da = TdA.

3.4 The heat equation

Let T (x, t) be the temperature field defined with respect to the current configuration and let T (X, t) be
the temperature field defined with respect to the reference configuration. Since x = φ(X, t), it follows
that T (X, t) = T (φ(X, t), t), i.e., Tt = Tt ◦ φt, or equivalently, Tt = φ∗

tTt. Recall that dT = ∂T
∂xa dx

a, and

dT = ∂T
∂XA dXA. Note that dT is a 1-form in the Euclidean ambient manifold with components (dT )a = ∂T

∂xa ,

while dT is a 1-form in the material manifold with components (dT )A = ∂T
∂XA related to dT via pull back,

i.e., dT = φ∗
tdT . Thus

∂T

∂XA
=

∂T
∂xa

∂xa

∂XA
= F aA(dT )a = (φ∗

tdT )A . (3.20)

Let h(x, t) denote the heat flux in the current configuration. Note that ⟨⟨h,n⟩⟩gda is interpreted as the flux
through the surface element da with unit normal n (da is the area 2-form).

The material heat flux vector H is defined via the Piola transform as

H(X, t) = J(X, t)F−1(X, t)h(φ(X, t), t) . (3.21)

In components,
HA = JF−A

a h
a . (3.22)

Let N denote unit normal to the material surface element dA, which gets mapped to the deformed element
da. Using (3.22) and Nanson’s formula, it is implied that HBNB dA = JF−B

b h
bNB dA = hbnb da, i.e.,

⟨⟨H,N⟩⟩G dA = ⟨⟨h,n⟩⟩g da. Thus, ⟨⟨H,N⟩⟩G is interpreted as the heat flux per unit undeformed area.
The generalized Fourier’s law of thermal conduction in the deformed configuration reads

h = −k dT , (3.23)

18In coordinates

(divgσ)a = σab|b =
∂σab

∂xb
+ σacγbcb + σcbγacb ,

(DivP)a = PaA|A =
∂PaA

∂XA
+ PaBΓABA + F bAP

cAγacb ,

(3.16)

where γabc =
1
2
gak

(
gkb,c + gkc,b − gbc,k

)
and ΓABC = 1

2
GAM

(
GMB,C +GMC,B −GBC,M

)
. Note that Div depends on both

the metrics g and G through the Christoffel coefficients ΓABA and γacb.
19Note that nb = gbcn

c and NB = GBCN
C . Thus, ta = σab nb = σabgbc n

c and Ta = PaANA = PaAGAB NB .
20The Nanson’s formula n♭da = JF−⋆N♭dA has been used here. In components, the 1-forms nbda and NBdA are related as

nbda = JF−B
bNBdA.
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where the
(
2
0

)
-tensor k represents the spatial thermal conductivity. In components, ha = −kab ∂T

∂xb . The
Fourier’s law in the reference configuration is written as

H = −K dT , or HA = −KAB ∂T

∂XB
, (3.24)

where K denotes the material thermal conductivity. Note that the material and spatial thermal conductivity
tensors are related as K = Jφ∗

tk.
21 In components, KAB = JF−A

a k
abF−B

b. Furthermore, upon substitut-
ing (3.24)1 into the reduced form of the Clausius-Duhem inequality ⟨dT,H⟩ ≤ 0, it can be deduced that K
is a positive semi-definite tensor. The spatial heat equation reads

ϱ cE Ṫ + divg h = T m :d+ r , (3.26)

where cE is the specific heat capacity at constant strain, m is the spatial thermal stress coefficient, d = 1
2Lvg

denotes the rate of deformation tensor and r represents a heat source (per unit deformed volume) term. The
heat equation is a consequence of the first law of thermodynamics, as shown in detail in Appendix A.2.
Equivalently, the material heat equation is written as

ρ cE Ṫ +DivG H = T M :D+R , (3.27)

where M is the material thermal stress coefficient, D = 1
2Ċ

♭ denotes the material rate of deformation tensor
and R represents a heat source (per unit undeformed volume) term, see Appendix A.1. The material and
spatial thermal stress coefficients are related as M = Jφt

∗m (see Appendix A.2). Note that the term
T m :d (or equivalently, TM :D) can be omitted if there is no thermoelastic coupling in the material under
consideration.22 In the absence of heat sources, the spatial heat equation for a rigid heat conductor is written
as

ϱ cE Ṫ = divg(k dT ) , (3.28)

or, in components, ϱ cE Ṫ =
(
kab ∂T

∂xb

)
|a. The equivalent material heat equation is written as

ρ cE Ṫ = DivG (K dT ) . (3.29)

In components, ρ cE Ṫ =
(
KAB ∂T

∂XB

)
|A. The heat flux in thermally isotropic solids has the following repre-

sentation
H =

(
ϕ−1B

♯ + ϕ0G
♯ + ϕ1C

♯
)
dT , (3.30)

where ϕk = ϕ̂k(X,T,dT,C
♭,G), k = −1, 0, 1, are scalar response functions [Truesdell and Noll, 2004]. We

consider the modelH = −KG♯dT for our numerical examples, whereK = K(T ) denotes the heat conduction
coefficient.23 Further, D = K

cEρ
is the traditional thermal diffusivity.

3.5 Stefan’s condition

Let Γt ⊂ ∂Bt and γt = φt(Γt). Let
+

h and
−

h denote the heat flux per unit area on the opposite sides of the
interface γt in the current configuration. In the absence of any phase change or heat source/sink, the jump
in the normal heat flux across γt vanishes, i.e.,

⟨⟨
+

h−
−

h,n⟩⟩g = 0 on γt , (3.31)

where n is the outward unit normal to γt.

21Using (3.22), (3.23) and (3.20), it is implied that

HA = −JF−A
a k

ab ∂T
∂xb

= −JF−A
a k

ab ∂T

∂XB
F−B

b . (3.25)

Hence, it can be inferred from (3.25) and (3.24)2 that KAB = JF−A
a kabF−B

b.
22A classic illustration of thermoelastic coupling is the Gough-Joule effect, observed in vulcanized rubber, where the temper-

ature of a rubber band changes during adiabatic stretching [Gough, 1805, Joule, 1859].
23Note that gradG T = G♯dT .
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Figure 2: The interface between the (cold) solid and (hot) liquid phases forms an isothermal surface at the solidification
temperature Tm. The unit normal n to the phase-change interface is assumed to point from solid to liquid.

Figure 3: The heat flux hL is directed into the interface in the fluid medium due to its higher temperature compared to the
melting point. However, in the solid, where the temperature is lower than the melting point, hS is directed into the solid. The
heat entering the solid comprises of the heat released during solidification and the heat transferred from the liquid medium.

When γt is the solidification interface between the (cold) solid and (hot) liquid phases, it forms an
isothermal surface at the melting point Tm (Figure 2). Let n be the unit normal to γt, pointing from solid
to liquid, and let υ be an arbitrary subset of γt. Let hS and hL be the heat flux in the solid and liquid
phases, respectively, in the current configuration. As one moves into the liquid phase from the solidification
interface, T increases, implying that hL points towards the solid (Figure 3). Hence, qin = −

∫
υ
⟨⟨hL,n⟩⟩g da

represents the rate of normal heat inflow into the subset υ on the interface from the liquid via conduction.
There is a decrease in T as one moves from the phase change interface into the solid, indicating that hS also
points into the solid. Thus, the rate of heat flowing out normally from the subset υ on the interface into the
solid is qout = −

∫
υ
⟨⟨hS ,n⟩⟩g da. The rate of mass solidified on the subset υ of the interface is represented

by the integral
∫
υ
ρ unda [Sozio and Yavari, 2019]. As solidification is exothermic, the rate of heat released

in the process is expressed as qexo = l
∫
υ
ρ unda, where l is the specific latent heat of solidification. The

heat flowing into the solid consists of two components: the heat released during solidification and the heat
transferred from the surrounding liquid medium [Rubinštĕın, 1971, Gupta, 2017]. In terms of heat flow per
unit time, qout = qexo + qin (Figure 3), i.e.,

−
∫
υ

⟨⟨hS ,n⟩⟩g da = l

∫
υ

ϱ Junda−
∫
υ

⟨⟨hL,n⟩⟩g da , (3.32)
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Figure 4: Schematic representation of radially inward solidification in a spherical rigid container with cold walls maintained
at the temperature Tc < Tm.

where υ ⊂ γt is an arbitrary subset. The localized Stefan’s condition therefore reads

⟨⟨hS − hL,n⟩⟩g + lϱ Jun = 0 on γt , (3.33)

where ϱ Jun = ρUN represents the mass accreted, per unit area, per unit time. The localized Stefan’s
condition in the reference configuration is expressed as

⟨⟨HS −HL,N⟩⟩G + lρ UN = 0 on Γt . (3.34)

Note that if the liquid is initially at the solidification temperature, there is no heat flux in the liquid phase,
i.e., hL = 0. In this case, Stefan’s condition is simplified as

−⟨⟨HS ,N⟩⟩G = lρ UN on Γt , or − ⟨⟨hS ,n⟩⟩g = lϱ Jun on γt . (3.35)

Thus, the heat entering the solid from the phase change interface is equal to the heat generated in the process
of solidification.

4 Radially inward solidification in a cold rigid container

Consider a spherical container of radius R0, filled with a liquid initially at uniform temperature T0. The
inner wall of the container is maintained at a constant temperature Tc. Let Tm denote the melting point
of the material, satisfying the condition Tc < Tm ≤ T0. At t = 0, the outermost layer of liquid begins to
cool down and solidifies when the melting point is reached. The container wall acts as a rigid substrate
to which the outermost accreted layer firmly attaches, resulting in no displacement of the outer boundary
of the accreting body. Layers of liquid solidify and attach to the inner surface of the accreting body—a
spherical shell, causing the solidification front to progress inward (Figure 4). The temperature fields within
the accreting body and the liquid are both unknowns.24

We model both the liquid and solid phases as isotropic compressible hyperelastic materials. To simplify
the analysis, an assumption can be made that Tm = T0, allowing for solidification to initiate near the
container wall at t = 0 [Stewartson and Waechter, 1976, Rabin and Steif, 1998].

24This problem draws inspiration from the experiments conducted by Chan and Tan [2006] who investigated the inward
solidification of an n−hexadecane in a spherical enclosure (capsule) with walls maintained at a constant temperature. They
placed this capsule in a cool water tank that was consistently stirred and supplied with cold water from a refrigerated bath.
They attached thermocouples to the capsule walls to track its temperature and ensure that it remains constant throughout the
process.
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4.1 Kinematics

The ambient space has the Euclidean metric, which in spherical coordinates, i.e., with respect to the frame{
∂
∂r ,

∂
∂θ ,

∂
∂ϕ

}
has the following representation

g =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 , (4.1)

in terms of the spherical coordinates (r, θ, ϕ), where r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.
Let S(t) denote the material radius corresponding to the inner surface of the solid at any time t ≤ tf ,

where tf is the time taken for the completion of freezing.25 Note that S(t) is assumed to be a continuous
bijective map on [0, tf ] with the initial condition S(0) = R0. The inverse map τ = S−1 assigns the time of
attachment to each spherical layer in the material manifold. The accreting solid and the ablating fluid are
identified with the following time-dependent material manifolds

Bt = {(R,Θ,Φ) : S(t) ≤ R ≤ R0 , 0 ≤ Θ ≤ π , 0 ≤ Φ < 2π} ,
Lt = {(R,Θ,Φ) : 0 ≤ R ≤ S(t) , 0 ≤ Θ ≤ π , 0 ≤ Φ < 2π} .

(4.2)

Let the temperature field be denoted as T (R, t), and defined piece-wise as follows

T (R, t) =

{
T s(R, t) , S(t) ≤ R ≤ R0 ,

T f(R, t) , 0 ≤ R ≤ S(t) .
(4.3)

Note that Tt(R) = T (R, t) is continuous at the solidification interfaceR = S(t), i.e., T s(S(t), t) = T f(S(t), t) =
Tm. The material metric for the liquid phase in its initial state is the flat Euclidean metric restricted to L
and has the following representation

L
G0 =

1 0 0
0 R2 0
0 0 R2 sin2 Θ

 , (4.4)

where (R,Θ,Φ) are the material spherical coordinates. Thus, the temperature-dependent material metric
for the liquid phase is written as

L
G = e2ω

f(T f(R,t))

1 0 0
0 R2 0
0 0 R2 sin2 Θ

 , (4.5)

where the scalar function ωf(T f) characterizes isotropic and homogeneous thermal expansion in the liquid
phase. We consider radial deformations φt(R,Θ,Φ) = (r(R, t), θ, ϕ), where θ = Θ, ϕ = Φ, and

r(R, t) =

{
rs(R, t) , S(t) ≤ R ≤ R0 ,

rf(R, t) , 0 ≤ R ≤ S(t) ,
(4.6)

and rs(R0, t) = R0, r
f(0, t) = 0.26 Note that r(R, t) is continuous at R = S(t) for all t ≥ 0. Let s(t) :=

rs(S(t), t) = rf(S(t), t) and r̄(R) := rs(R, τ(R)) = rf(R, τ(R)). Thus, r̄ = s ◦ τ , or s = r̄ ◦ S.27 The moving

25Note that the freezing time may be quite large or even infinite. In that case one would need to solve the problem in the
time interval [0,∞) instead.

26Podio-Guidugli et al. [1985] investigated cavitation in hyperelastic fluids undergoing similar radial deformations. They called
the deformations satisfying the condition rf(0, t) = 0 regular, and those with rf(0, t) > 0, irregular deformations corresponding
to a cavity (hole) of radius rf(0, t).

27Note that
ṡ(t) = rs,R(S(t), t) Ṡ(t) + rs,t(S(t), t) = rf,R(S(t), t) Ṡ(t) + rf,t(S(t), t) , (4.7)

and thus [
rs,R(S(t), t)− rf,R(S(t), t)

]
Ṡ(t) + rs,t(S(t), t)− rf,t(S(t), t) = 0 . (4.8)

Hence, the velocity field r,t(R, t) is continuous at R = S(t) if and only if the partial derivative r,R(R, t) is also continuous at
R = S(t).
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phase-change interface in the reference and current configurations are represented as

Ωt = {(S(t),Θ,Φ) : 0 ≤ Θ ≤ π , 0 ≤ Φ < 2π} ,
ωt = {(s(t), θ, ϕ) : 0 ≤ θ ≤ π , 0 ≤ ϕ < 2π} .

(4.9)

The respective deformation gradients in the solid and liquid phases read

Fs(R, t) =

rs,R(R, t) 0 0
0 1 0
0 0 1

 , Ff(R, t) =

rf,R(R, t) 0 0
0 1 0
0 0 1

 . (4.10)

Let U(t) := Ṡ(t) < 0 be the material growth velocity. Let u(t) denote the growth velocity in the current
configuration, i.e., −u(t) is the relative velocity of the accreting liquid particles with respect to the interface
ωt. Further define ū(R) := u(τ(R)) and Ū(R) := U(τ(R)). Thus, the accretion tensor Q has the following
representation with respect to the frames

{
∂
∂R ,

∂
∂Θ ,

∂
∂Φ

}
and

{
∂
∂r ,

∂
∂θ ,

∂
∂ϕ

}
:28

Q(R) =

 ū(R)
Ū(R)

0 0

0 1 0
0 0 1

 . (4.13)

The accreting layer is not stress free due to the pressure exerted by the fluid. Let λ be the natural
metric of the pre-stressed layers that are accreting to the solid. This metric λ is obtained by transforming
the Euclidean metric g via a pre-deformation tensor Λ as λij = Λki(gkl ◦ φ̄) Λlj . In this case, the material
metric for the accreted layer is calculated by pulling back the natural metric λ via the accretion tensor Q
[Sozio and Yavari, 2019]. Therefore, one has

(
B
G0)IJ = QiI λij Q

j
J = QiI Λ

k
i (gkl ◦ φ̄) Λlj QjJ . (4.14)

In this example, it is assumed that

Λ(R) = η(R)
∂

∂r
⊗ dr +

∂

∂θ
⊗ dθ +

∂

∂ϕ
⊗ dϕ , (4.15)

where the function η(R) is used to transform the Euclidean metric g ◦ φ̄ by scaling its rr-component by a
factor of η2(R),29 such that the resulting metric λ reads

λ(R) =

η2(R) 0 0
0 r̄2(R) 0
0 0 r̄2(R) sin2 Θ

 . (4.16)

λ is the metric that measures natural distances in the radially stressed, deformed configuration of the
accreting layers at the time of attachment. η2(R) > 1 indicates radial dilation of accreting layers just before

28In our example, uτ(R)(φτ(R)(R,Θ,Φ)) = ū(R) ∂
∂r

and Uτ(R)(R,Θ,Φ) = Ū(R) ∂
∂R

. Recall that the components of the
accretion tensor are defined as

QiI(X) = F̄ iI(X) +
[
ui (φ̄(X), τ(X))− F̄ iJ (X)UJ (X, τ(X))

]
(dτ)I(X) , (4.11)

where F̄ iI are the components of F̄(X) = Fs(X, τ(X)). Further,
dτ(R)
dR

= 1
Ṡ(τ(R))

= 1
Ū(R)

. Thus, the nonzero components of

Q are

QrR = F̄ rR +
[
ū− F̄ rRŪ

] dτ

dR
=

ū

Ū
, QθΘ = F̄ θΘ = 1 , QϕΦ = F̄ϕΦ = 1 . (4.12)

29This scaling is essential to account for the deformation present in the accreting layer just before attachment. The specific
format assumed in (4.15) ensures that there are only radial deformations, i.e., the accreting layers are radially dilated or
contracted just before attachment.
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attachment, while η2(R) < 1 indicates radial contraction. Thus, by substituting (4.13) and (4.16) into (4.14),
the temperature-independent material metric at the time of accretion is written as

B
G0 =

ς2(R) 0 0
0 r̄2(R) 0
0 0 r̄2(R) sin2 Θ

 , (4.17)

where ς(R) = ū(R)η(R)
Ū(R)

. Hence, the temperature-dependent material metric for the solid phase is written as

B
G = e2ω

s(T s(R,t))

ς2(R) 0 0
0 r̄2(R) 0
0 0 r̄2(R) sin2 Θ

 , (4.18)

where the scalar function ωs(T s) characterizes isotropic and homogeneous thermal expansion in the solid
phase. Substituting the determinants of (4.1), (4.18), (4.5) and (4.10) into (2.12), the Jacobian of the
deformation is written as

J(R, t) =



√
detg

det
L
G

detFf , 0 ≤ R ≤ S(t) ,√
detg

det
B
G

detFs , S(t) ≤ R ≤ R0 ,

=


[
rf(R, t)

]2
rf,R(R, t)

e3ωf(T f(R,t))R2
, 0 ≤ R ≤ S(t) ,

[rs(R, t)]
2
rs,R(R, t)

e3ωs(T s(R,t))r̄2(R) ς(R)
, S(t) ≤ R ≤ R0 .

(4.19)

Further, αs(T s) =
dωs(T s)

dT s
and αf(T f) =

dωf(T f)

dT f
are the coefficients of thermal expansion in the solid and

liquid phases, respectively.

Remark 4.1. Since ṡ(t) is the radial velocity of ωt and rf,t(S(t), t) is the radial velocity of liquid points
just before attachment, the accretion velocity is u(t) = ṡ(t)− rf,t(S(t), t). Further, it follows from (4.7) that

rf,R(S(t), t) =
u(t)
U(t) , i.e., Q

r
R(R) = (F f)rR(R, τ(R)).

4.2 Balance laws

4.2.1 Conservation of mass

The mass of the liquid and solid portions are calculated as30

mf(t) =

∫ S(t)

0

e3ω
f(T f(R,t))ρf(R, t) 4πR2 dR =

∫ S(t)

0

ρf0(R) 4πR
2 dR ,

ms(t) =

∫ R0

S(t)

e3ω
s(T s(R,t))ρs(R, t) 4πr̄2(R) ς(R) dR =

∫ R0

S(t)

ρs0(R) 4πr̄
2(R) ς(R) dR .

(4.20)

Thus, the total mass of the system m(t) = mf(t) +ms(t) is written as

m(t) =

∫ S(t)

0

ρf0(R) 4πR
2 dR+

∫ R0

S(t)

ρs0(R) 4πr̄
2(R) ς(R) dR . (4.21)

30Alternatively, one has mf(t) =

∫ s(t)

0
ϱf(r, t) 4πr2 dr, and ms(t) =

∫ R0

s(t)
ϱs(r, t) 4πr2 dr.
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Using the Leibniz rule, it can be shown that

ṁ(t) = 4π
[
ρf0 (S(t))S

2(t)− ρs0 (S(t)) s
2(t) ς (S(t))

]
Ṡ(t) . (4.22)

As the mass of the entire body is conserved, ṁ(t) = 0. Since Ṡ(t) is nonzero, it follows from (4.22) that

ρf0 (S(t))S
2(t) = ρs0 (S(t)) s

2(t) ς (S(t)) . (4.23)

The material continuity in the respective phases read31

ρs,t(R, t) + βs(T s(R, t))T s
,t(R, t)ρ

s(R, t) = 0 ,

ρf,t(R, t) + βf
(
T f(R, t)

)
T f
,t(R, t)ρ

f(R, t) = 0 .
(4.25)

The density is assumed to be a function of temperature, i.e., ρs(R, t) = ρ̂s(T s(R, t)) and ρf(R, t) = ρ̂f(T f(R, t)).
It follows that ρs0(R) = ρ̂s(T s

0(R)) and ρ
f
0(R) = ρ̂f(T f

0(R)), where T
s
0(R) and T

f
0(R) are the reference temper-

atures for the solid and liquid phases, respectively. Thus, the respective continuity equations in (4.25) are
rewritten as

dρ̂s

dT s
+ βsρ̂s = 0 ,

dρ̂f

dT f
+ βfρ̂f = 0 . (4.26)

This is integrated to obtain

ρ̂s(T s) = ρ̂s(T s
0)−

∫ T s

T s
0

βs(τ) ρ̂s(τ) dτ , ρ̂f(T f) = ρ̂f(T f
0)−

∫ T f

T f
0

βf(τ) ρ̂f(τ) dτ , (4.27)

which are equivalent to

ρs(R, t) = ρs0(R)−
∫ T s(R,t)

T s
0(R)

βs(τ) ρ̂s(τ) dτ , ρf(R, t) = ρf0(R)−
∫ T f(R,t)

T f
0(R)

βf(τ) ρ̂f(τ) dτ . (4.28)

Note that T f
0(R) is the initial temperature of the liquid, while T s

0(R) represents the accretion temperature,
i.e., T s

0(R) = Tm.

Remark 4.2. To simplify the problem, it can be assumed that the liquid is initially at the solidification
temperature, i.e., T f

0(R) = Tm. Thus, there is no heat transfer in the liquid medium, i.e., T f(R, t) = Tm.
Hence, it follows from (4.28)2 that ρf (R, t) = ρf (R, 0) = ρf0(R) = ρf0, which is a constant for homogeneous

fluids.32 Similarly, ρs(R, t) = ρs0 −
∫ T s(R,t)

Tm
βs(τ) ρ̂s(τ) dτ , where ρs0 is a constant for homogeneous solids. As

T s(S(t), t) = Tm, it follows from (4.25)2 that ρs (S(t), t) = ρs0. Therefore, one has

ς (S(t)) =
ρf0 S

2(t)

ρs0 s
2(t)

, or equivalently, ς(R) =
ρf0R

2

ρs0 r̄
2(R)

. (4.29)

Thus

η(S(t)) =
ρf0 S

2(t)U(t)

ρs0 s
2(t)u(t)

, or equivalently, η(R) =
ρf0R

2Ū(R)

ρs0 r̄
2(R)ū(R)

. (4.30)

Further, the mass fraction solidified up to time t is simplified as ms(t)
m(t) = 1− S3(t)

R3
0
.

31Note that

trB
G

( B
G,t

)
= 6Ṫ s dω

s

dT s
= 6αsṪ s = 2βsṪ s , trL

G

(L
G,t

)
= 6Ṫ f dω

f

dT f
= 6αfṪ f = 2βfṪ f , (4.24)

where the relations βs = 3αs and βf = 3αf have been used. Therefore, (4.25) follows from (3.3) and (4.24).
32Alternatively, by substituting T f

,t = 0 into (4.25)2, it is implied that ρf,t = 0.
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Remark 4.3. The material metric for the solid phase has the following representation

B
G = e2ω

s(T s(R,t))

 (ρf0)
2 R4

(ρs0)
2 r̄4(R) 0 0

0 r̄2(R) 0
0 0 r̄2(R) sin2 Θ

 . (4.31)

The Jacobian is rewritten as

J(R, t) =


[
rf(R, t)

]2
rf,R(R, t)

e3ωf(T f(R,t))R2
, 0 ≤ R ≤ S(t) ,

ρs0 [r
s(R, t)]

2
rs,R(R, t)

ρf0 e
3ωs(T s(R,t))R2

, S(t) ≤ R ≤ R0 .

(4.32)

4.2.2 Heat equation

Let q(R, t) denote the spatial heat flux in material coordinates, i.e., q(R, t) = h(r(R, t), t), with H(R, t)
being the material heat flux. In the model H = −KG♯dT , the radial components of H(R, t) and q(R, t)
within the solid are as follows

HR(R, t) = −K(T (R, t))T,R(R, t)

e2ωs(T (R,t)) ς2(R)
, qr(R, t) = − 1

ς(R)
eω

s(T (R,t))K(T (R, t))T,R(R, t) . (4.33)

Note that33

DivG H = − 1

e2ω ς2

[(
dK

dT
+ αsK

)
T,R

2 +KT,RR +

(
2r̄′

r̄
− ς ′

ς

)
KT,R

]
, (4.36)

where the notation (·)′ := d
dR (·) has been used. Therefore, the heat equation (3.29) inside the solid is written

as

KT,RR +

(
dK

dT
+ αsK

)
T,R

2 +

(
2r̄′

r̄
− ς ′

ς

)
KT,R = e2ω

s

ς2ρ cE Ṫ . (4.37)

Let us assume that the heat conduction coefficient is independent of temperature, i.e., K(T ) = Ks, a
constant. Thus, using (4.29), the heat equation (4.37) is simplified as follows

Ds
f

{
T,RR(R, t) + αs(T (R, t))

[
T,R(R, t)

]2
+

[
4r̄′(R)

r̄(R)
− 2

R

]
T,R(R, t)

}
=

R4 Ṫ (R, t)

r̄4(R) eωs(T (R,t))
, (4.38)

where the constant Ds
f =

Ks(ρs0)
3

cE(ρf0)
4
is analogous to thermal diffusivity. Further, the temperature field T s(R, t)

satisfies the following boundary conditions

−KsT s
,R(R0, t) = hc [T

s(R0, t)− Tc] ,

T s(S(t), t) = Tm ,
(4.39)

where hc is the coefficient of heat transfer between the walls of the container and the solidified material.
Thus, for the temperature field, we have a Neumann boundary condition near the fixed wall of the container
and a Dirichlet boundary condition on the moving interface.

33Here, we have used the fact that

HA
|A = −

[
K(T )GABT,B

]
|A

= −
dK

dT
GABT,AT,B −KGAB

(
T,AB − ΓCABT,C

)
. (4.34)

In spherical coordinates, one has

DivG H = −GRR
[
dK

dT
T,R

2 +KT,RR

]
+KT,R

[
GRR ΓRRR +GΘΘ ΓRΘΘ +GΦΦ ΓRΦΦ

]
. (4.35)

The Christoffel symbols ΓCAB for the material metric
B
G are given in (C.3).
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4.2.3 Stefan’s condition

The rate of mass transferred from liquid to solid phase is ṁs(t) = −ṁf(t). The rate of mass solidified is

ṁs(t) = −4πρs0 s
2(t) ς (S(t)) Ṡ(t) = −4πρs0 s

2(t)u(t) . (4.40)

Alternatively, ṁs can be expressed as

ṁs(t) = −ṁf(t) = −4πρf0 S
2(t)U(t) . (4.41)

The time rate of heat released during solidification is l ṁs(t). Further, the heat transferred into the solid
medium is

−
∫
Ωt

⟨⟨H,N⟩⟩B
G
dA = −4πS2(t)

[
HRNRGRR

] ∣∣∣
R=S(t)

= −4πS2(t)K(Tm)T,R(S(t), t) . (4.42)

If the liquid is initially at the solidification temperature, there is no heat flux within it, and the heat entering
the solid from the phase change interface is equal to the heat generated during solidification. Thus, Stefan’s
condition is written as

S2(t)K(Tm)T,R(S(t), t) = l ρs0 s
2(t)u(t) , (4.43)

or equivalently,
K(Tm)T,R(S(t), t) = l ρf0 Ṡ(t) . (4.44)

Assuming a constant heat conduction coefficient K(T ) = Ks, Stefan’s condition is written as

T,R(S(t), t) = L Ṡ(t) , (4.45)

where L =
ρf0l
Ks .

4.2.4 Conservation of linear momentum in the solid portion

The Cauchy stress tensor in the solid portion is related to the free energy function W̌ (I1, I2, J, T ) as follows
34

σ =

[
2J−1I2

∂W̌

∂I2
+
∂W̌

∂J

]
g♯ + 2

[
J−1 ∂W̌

∂I1
b♯ − J

∂W̌

∂I2
c♯
]
. (4.47)

Since V r(R, t) = r,t(R, t), V
θ(R, t) = V ϕ(R, t) = 0, one has Ar(R, t) = r,tt(R, t), and A

θ(R, t) = Aϕ(R, t) =
0.35 Using (3.16) and (C.1), the radial equilibrium equation (3.17) is simplified to read

∂σrr

∂r
+

2

r
σrr − r

[
σθθ + sin2 θ σϕϕ

]
+ ϱ br = ϱ r,tt. (4.48)

The inertial effects can be ignored if the solidification process is slow, and hence in the absence of body
forces, it follows from (4.48) that

∂σrr

∂R
=

[(
σθθ + sin2 θ σϕϕ

)
r − 2

r
σrr
]
∂r

∂R
. (4.49)

34Note that the first Piola-Kirchhoff stress tensor P = JσF−⋆ is written as

P =

[
2I2

∂W̌

∂I2
+ J

∂W̌

∂J

]
FB♯ + 2

[
∂W̌

∂I1
b♯F−⋆ − J2 ∂W̌

∂I2
F−TB♯

]
, (4.46)

where b♯ = FG♯F⋆ and B♯ = F−1g♯F−⋆.
35The Christoffel symbols for the Euclidean metric g are given in (C.1).
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In this example,36

b♯ = e−2ωs


r,R

2

ς2
0 0

0
1

r̄2
0

0 0
1

r̄2 sin2 Θ

 , c♯ = e2ω
s


ς2

r,R2
0 0

0
r̄2

r4
0

0 0
r̄2

r4 sin2 Θ

 . (4.50)

Further, the principal invariants of b read37

I1 = e−2ωs

[
r,R

2

ς2
+

2r2

r̄2

]
,

I2 =
1

2

[
I21 − e−4ωs

(
r,R

4

ς4
+

2r4

r̄4

)]
=

r2

e4ωs r̄2

[
r2

r̄2
+

2r,R
2

ς2

]
.

(4.52)

The Cauchy stress has the following nonzero components

σrr = 2J−1I2
∂W̌

∂I2
+
∂W̌

∂J
+ 2

[
r,R

2

Je2ωsς2
∂W̌

∂I1
− Je2ω

s

ς2

r,R2

∂W̌

∂I2

]
,

σθθ =

[
2J−1I2

∂W̌

∂I2
+
∂W̌

∂J

]
1

r2
+ 2

[
1

Je2ωs r̄2
∂W̌

∂I1
− Je2ω

s

r̄2

r4
∂W̌

∂I2

]
,

σϕϕ =
σθθ

sin2 Θ
.

(4.53)

Substituting (4.53) in (4.49), one obtains38

∂σrr

∂R
=

4r,R
r

[
1

J e2ωs

(
r2

r̄2
− r,R

2

ς2

)
∂W̌

∂I1
+ J e2ω

s

(
r̄2

r2
− ς2

r,R2

)
∂W̌

∂I2

]
. (4.54)

In the solid, one has J =
r2r,R
e3ωs r̄2ς

. Thus, (4.54) is simplified as

∂σrr

∂R
= 4W̌1e

ωs

[
ς

r
− r̄2r,R

2

ςr3

]
+

4W̌2

eωs

[
r,R

2

ςr
− ςr

r̄2

]
, (4.55)

where W̌i =
∂W̌
∂Ii

for i = 1, 2. Using (4.29), (4.55) is rewritten as follows

σrr,R = 4

[
W̌1e

ωs

− W̌2 r
2

eωs r̄2

] [
ρf0R

2

ρs0 r̄
2r

− ρs0 r̄
4 r,R

2

ρf0R
2r3

]
. (4.56)

Hence, (4.56) can be integrated to obtain

σrr(R, t) = σrr(S(t), t)

+ 4

∫ R

S(t)

[
W̌1(ξ, t)e

ωs(T (ξ,t)) − W̌2(ξ, t)r
2(ξ, t)

eωs(T (ξ,t))r̄2(ξ)

] [
ρf0 ξ

2

ρs0 r̄
2(ξ)r(ξ, t)

− ρs0 r̄
4(ξ) r,R

2(ξ, t)

ρf0 ξ
2r3(ξ, t)

]
dξ .

(4.57)

Remark 4.4. Note that σrr(R, t) has to be continuous at R = S(t) in order to satisfy the traction continuity
across the phase change interface.

36Recall that the components of c♯ and c♭ are related as cab = gamcmngnb. Thus, the components c♯ are cab =
gamF−A

mGABF−B
ngnb.

37Here, we have used the fact that

I1 = gabF
a
AF

b
BGAB , I2 =

1

2

(
I21 − gmbgnaF

m
MFnNFaAF

b
BGAMGBN

)
. (4.51)

38The relation r2
[
gθθ + sin2 θ gϕϕ

]
= 2grr has been used here.
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4.2.5 Conservation of linear momentum inside the liquid

The Cauchy stress inside the liquid is related to the free energy function W̆ (J, T ) as σ = ∂W̆
∂J g♯, i.e.,

σ =
∂W̆

∂J

1 0 0
0 1

r2 0
0 0 1

r2 sin2 θ

 . (4.58)

Note that r2
[
σθθ + sin2 θ σϕϕ

]
= 2σrr. In the absence of inertial effects and body forces, the radial equilib-

rium equation is written as

r
∂σrr

∂R
=
[
(σθθ + sin2 θ σϕϕ) r2 − 2σrr

] ∂r
∂R

= 0 . (4.59)

Hence, it follows that ∂σrr

∂R , i.e., σrr(R, t) is independent of R. Moreover, one has

∂

∂R

(
∂W̆

∂J

)
= 0 . (4.60)

If the liquid is initially at the melting temperature, then T f(R, t) = Tm and there is no heat transfer
occurring inside the liquid during the entire process. Because there are no temperature changes, W̆ and,

consequently, ∂W̆∂J remain independent of temperature. Let us define the temperature-independent function

p̆(J) as p̆ = ∂W̆
∂J , and denote p(R, t) = p̆(J(R, t)). Since ∂

∂R

(
∂W̆
∂J

)
= dp̆

dJ
∂J
∂R , it follows from (4.60) that

∂J
∂R = 0 [Podio-Guidugli et al., 1985]. Thus, J is independent of R, which is indicated as J(R, t) = J0(t), for
some function J0(t) > 0. Note that ωf(T f) = 0 because T f = Tm throughout the process. Since (4.32)1 is

simplified as J =
r2r,R
R2 , it is implied that inside the liquid one has

r3(R, t) = s3(t) + J0(t)
[
R3 − S3(t)

]
. (4.61)

Since r(0, t) = 0, it follows from (4.61) that J0(t) =
s3(t)
S3(t) , and hence r(R, t) = Rs(t)

S(t) .39 Thus,

σrr(R, t) = σrr(S(t), t) = p̆

(
s3(t)

S3(t)

)
. (4.62)

In our numerical examples, we consider the following temperature-independent free energy function

W̆ (J) = πf
0J + κf0(J − 1)2 , (4.63)

where κf0 denotes the the bulk modulus of the liquid at temperature T0, while π
f
0 represents the initial pressure

in the liquid [Ghosh and Lopez-Pamies, 2022]. Hence, p̆(J) = πf
0 + κf0(J − 1), and σ =

[
πf
0 + κf0(J − 1)

]
g♯.

If the liquid is initially stress-free, i.e., σ(R, 0) = 0, then, it can be deduced from J0(0) = 1 that πf
0 = 0.

Therefore, one has

p(R, t) = σrr(R, t) = κf0

[
s3(t)

S3(t)
− 1

]
. (4.64)

This means that the Cauchy stress remains uniform in a compressible hyperelastic fluid in the absence of
inertial effects, body forces, and heat flow.

39Furthermore, it is implied that rf,R (R, t) =
s(t)
S(t)

and rf,t (R, t) =
R[S(t)ṡ(t)−s(t)Ṡ(t)]

S2(t)
inside the liquid. Thus, rf,R (S(t), t) =

s(t)
S(t)

and rf,t (S(t), t) = ṡ(t)− s(t)Ṡ(t)
S(t)

, which agrees with the fact that ṡ(t) = rf,R(S(t), t) Ṡ(t) + rf,t(S(t), t).
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4.2.6 The moving boundary problem

The balance laws from the previous subsections are combined into the following system of general governing
equations to model the accretion problem

divg σ = 0 in Z \ (Ω0 ∪ Ωt) ,

JσL
n
♭
K = 0 across ωt ,

φt = idZ on Ω0

ρ cE Ṫ = DivG (KG♯ dT ) in Z \ (Ω0 ∪ Ωt) ,

T = Tm on Ωt ,

⟨⟨H,
S
N⟩⟩G = hc [T − Tc] on Ω0 ,

J⟨⟨H,
L
N⟩⟩GK = lρ U across Ωt ,

(4.65)

where J·K denotes the jump across the moving interface, as one goes from the liquid phase to the solid phase.
L
N and

L
n are the outward unit normals to the liquid inclusion in the reference and deformed configurations,

Lt and φt(Lt), respectively.
S
N is the unit normal to Bt. Note that the conservation of linear momentum

(4.65)1 and the heat equation (4.65)4 must be solved separately in the solid and liquid regions. Since
the liquid is initially at the melting point, the heat equation admits a constant trivial solution inside the

inclusion. Recall that the spatial metric g is the flat Euclidean metric. The material metric in the liquid
L
G,

is also the flat Euclidean metric, while the material metric
B
G for the accreted solid was obtained in (4.31),

using the conservation of mass for the entire Z. The Cauchy stress σ is computed using (3.14) inside the
solid and using (3.15) inside the liquid. In the absence of body forces, inertial effects, and thermal effects,
the liquid deformation was given in (4.61), and for the simple energy function (4.63), the Cauchy stress is
given in (4.64). Thus, it remains to solve (4.65)1 and (4.65)4 inside the solid to obtain the deformation and
temperature fields, along with the location of Ωt. This is done in the following subsection for a neo-Hookean
solid.

4.3 Stefan’s problem for a neo-Hookean solid

Consider the following free energy function for a thermoelastic neo-Hookean solid [Sozio et al., 2020]

W̌ (I1, J, T ) =

[
µs
0

2
(J− 2

3 I1 − 3) +
κs0
2
(J − 1)2

]
T

T0
− κs0 β

s
0 (J − 1)(T − T0) , (4.66)

where I1 = e−2ωs
[
(ρs0)

2r̄4r,R
2

(ρf0)
2R4 + 2r2

r̄2

]
and J =

ρs0r
2 r,R

ρf0 e
3ωsR2 . For more details, refer to Appendix B. The nonzero

components of Cauchy stress read

σrr = W̌J +
2W̌1 r,R

2

Je2ωsς2
, σθθ =

W̌J

r2
+

2W̌1

Je2ωs r̄2
, σϕϕ =

σθθ

sin2 Θ
, (4.67)

where W̌J := ∂W̌
∂J . These coefficients are calculated as follows

W̌1 =
µs
0T

2T0
J− 2

3 , W̌J =

[
κs0(J − 1)− µs

0

3
J− 5

3 I1

]
T

T0
− κs0 β

s
0 (T − T0) . (4.68)

Further, we assume that ωs depends on the temperature as per the following relation (see (B.4))

e3ω
s(T ) = 1 + βs

0T
s
0

(
1− T s

0

T

)
. (4.69)

Since σrr is continuous across R = S(t), it follows from (4.57) and (4.64) that

σrr(R, t) = κf0

[
s3(t)

S3(t)
− 1

]
+ 4

∫ R

S(t)

W̌1(ξ, t)e
ωs(T (ξ,t))

[
ρf0 ξ

2

ρs0 r̄
2(ξ)r(ξ, t)

− ρs0 r̄
4(ξ) r,R

2(ξ, t)

ρf0 ξ
2r3(ξ, t)

]
dξ . (4.70)
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Thus, using (4.67)1 and (4.29), (4.70) is rewritten as

W̌J(R, t) +
2ρs0 r̄

4(R) r,R(R, t)

ρf0R
2 r2(R, t)

W̌1(R, t) e
ωs(T (R,t)) = κf0

[
s3(t)

S3(t)
− 1

]
+4

∫ R

S(t)

W̌1(ξ, t)e
ωs(T (ξ,t))

[
ρf0 ξ

2

ρs0 r̄
2(ξ)r(ξ, t)

− ρs0 r̄
4(ξ) r,R

2(ξ, t)

ρf0 ξ
2r3(ξ, t)

]
dξ ,

(4.71)

where

W̌1 =
µs
0 T e

2ωs

2T0

[
ρf0R

2

ρs0 r
2 r,R

] 2
3

,

W̌J =
κs0T

T0

[
ρs0r

2 r,R
ρf0 e

3ωsR2
− 1

]
− κs0 β

s
0 (T − T0)−

µs
0T e

3ωs

3T0

[
ρf0R

2

ρs0 r
2 r,R

] 5
3
[
(ρs0)

2 r̄4r,R
2

(ρf0)
2R4

+
2r2

r̄2

]
.

(4.72)

Therefore, for the neo-Hookean solid, the moving boundary problem (4.65) on the domain R0 ≥ R ≥ S(t) is
written as40

W̌J(R, t) +
2ρs0 W̌1(R, t) e

ωs(T (R,t)) r̄4(R) r,R(R, t)

ρf0R
2 r2(R, t)

= κf0

[
s3(t)

S3(t)
− 1

]
+4

∫ R

S(t)

W̌1(ξ, t)e
ωs(T (ξ,t))

[
ρf0 ξ

2

ρs0 r̄
2(ξ)r(ξ, t)

− ρs0 r̄
4(ξ) r,R

2(ξ, t)

ρf0 ξ
2r3(ξ, t)

]
dξ ,

Ks(ρs0)
3

cE(ρf0)
4

[
T,RR(R, t) + αs(T (R, t))

[
T,R(R, t)

]2
+

[
4r̄′(R)

r̄(R)
− 2

R

]
T,R(R, t)

]
=

R4 Ṫ (R, t)

r̄4(R)eωs(T (R,t))
,

T,R(S(t), t) =
ρf0 l

Ks
Ṡ(t) ,

T (S(t), t) = Tm ,

r(S(t), t) = r̄(S(t)) = s(t) ,

KsT,R(R0, t) = hc [Tc − T (R0, t)] ,

r(R0, t) = R0 ,

S(0) = R0 ,

(4.73)

where the temperature field T (R, t), the radial placement map r(R, t), and the location of the moving
boundary S(t) are unknown.

Remark 4.5. On the moving boundary, (4.71) is rewritten as

W̌J(S(t), t) +
2ρs0 s

2(t) r,R(S(t), t)

ρf0 S
2(t)

W̌1(S(t), t) = κf0

[
s3(t)

S3(t)
− 1

]
, (4.74)

where

W̌1(S(t), t) =
µs
0

2

[
ρf0 S

2(t)

ρs0 s
2(t) r,R(S(t), t)

] 2
3

,

W̌J(S(t), t) = κs0

[
ρs0s

2(t) r,R(S(t), t)

ρf0 S
2(t)

− 1

]
− µs

0

3

[
ρf0 S

2(t)

ρs0 s
2(t) r,R(S(t), t)

] 5
3
[
(ρs0)

2 s4(t) r,R
2(S(t), t)

(ρf0)
2S4(t)

+ 2

]
.

(4.75)

40Recall that (4.73)1 was obtained in (4.71), while (4.73)2 restates the heat equation (4.38), and (4.73)3 is Stefan’s condition
(4.45). The thermal boundary conditions are written in (4.73)4 and (4.73)6, while (4.73)5 and (4.73)7 are the kinematic
boundary conditions. Finally, (4.73)8 denotes the initial condition for the position of the moving interface.
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Table 1: Definitions of the scaled variables and the dimensionless parameters incorporated in (4.77)-(4.80).

Category Definitions

Independent variables R = R
R0

t =
Ks(ρs0)

3t

cE(ρf0)
4R2

0

Dependent unknown variables r(R, t) = 1
R0
r
(
R0R,

cE(ρf0)
4R2

0t

Ks(ρs0)
3

)
T(R, t) = 1

Tc−Tm

[
T
(
R0R,

cE(ρf0)
4R2

0t

Ks(ρs0)
3

)
− Tm

]
S(t) = 1

R0
S
(
cE(ρf0)

4R2
0t

Ks(ρs0)
3

)
Dimensionless constant parameters p =

µs
0

κf
0

q =
κs
0

κf
0

f =
ρs0
ρf0

a = 1− Tc

Tm

b = βs
0[Tm − Tc]

h = hcR0

Ks

L =
(ρs0)

3l

(ρf0)
3cE [Tm−Tc]

Therefore, traction continuity (4.74) across the moving interfaceR = S(t) is written as F
(
s(t)
S(t) , r,R(S(t), t)

)
=

0, where

F(x, y) := κs0

[
ρs0x

2 y

ρf0
− 1

]
+

2µs
0

3

(
ρs0 x

2 y

ρf0

) 1
3
[
1− (ρf0)

2

(ρs0)
2 x4 y2

]
+ κf0

[
1− x3

]
. (4.76)

Since rf,R (S(t), t) = s(t)
S(t) , traction continuity implies an implicit relation between rs,R(S(t), t) and r

f
,R(S(t), t).

Non-dimensionalization. Let 0 ≤ R ≤ 1 and t ≥ 0 be the dimensionless radial coordinate and time
variable, respectively. The dimensionless radial placement map, temperature field and the location of phase-
change interface are denoted by r(R, t), T(R, t) and S(t), respectively. These dimensionless quantities are
defined in Table 1. It follows from (4.73)1 and (4.72) that for 1 > R ≥ S(t):41

q[1− aT(R, t)]

[
fr2(R, t)r,R(R, t)[1− aT(R, t)]

R2[1− (a+ b)T(R, t)]
− 1

]
+ pbT(R, t) + 1− s3(t)

S3(t)

+ p[1− (a+ b)T(R, t)]

(
fr2(R, t)r,R(R, t)

R2

) 1
3
[

r̄4(R)

r4(R, t)
− 1

3

(
2 R4

f2 r̄2(R) r2(R, t) r2,R(R, t)
+ 1

)]

− 2p

∫ R

S(t)

[1− (a+ b)T(ζ, t)]

(
fr2(ζ, t)r,R(ζ, t)

ζ2

)− 2
3
[

ζ2

fr̄2(ζ)r(ζ, t)
−

f r̄4(ζ) r2,R(ζ, t)

ζ2r3(ζ, t)

]
dζ = 0 ,

(4.77)

where r̄(R) = r(R, S−1(R)), s(t) = r(S(t), t) and a, b, f, p, q are dimensionless constant parameters defined
in Table 1.42 Similarly, for 1 > R > S(t), the heat equation (4.73)2 is rewritten as

41Since a = 1 − Tc
Tm

and b = βs
0[Tm − Tc], it follows from (4.69) that eω

s(T ) =
[
1−(a+b)T

1−aT

] 1
3

and [Tm − Tc]αs(T ) =

b
3[1−(a+b)T][1−aT]

.
42The non-dimensionalized traction continuity condition across the moving interface reads

q

[
fs2(t)r,R(S(t), t)

S2(t)
− 1

]
+

2p

3

(
fs2(t)r,R(S(t), t)

S2(t)

) 1
3

[
1−

S4(t)

f2 s4(t) r2,R(S(t), t)

]
=

s3(t)

S3(t)
− 1 . (4.78)
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Figure 5: A sketch of the domain {(R, t) : 0 ≤ S(t) ≤ R ≤ 1 = S(0)} for the non-dimensionalized moving boundary problem,
where S(t) is an unknown. Additionally, the temperature field T(R, t) and the deformation field r(R, t) are unknown over this
evolving domain.

T,RR(R, t)−
bT2,R(R, t)

3[1− (a+ b)T(R, t)][1− aT(R, t)]
+

[
4r̄′(R)

r̄(R)
− 2

R

]
T,R(R, t) =

R4[1− aT(R, t)]
1
3 T,t(R, t)

r̄4(R)[1− (a+ b)T(R, t)]
1
3

, (4.79)

and, (4.73)3−8 are rewritten as 

T,R(S(t), t) = −LdS(t)
dt

,

T(S(t), t) = 0 ,

r(S(t), t) = r̄(S(t)) = s(t) ,

T,R(1, t) = h [1− T(1, t)] ,

r(1, t) = 1 ,

S(0) = 1 ,

(4.80)

where h, L are dimensionless constant parameters defined in Table 1. Thus, (4.77)-(4.80) constitute the
non-dimensionalized boundary-value problem on the evolving domain {(R, t) : 0 ≤ S(t) ≤ R ≤ 1 = S(0)}
(Figure 5).43 Further, the physical components of the Cauchy stress in the solid are non-dimensionalized

as σ̊ab =
σab√gaagbb

κf
0

(no summation).44 Similarly, the pressure in the liquid, which is independent of R, is

non-dimensionalized as p̊(t) = p(t)

κf
0
.45

Remark 4.6. Note that (4.79) is rewritten as[
r̄4(R)

R2

[
1− (a+ b)T(R, t)

1− aT(R, t)

] 1
3

T,R(R, t)

]
,R

= R2T,t(R, t) , (4.81)

which is integrated using (4.80)1−6 to obtain

h[1− T(1, t)]

[
1− (a+ b)T(1, t)

1− aT(1, t)

] 1
3

+
Ls4(t)Ṡ(t)

S2(t)
=

∫ 1

S(t)

ξ2 T,t(ξ, t) dξ . (4.82)

Since46 ∫ t

0

[∫ 1

S(τ)

ξ2 T,τ (ξ, τ)dξ

]
dτ =

∫ 1

S(t)

ξ2 T(ξ, t)dξ , (4.83)

43Recall that 𝕞(t) := 1− S3(t) represents the mass fraction solidified.
44Note that σ̊θθ = σ̊ϕϕ.
45It is implied from (4.64) that p̊(t) = 1− s3(t)

S3(t)
.

46This is implied from the fact that ∂
∂t

∫ 1
S(t) ξ

2 T(ξ, t) dξ =
∫ 1
S(t) ξ

2 T,t(ξ, t) dξ.
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it follows from (4.82) that47∫ t

0

h[1− T(1, τ)]

[
1− (a+ b)T(1, τ)

1− aT(1, τ)

] 1
3

dτ =

∫ 1

S(t)

[
ξ2 T(ξ, t) +

L r̄4(ξ)

ξ2

]
dξ . (4.84)

Thus, Stefan’s condition (4.80)1 can be replaced with the integral constraint (4.84).

Remark 4.7. Let z ≥ 0 be the time when the layer with radial coordinate R solidifies and attaches to the
shell, i.e., R = S(z). Let ρ and Υ denote the radial placement and temperature fields, respectively, expressed
as functions of z and t, i.e.,

ρ(z, t) = r(S(z), t) , Υ(z, t) = T(S(z), t) . (4.85)

Thus, the heat equation (4.79) is rewritten in terms of ρ and Υ as48

Υ,zz(z, t)−
bΥ2

,z(z, t)

3[1− aΥ(z, t)][1− (a+ b)Υ(z, t)]
+

[
4ṡ(z)

s(z)
− 2Ṡ(z)

S(z)
− S̈(z)

Ṡ(z)

]
Υ,z(z, t)

=
S4(z)Ṡ2(z)[1− aΥ(z, t)]

1
3Υ,t(z, t)

s4(z)[1− (a+ b)Υ(z, t)]
1
3

,

(4.87)

where s(t) = r̄(S(t)) = ρ(t, t), and thus ṡ(t) = ρ,z(t, t) + ρ,t(t, t). Note that (4.87) can be rearranged as
follows

∂

∂z

[
s4(z)[1− (a+ b)Υ(z, t)]

1
3Υ,z(z, t)

S2(z)Ṡ(z)[1− aΥ(z, t)]
1
3

]
= S2(z)Ṡ(z)Υ,t(z, t) . (4.88)

Similarly, (4.77) is rewritten as

q[1− aΥ(z, t)]

[
fρ2(z, t)ρ,z(z, t)[1− aΥ(z, t)]

S2(z)Ṡ(z)[1− (a+ b)Υ(z, t)]
− 1

]
+ 1− s3(z)

S3(z)

+ p[1− (a+ b)Υ(ζ, t)]

(
fρ2(z, t)ρ,z(z, t)

S2(z)Ṡ(z)

) 1
3
[

s4(z)

ρ4(z, t)
− 1

3

(
2 S4(z)Ṡ2(z)

f2s2(z)ρ2(z, t)ρ2,z(z, t)
+ 1

)]

+ 2p

∫ t

z

[1− (a+ b)Υ(ζ, t)]

(
fρ2(ζ, t)ρ,z(ζ, t)

S2(ζ)Ṡ(ζ)

)− 2
3
[

S2(ζ)

fs2(ζ)ρ(ζ, t)
−

f s4(ζ)ρ2,z(ζ, t)

S2(ζ)Ṡ2(ζ)ρ3(ζ, t)

]
dζ = 0 ,

(4.89)

and, (4.80) is rewritten as 

Υ,z(t, t) = −L Ṡ2(t) ,
Υ(t, t) = 0 ,

ρ(t, t) = s(t) ,

Υ,z(0, t) = h Ṡ(0) [1−Υ(0, t)] ,

ρ(0, t) = 1 ,

S(0) = 1 .

(4.90)

Hence, the transformed system of equations (4.88)-(4.90) form a boundary-value problem over the fixed
triangular domain {(z, t) : 0 ≤ z ≤ t ≤ tend}, where tend is the time taken for complete solidification, i.e.,
S(tend) = 0.

47Note that the change of variable
∫ t
0

s4(τ) Ṡ(τ)

S2(τ)
dτ =

∫ S(t)
1

r̄4(ξ) dξ

ξ2
has been used here.

48The following relations have been used here

r,R(R, t) =
ρ,z(z, t)

Ṡ(z)
, T,R(R, t) =

Υ,z(z, t)

Ṡ(z)
, T,RR(R, t) =

Υ,zz(z, t)

Ṡ2(z)
−

Υ,z(z, t) S̈(z)

Ṡ3(z)
, (4.86)

where R = S(z). These are obtained by differentiating the definition (4.85) with respect to z.
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Remark 4.8. For t > 0, consider the ratio u = z
t
∈ [0, 1]. Let α and γ denote the radial placement and

temperature fields, respectively, expressed as functions of u and t, i.e.,

γ(u, t) = Υ(ut, t) , α(u, t) = ρ(ut, t) . (4.91)

This change of variable transforms the triangular domain {(z, t) : 0 < z ≤ t ≤ tend} into the rectangular
domain {(u, t) : 0 ≤ u ≤ 1, 0 < t ≤ tend}. Further, the derivatives of ρ and Υ are related to those of α and
γ as

ρ,z(z, t) =
α,u(u, t)

t
, Υ,z(z, t) =

γ,u(u, t)

t
, Υ,zz(z, t) =

γ,uu(u, t)

t2
, (4.92)

and,

Υ,t(z, t) = γ,t(u, t)−
u

t
γ,u(u, t) , (4.93)

where u = z
t
. Note that the thermal and displacement boundary conditions in (4.90) are expressed in terms

α and γ as follows 

γ,u(1, t) = −Lt Ṡ2(t) ,
γ(1, t) = 0 ,

α(1, t) = s(t) ,

γ,u(0, t) = h Ṡ(0) t [1− γ(0, t)] ,

α(0, t) = 1 ,

S(0) = 1 .

(4.94)

Thus, it follows from (4.94)3 that ṡ(t) = α,t(1, t). Therefore, (4.87) is rewritten in terms of α and γ as

γ,uu(u, t)−
b γ2,u(u, t)

3[1− a γ(u, t)][1− (a+ b) γ(u, t)]
+

[
4α,t(1, ut)

α(1, ut)
− 2Ṡ(ut)

S(ut)
− S̈(ut)

Ṡ(ut)

]
tγ,u(u, t)

+
S4(ut) Ṡ2(ut)[1− a γ(u, t)]

1
3 [uγ,u(u, t)− tγ,t(u, t)]

α4(1, ut)[1− (a+ b) γ(u, t)]
1
3

= 0 .

(4.95)

Similarly, (4.89) is rewritten as

q[1− aγ(u, t)]

[
fα2(u, t)α,u(u, t)[1− aγ(u, t)]

t S2(ut) Ṡ(ut)[1− (a+ b)γ(u, t)]
− 1

]
+ 1− α3(1, ut)

S3(ut)

+ p[1− (a+ b)γ(u, t)]

(
fα2(u, t)α,u(u, t)

t S2(ut) Ṡ(ut)

) 1
3
[
α4(1, ut)

α4(u, t)
− 1

3

(
2 t2 S4(ut) Ṡ2(ut)

f2α2(1, ut)α2(u, t)α2
,u(u, t)

+ 1

)]

+ 2p

∫ 1

u

[1− (a+ b)γ(ν, t)]

(
fα2(ν, t)α,u(ν, t)

t S2(νt) Ṡ(νt)

)− 2
3
[

S2(νt)

fα2(1, νt)α(ν, t)
−

fα4(1, νt)α2
,u(ν, t)

t2S2(νt) Ṡ2(νt)α3(ν, t)

]
tdν = 0 .

(4.96)
Hence, (4.95), (4.96) and (4.94) form a system of nonlinear PDEs coupled with an ODE,49 with the unknown
fields α(u, t), γ(u, t), and S(t) over the rectangular domain {(u, t) : 0 ≤ u ≤ 1, 0 < t ≤ tend}.

Remark 4.9. Note that the standard heat equation is recovered by setting r̄(R) = R and αs(T ) = 0 in
(4.38), which is written as

Ds
f

[
T,RR(R, t) +

2

R
T,R(R, t)

]
= Ṫ (R, t) . (4.97)

49Note that the integral equation (4.96) can be differentiated with respect to u to get rid of the integral term. Thus, (4.96)
and (4.95) are second-order nonlinear PDEs in terms of the unknown fields α(u, t) and γ(u, t). Similarly, (4.94)1 is an ODE in
terms of the unknown function S(t).
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Figure 6: The numerical solution for the evolution of the moving boundary obtained in the present work for the rigid conductor
problem (4.98) with L = 10, is compared with that obtained by Tao [1967].

Therefore, in the absence of any elastic deformation or thermal expansion, the non-dimensionalized moving
boundary problem reads 

T,RR(R, t) +
2

R
T,R(R, t) = T,t(R, t) ,

T,R(S(t), t) = −LdS(t)
dt

,

T(S(t), t) = 0 ,

T,R(1, t) = h [1− T(1, t)] ,

S(0) = 1 ,

(4.98)

where 1 ≥ R ≥ S(t) and t ≥ 0. Here, h is the Biot number, and L−1 is the Stefan number. The phase change
problem (4.98) has been analyzed by London and Seban [1943], Tao [1967], Shih and Chou [1971], Hill and
Kucera [1983], and possibly others. Furthermore, (4.84) is simplified as

h t+
L

3

[
S3(t)− 1

]
−
∫ t

0

h T(1, τ)dτ =

∫ 1

S(t)

ξ2 T(ξ, t) dξ . (4.99)

Alternatively, since (4.98)1 is rewritten as [RT(R, t)],RR = [RT(R, t)],t, it can be shown using (4.98)2−5 that

Stefan’s condition (4.98)2 is equivalent to50

h t+
L

2

[
S2(t)− 1

]
+ (1− h)

∫ t

0

T(1, τ)dτ =

∫ 1

S(t)

ξ T(ξ, t) dξ . (4.102)

Thus, for a rigid conductor, Stefan’s condition (4.98)2 can be replaced with the integral constraint (4.99),
or equivalently with (4.102).

50Using (4.98)2−4, it is implied that∫ 1

S(t)
[RT(R, t)],RR dR = h+ [1− h]T(1, t) + LS(t)Ṡ(t) . (4.100)

Therefore, since [RT(R, t)],RR = [RT(R, t)],t, (4.102) follows from (4.98)5 and the fact that∫ 1

S(t)
RT(R, t)dR =

∫ t

0

[∫ 1

S(τ)
RT,τ (R, τ)dR

]
dτ . (4.101)
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Figure 7: The moving boundary evolution for the rigid conductor problem with L = 2 obtained in the present work is compared
with numerical data from the literature [Tao, 1967, Shih and Chou, 1971, Hill and Kucera, 1983]. Here, S-1 refers to the
solution of system (4.98), while S-2 and S-3 correspond to the systems where (4.98)2 is replaced by (4.102) and (4.99),
respectively.

Figure 8: The non-dimensionalized temperature field T(R, t) for the rigid conductor problem (4.98) with h = 0.5, L = 10 is
depicted at various instances of time as the solidification interface moves inward.

4.4 Residual stresses

The solidification process is stopped at time te, when the the solid-liquid interface is at Re = S(te) in the
reference configuration, or equivalently at s(te) = r̄(Re) in the current configuration. Imagine that the
accreted solid is drained of the remaining liquid and is allowed to reach a steady-state uniform temperature
of Ta < Tm in an ambient environment, while its inner and outer boundaries are traction-free. The resulting
residually-stressed configuration is denoted by C̃ ⊂ S. The material metric for the solid is written as

B
G = e2ω

s(Ta)

 (ρf0)
2 R4

(ρs0)
2 r̄4(R) 0 0

0 r̄2(R) 0
0 0 r̄2(R) sin2 Θ

 . (4.103)

Recall that

e3ω
s(Ta) = 1 + βs

0Tm

(
1− Tm

Ta

)
. (4.104)
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Note that since r̄(R) is now a known function defined on the interval [Re, R0], determined from the solution

of the IBVP during accretion, the material metric
B
G is considered to be given.

Let φ̃ : Bte → C̃ denote the deformation map corresponding to the residually-stressed configuration.
In spherical coordinates φ̃(R,Θ,Φ) = (r̃(R),Θ,Φ), where the placement map r̃(R) represents the residual
radial distortion. The deformation gradient reads

F(R) =

r̃′(R) 0 0
0 1 0
0 0 1

 . (4.105)

The Jacobian of the deformation is written as

J(R) =
ρs0 r̃

2(R) r̃′(R)

ρf0 e
3ωs(Ta)R2

. (4.106)

The strain tensors for this configuration are given as

b♯ = e−2ωs(Ta)


(
ρs0r̄

2r̃′

ρf0R
2

)2

0 0

0
1

r̄2
0

0 0
1

r̄2 sin2 Θ

 , c♯ = e2ω
s(Ta)



(
ρf0R

2

ρs0r̄
2r̃′

)2

0 0

0
r̄2

r̃4
0

0 0
r̄2

r̃4 sin2 Θ

 . (4.107)

Further, the principal invariants of b read

I1 = e−2ωs(Ta)

[(
ρs0 r̄

2 r̃′

ρf0R
2

)2

+ 2

(
r̃

r̄

)2
]
, I2 = e−4ωs(Ta)

[(
r̃

r̄

)4

+ 2

(
ρs0 r̄ r̃ r̃

′

ρf0R
2

)2
]
. (4.108)

Example 4.10 (A neo-Hookean solid). The thermoelastic neo-Hookean solid considered in (4.66) is now at
a constant temperature, and thus, is characterized by the temperature-independent free energy function

W̃ (I1, J) =
Ta
2Tm

[
µs
0[J

− 2
3 I1 − 3] + κs0[J − 1]2

]
+ κs0 β

s
0(Tm − Ta) [J − 1] . (4.109)

The nonzero components of residual Cauchy stress σ̃(R) are written as

σ̃rr = W̃J +
2(ρs0)

2W̃1 r̄
4(r̃′)2

(ρf0)
2Je2ωs(Ta)R4

, σ̃θθ =
W̃J

r̃2
+

2W̃1

Je2ωs(Ta) r̄2
, σ̃ϕϕ =

σ̃θθ

sin2 Θ
, (4.110)

where the coefficients W̃1 and W̃J are given as

W̃1 =
µs
0Ta
2Tm

J− 2
3 , W̃J =

Ta
Tm

[
κs0(J − 1)− µs

0

3
J− 5

3 I1

]
+ κs0 β

s
0 (Tm − Ta) . (4.111)

The balance of linear momentum in the absence of body forces and inertial effects is simplified to yield the
following radial equilibrium equation

dσ̃rr

dR
=
[(
σ̃θθ + sin2 θ σ̃ϕϕ

)
r̃2 − 2σ̃rr

] r̃′
r̃
. (4.112)

Furthermore, the outer and inner boundaries are traction-free, i.e.

σ̃rr(R0) = σ̃rr(Re) = 0 . (4.113)

It follows from (4.110), (4.111) and (4.108)1 that (4.112) is a nonlinear ODE in terms of r̃(R), with the
boundary conditions (4.113). Thus, the problem of finding the residual stresses and distortions boils down
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to solving the boundary-value problem (4.112)-(4.113) for the unknown function r̃(R). This problem is then
non-dimensionalized according to Table 1. The dimensionless radial displacement r̃−RR0

and the dimensionless

physical components of the Cauchy stress ˚̃σab = 1
κf
0

˚̃σab
√
gaagbb (no summation) in the residually-stressed

configuration at a given dimensionless steady state temperature Ta =
Ta−Tm

Tc−Tm
are illustrated in Figure 14.51

4.5 Numerical results and discussion

Several numerical methods for the solution of moving boundary value problems have been proposed over
the years [Rubinštĕın, 1971, Crank, 1984]. In this work, we follow the approach of Douglas and Gallie
[1955], where for a specified space grid, the corresponding instances of time are calculated as the moving
boundary assumes these discrete positions in progression. It should be noted that the bijectivity of S(t)
is exploited here, allowing us to treat the time of accretion as the unknown. For each unknown time step,
the moving interface is first assigned a position. Treating the domain as fixed, we calculate the deformation
and temperature fields, along with the instant of time for this interface location, by solving the conservation
of linear momentum, transient heat equation, and Stefan’s condition. This is implemented using a finite
difference approximation (an implicit scheme) in Matlab. The optimum time step that minimizes the
residue from Stefan’s condition to ensure a sufficiently small magnitude is calculated using fminunc, while
the corresponding numerical solution for the radial equilibrium and the heat equation is simultaneously
obtained using fsolve. Extensive parametric studies are conducted by varying the numerical values of the
dimensionless constants in Table 1. The observations from the numerical results are qualitatively described
in the following.

• The radial speed of the interface, in both the reference and the current configurations, is observed to
increase as the interface moves inward with time (Figure 10). As expected, the fraction of the initial
liquid mass solidified increases over time. However, the rate of mass fraction solidified decreases with time
(Figure 10). These trends are similar to what has been observed in the rigid conductor case (see Figures 6
and 7). The temperature field inside a rigid conductor is shown at different instances of time in Figure 8.
It should be noted that most numerical studies in the literature for the rigid conductor case only depict the
motion of the interface [Tao, 1967, Shih and Chou, 1971, Hill and Kucera, 1983]. The experimental studies
report the rate of solidification with the rate of change of mass fraction of the total initial liquid solidified
with respect to time [Chan and Tan, 2006]. This is possibly because the liquid inclusion tends to lose its
spherical shape and concentricity with the previously accreted layers as the inclusion size decreases. The
trend we observe for the variation of mass fraction solidified qualitatively agrees with that of Chan and Tan
[2006], although a direct comparison with the experimental data is not feasible due to the unavailability
of a complete set of material properties of the materials used. The temperature field and the physical
components of the Cauchy stress in the deformed solid for the coupled problem (4.77)-(4.80) are depicted
in Figure 9.

• The symbol f denotes the ratio of the density of the undeformed solid to that of the liquid near the melting
point. Solidification of a given mass of a liquid with f > 1 results in a reduction of the occupied volume.
As the accretion surface moves inward, layers of liquid are replaced with denser solid layers, leading to a
decrease in volume. Furthermore, since the container has fixed walls and, therefore, a fixed volume, the
liquid inclusion naturally develops positive hydrostatic stress as soon as solidification begins, indicating
possibility of cavitation. Although this is confirmed numerically, the observed data is excluded from figures

as positive liquid pressure is not physically possible. Moreover, it follows from p̊(t) = 1 − s3(t)
S3(t) that a

negative liquid pressure is equivalent to a negative radial displacement of the accreting layers (see Figures
11b and 11a).52 As the solidification interface approaches the center, the magnitude of the displacement
of the accreting layers increases rapidly, requiring it to decelerate and decrease swiftly to ultimately vanish

51Note that ˚̃σrr = σ̃rr

κf
0

and ˚̃σϕϕ = ˚̃σθθ = r̃2σ̃θθ

κf
0

.

52Since s(t) = r(S(t), t) is the position of the solidification interface in the deformed configuration, and R = S(t) was its
position in the initial liquid pool, s(t)− S(t), or equivalently, r̄(R)− R, denotes the radial displacement of an accreting layer.
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Figure 9: The non-dimensionalized temperature field T, as well as the dimensionless physical components σ̊rr and σ̊θθ of the
Cauchy stress within the deformed solid are illustrated via color maps. These depictions are based on the solution of the general
problem (4.77)-(4.80), with f = 0.95, a = 0.8, b = 0.1, p = 1.1, q = 1.2, h = 0.5, and L = 10, at various instances of time as
the phase-change interface moves inward.

at the center.53 Thus, the mesh near the center must be much finer; otherwise, numerical techniques that
better accommodate such sudden fluctuations need to be used.

• The figures shown in this section are based on the assumption f < 1. With this assumption, an accreting
layer with a given mass tends to occupy a larger volume upon solidification, compressing the liquid inclusion
and resulting in negative hydrostatic stress. The magnitude of this negative hydrostatic stress increases
with time as the solidification interface moves inward (Figure 13). The extra volume occupied by the
solidifying layers piles up to create a significant gap, causing the pressure in the liquid to become highly
compressive as the interface approaches the center.

• Surface stresses play a significant role for liquid inclusions smaller than a certain limit determined by the
elastocapillarity length—the ratio of surface tension to the bulk modulus [Bico et al., 2018]. In this paper
we do not consider surface stress, and hence, do not report the numerical results for very small liquid
inclusions. Although the process is halted a while before complete solidification, the rate of increase in
the magnitude of liquid pressure is significantly high by the time this margin is reached.

• Note that T = 0 at the melting point, and since Tc < Tm, T = Tm−T
Tm−Tc

increases as the real temperature T
decreases (see Figures 8 and 9). The moving interface is always at the melting point, and the temperature
decreases as one moves towards the fixed wall (Figure 11c). The temperature at a point decreases over
time after it is accreted (Figure 11d). Radial displacements are always negative, and the magnitude at

53The time instant tc marking the completion of solidification must satisfy S(tc) = 0. Further, if this is achieved without
cavitation, then s(tc) = 0. Thus, s(tc)− S(tc) = 0.
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any accreted point decreases over time (Figure 11b). At any instant, the magnitude of radial displacement
is maximum at the moving boundary and decreases to zero at the fixed boundary (Figure 11a).

• Both σ̊rr and σ̊θθ are negative near the moving boundary. σ̊θθ increases as one moves away from the
inclusion (i.e., decreases in magnitude), vanishes somewhere in between, and eventually becomes positive
near the wall (Figure 11g). σ̊rr decreases in magnitude as one moves away from the inclusion but remains
negative if the inclusion size is too large (Figure 11e). However, when the interface has moved far enough
from the wall, σ̊rr can be positive near the wall, decreasing to a negative value near the inclusion. At
any accreted point, σ̊rr is initially negative and decreases in magnitude over time (Figure 11f). For points
closer to the fixed wall, σ̊rr eventually becomes positive as the inclusion size decreases. σ̊θθ is initially
negative for all accreted points, and quickly transitions to a positive value, except for the points accreted
just before the process is halted (Figure 11h).

• The dimensionless parameter b describes the thermal expansion properties of the solid relative to the
temperature difference between its melting point and the cold wall temperature. A larger b implies a
higher contraction of the solid for a given temperature drop. It is observed that the rate of increase in
liquid pressure magnitude is much faster for lower values of b (Figure 13d). If b is too large, the liquid
inclusion pressure decreases from zero until it reaches a minimum, and then increases until it becomes zero
again (Figure 13b). Positive pressure solutions beyond this point are physically meaningless due to the
possibility of cavitation and are therefore discarded. The reason behind this tendency of liquid cavitation,
even with f < 1, is the extremely high thermal contraction in the colder layers closer to the container walls.
a < 1 represents the ratio of the temperature difference between the cold container wall and the melting
point of the liquid to the absolute melting temperature. Figures 13a and 13c describe the influence of a
on the evolution of the liquid pressure within the inclusion for the two distinct categories of b discussed
above.

• The elastic material properties are captured by p and q, which represent the shear and bulk moduli of the
solid near the melting point as compared to the liquid bulk modulus near the solidification temperature.
The magnitude of pressure in the liquid inclusion rises faster with larger p and q values (see Figures 13e
and 13f). The specific latent heat of solidification appears only in the dimensionless constant L, which is
loosely interpreted as a measure of the latent heat released relative to the heat capacity of the solid. The
heat transfer with the container walls is incorporated in the coefficient h, loosely quantifying how much of
the heat conducted towards the outer boundary of the accreted solid is transferred out into the cold wall.

• The numerical variations in a, b, p, and q used for the parametric studies do not significantly impact the
solidification rate, indicating a lower sensitivity to these parameters (see Figures 12a, 12b, 12c and12d).
A value of f closer to 1, with the liquid denser than the solid near melting, results in slower solidification
(Figure 12g); and the sensitivity to variations in f is moderate. The solidification rate is highly sensitive
to h and L. A larger h implies that the heat is able to flow more efficiently out of the solid into the
container walls, facilitating in faster solidification (Figure 12e). A smaller L implies less specific latent heat
compared to the specific heat capacity, allowing the accreted solid to better absorb the heat released during
solidification. This indirectly promotes outward heat conduction and results in a higher solidification rate
(Figure 12f). The higher rates of pressure drop in the liquid for larger h and smaller L values (see
Figures 13g and 13h) are attributed to the faster solidification rates.

• The configuration obtained by detaching the accreted solid from the rigid walls of the cold container after
a given time, removing any remaining unsolidified liquid, and subsequently cooling the solid to a uniform
steady-state temperature is not stress-free (see Figures 14d and 14e). In this configuration, both the inner
and outer boundaries are displaced inward relative to their positions in the initial liquid (Figure 14a).
The inward displacement of the outer boundary is likely caused by thermal contraction. The inner layers
experience highly negative σ̊rr during accretion, owing to the presence of a pressurized liquid inclusion.
When the liquid is removed and the inner boundary becomes traction-free, the inner layers naturally tend
to move apart to relieve the negative stress. Moreover, the closer the layer is to the inner boundary,
the more pronounced this tendency becomes. In the residually-stressed configuration, ˚̃σrr is zero at the
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Figure 10: The motion of the solidification interface is illustrated. S(t) and s(t) denote its radial position in the reference
and current configurations, respectively, while Ṡ(t) and ṡ(t) represent the respective velocities. 𝕞(t) denotes the fraction of
the initial liquid mass solidified, and �̇�(t) represents the solidification rate. These figures depict the solution of the coupled
problem (4.77)-(4.80) for f = 0.95, a = 0.8, b = 0.1, p = 1.1, q = 1.2, h = 0.5, and L = 10.

inner boundary, increases as one moves outward, reaches a maximum, and then decreases to vanish at
the outer boundary (Figure 14d). The maximum value of ˚̃σrr is larger if the accretion process ends later
(Figure 14b). ˚̃σθθ is negative at the inner boundary, increases as one moves outwards, eventually becoming
positive at the outer boundary (Figure 14e). The variation in ˚̃σθθ is larger if the solidification process is
stopped later (Figure 14c). Consequently, the outer boundary is prone to developing cracks, while the
inner boundary is prone to buckling instabilities.

4.6 Summary

In this paper, the process of liquid-to-solid phase change was modeled as a thermoelastic accretion problem.
Several simplifying assumptions were made, such as neglecting inertial effects in both phases, assuming the
melting temperature to be independent of pressure (hydrostatic stress in the liquid), ignoring surface stresses,
and assuming that the thermal conductivity and heat capacity of the solid are temperature-independent.
Since the primary focus was to study the solidification of a liquid inclusion, the liquid was assumed to be
a compressible hyperelastic material. The problem of determining the reference configuration as the solid
portion of a deformable body grows by accretion has the following challenging aspects: first, determining the
set of material points that are part of the solid, i.e., the moving boundary location; second, determining the
material metric at each point. The material metric depends on the state of deformation of the solidifying
material during attachment and on the temperature evolution to account for the effects of thermal expansion.
The boundary location, or the set of material points included in the solid at a given instant of time, is
determined by the mass rate of solidification, which depends on the jump of the heat flux across the moving
interface. Thus, this is a coupled nonlinear problem where the location of the boundary is an unknown, in
addition to the deformation and temperature fields.

As a concrete example, the radially inward solidification of a liquid initially at the melting temperature
was studied. The resulting moving boundary problem was numerically solved by treating the time of attach-
ment map as an unknown, instead of the boundary location. In other words, for a given space grid, the time
instances when the moving boundary crosses these grid points were calculated. This formulation enables
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(a) The variation of the displacement field with the mate-
rial coordinate inside the solid.

(b) The time evolution of the radial displacement field
within the solid.

(c) The variation of T(R, t) with R inside the solid.
(d) The time evolution of the temperature field within
the solid.

(e) The dependence of σ̊rr on R within the solid. (f) The time evolution of σ̊rr within the solid.

(g) The dependence of σ̊θθ on R within the solid. (h) The time evolution of σ̊θθ within the solid.

Figure 11: The variation of the radial displacement field r(R, t) − R, temperature field T(R, t), and dimensionless physical
components σ̊rr(R, t) and σ̊θθ(R, t) of the Cauchy stress inside the accreting solid, with material radial coordinate R and time
t, is depicted. These illustrations are based on the solution of the general problem (4.77)-(4.80), with f = 0.95, a = 0.8, b = 0.1,
p = 1.1, q = 1.2, h = 0.5, and L = 10. The spatial variation is shown for the instances t1 < t2 < t3 < t4, corresponding to
S(t1) = 0.65, S(t2) = 0.55, S(t3) = 0.45, S(t4) = 0.35, respectively. Similarly, the temporal evolution is depicted at the radii
R1 = 0.8, R2 = 0.7, R3 = 0.6, and R4 = 0.5.
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(a) a is varied, while f = 0.9, b = 0.25, p = 1.1, q = 1.2,
h = 0.5, and L = 10.

(b) b is varied, while f = 0.9, a = 0.5, p = 1.1, q = 1.2,
h = 0.5, and L = 10.

(c) p is varied, while f = 0.9, a = 0.8, b = 0.25, q = 1.2,
h = 0.5, and L = 10.

(d) q is varied, while f = 0.9, a = 0.8, b = 0.25, p = 1.1,
h = 0.5, and L = 10.

(e) h is varied, while f = 0.9, a = 0.8, b = 0.25, p = 1.1,
q = 1.2, and L = 10.

(f) L is varied, while f = 0.9, a = 0.8, b = 0.4, p = 1.1,
q = 1.2 and h = 0.5.

(g) f is varied, while a = 0.8, b = 0.25, p = 1.1, q = 1.2,
h = 0.5, and L = 10.

Figure 12: The dimensionless parameters f, a, b, p, q, h, and L are varied to investigate their effects on the accretion process.
The assessment is based on 𝕞(t), which represents the fraction of the initial liquid mass solidified till time t.

one to study the deformation and stresses at any point inside the solid at any desired time, thus potentially
highlighting critical zones prone to failures and instabilities. However, the solidification process is halted
with a margin prior to completion due to multiple reasons. The numerical results become less accurate as
one approaches the center, and they are also physically irrelevant as surface stresses, which become dominant
for smaller inclusion sizes, are not considered in the formulation. A detailed parametric study was performed
by varying all the dimensionless constants. In all the numerical examples, the solid was assumed to be less
dense than the liquid near the melting point, commonly observed in water and some polymers, though rare
in metals. This assumption is essential to avoid cavitation inside the liquid in the context of a solidifying
inclusion. However, even with this assumption of denser liquids, our numerical results show that cavitation
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(a) a is varied, while f = 0.9, b = 1.5, p = 1.1, q = 1.2,
h = 0.5, and L = 10.

(b) b is varied, while f = 0.9, a = 0.5, p = 1.1, q = 1.2,
h = 0.5, and L = 10.

(c) a is varied, while f = 0.9, b = 0.25, p = 1.1, q = 1.2,
h = 0.5, and L = 10.

(d) b is varied, while f = 0.9, a = 0.5, p = 1.1, q = 1.2,
h = 0.5, and L = 10.

(e) p is varied, while f = 0.9, a = 0.8, b = 0.25, q = 1.2,
h = 0.5, and L = 10.

(f) q is varied, while f = 0.9, a = 0.8, b = 0.25, p = 1.1,
h = 0.5, and L = 10.

(g) h is varied, while f = 0.9, a = 0.8, b = 0.25, p = 1.1,
q = 1.2, and L = 10.

(h) L is varied, while f = 0.9, a = 0.8, b = 0.25, p = 1.1,
q = 1.2 and h = 0.5.

(i) f is varied, while a = 0.8, b = 0.25, p = 1.1, q = 1.2,
h = 0.5, and L = 10.

Figure 13: The dimensionless parameters f, a, b, p, q, h, and L are varied to investigate their effects on the evolution of
pressure inside the liquid.
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(a) The displacement of a point in the residually-stressed configuration, relative to
its position in the initial unsolidified liquid, is depicted as a function of the dimen-
sionless material coordinate.

(b) The dimensionless physical component ˚̃σrr of the Cauchy
stress in the residually-stressed configuration is depicted as a
function of the dimensionless material coordinate R.

(c) The dimensionless physical component ˚̃σθθ of the Cauchy
stress in the residually-stressed configuration is depicted as a
function of the dimensionless material coordinate R.

(d) The residual stress ˚̃σrr in the body solidified till Re = 0.4 is
illustrated as a color plot in the deformed configuration.

(e) The residual stress ˚̃σθθ = ˚̃σϕϕ in the body solidified till Re =
0.4 is illustrated as a color plot in the deformed configuration.

Figure 14: The radial displacement r̃ − R and the physical components ˚̃σrr, ˚̃σθθ = ˚̃σϕϕ of the residual Cauchy stress in a
body obtained by accretion till Re are shown here, after detaching it from the rigid cold walls, emptying the remaining liquid
and cooling the accreted portion to a uniform steady-state temperature Ta. These solutions are based on the boundary-value
problem (4.112)-(4.113), assuming f = 0.95, a = 0.8, b = 0.1, p = 1.1, q = 1.2, h = 0.5, L = 10 and Ta = 0.5, post non-
dimensionalization. The stopping times corresponding to material locations Re = 0.6, 0.5 and 0.4 of the solidification interface
at the end of accretion are te = 5.7663, 6.5943 and 7.2242, respectively.

might be possible in the case of extreme thermal contraction in the solid. The accreted body—once it is
detached from the rigid container, drained of the remaining unsolidified liquid, and cooled to an ambient
temperature—is residually-stressed, in general. The residually-stressed configuration and its residual stresses
were computed numerically.

The present study opens up several new avenues for future investigations. The zero-displacement bound-
ary condition imposes a volumetric constraint, potentially causing cavitation for materials denser in the
solid phase near the melting point. This results from volume changes due to jump in density across phases.
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Replacing it with, for instance, an applied pressure on the outer boundary may enable one to study solid-
ification across a broader range of materials. Developing a variational theory to study instabilities in both
solids and liquids during a solidification process is another extension. It is crucial to include surface stresses
in the theory for a more realistic understanding of the physics and mechanics of solidification in simple, com-
putationally feasible problems. Ultimately, a more general computational framework needs to be developed
to fully utilize the benefits of this formulation for more complex geometries in real-world applications.

5 Conclusions

The study of accretion in elastic bodies, also known as surface growth, has a long history in the mechanics
community, with early works like Brown and Goodman [1963] restricted to linear elasticity and small strains.
Similarly, the study of solidification dates back to Stefan [1891], and the concepts used in this paper are now
well-established in the heat transfer community.

In recent years, with growing interest in manufacturing techniques such as 3D printing and biological
applications like actin polymerization around a rigid bead [Tomassetti et al., 2016, Zurlo and Truskinovsky,
2017], accretion mechanics has gained significant attention from mechanicians. The primary focus has been
to study residual stresses, eigenstrains, and their dependence on the history of deformation in a nonlinear
setting with finite deformation. Several theories of accretion mechanics have been proposed in the past few
years, including the consideration of an accreting sphere as a 4D manifold (with generalization to arbitrary
geometries unfeasible) [Tomassetti et al., 2016], the incremental theory of [Truskinovsky and Zurlo, 2019],
and the Eulerian formulation of Naghibzadeh et al. [2021, 2022]. Sozio and Yavari [2017, 2019] modeled an
accreting solid as a Riemannian manifold, avoiding the use of multiplicative decomposition of deformation
gradient which is common in modeling anelasticity in biological growth and plasticity.

The present work reflects the culmination of progress by Sozio and Yavari [2017, 2019] and Sozio et al.
[2020] in developing the geometric theory of thermoelastic accretion and is capable of calculating residual
stress and eigenstrains induced during solidification. The next step was to determine the accretion rate
governed by laws of mass and heat transfer, unlike previous works where it was assumed to be given a priori.
The distinguishing feature of this geometric theory lies in capturing the effects of thermal expansion and
the eigenstrains due to density and elastic property changes during a phase change. Moreover, in contrast
to the existing studies with constant growth velocities, this work computes the non-steady movement of the
solidification interface, which is controlled through heat extraction by a colder agent. Through a simple
example, it is concluded that the radial motion of the interface speeds up as it moves inward, while the rate
of mass solidified decreases over time. Solidification in an enclosed cavity induces stress in the liquid, leading
to potential cavitation when the solid is denser than the liquid, while less dense solids create compressive
stress in the liquid. The solidification rate is most sensitive to how well heat is transferred out of the body
and the material’s latent heat, and less to the material’s elasticity and thermal expansion properties. The
residual stresses and distortions computed in a geometric setting with finite deformations provide insights
into zones of significantly high stress, which may lead to cracks, part distortion, and delamination during
and after manufacturing. In the example considered, after solidification, residual stresses make the outer
surface prone to cracking and the inner layers susceptible to buckling.

The theory formulated in this paper is not the most general. A more general coupled theory would include
stress-temperature moduli in the example problems, which were ignored in this work. In the future, a phase-
field theory of thermoelastic accretion-ablation should be developed, where the material metric depends on
both the phase parameter and temperature. This would better model the mushy transition between phases
in certain problems and improve computational aspects in complex geometries. Additionally, at smaller
scales with sharp moving interfaces where surface stresses play a significant role, the theory needs to be
coupled with the theory of surface elasticity [Gurtin and Ian Murdoch, 1975] for a proper modeling and
understanding of the underlying physics.
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A The first and second laws of thermodynamics and the heat
equation

In this appendix, we derive the material and spatial heat equations from the laws of thermodynamics.
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A.1 Material heat equation

Let E(X, t), Ψ(X, t) and N (X, t) be, respectively, the specific internal energy, the specific free energy and the
specific entropy in the material configuration. In a class of thermoelasticity theories, deformation gradient

is multiplicatively decomposed into elastic and thermal parts: F =
e

F
t

F [Stojanović et al., 1964, Stojanović,

1969, Lubarda, 2004, Sadik and Yavari, 2017a]. Let us denote the induced Euclidean metric on B by G̊ = g
∣∣
B.

Internal energy and free energy explicitly depend on the elastic distortion
e

F:

E = E(X,N ,
e

F, G̊,g) , Ψ = Ψ(X,T,
e

F, G̊,g) . (A.1)

Objectivity implies that

E = Ê(X,N ,
e

C♭, G̊) , Ψ = Ψ̂(X,T,
e

C♭, G̊) , (A.2)

where
e

C♭ =
t

F∗g =
t

F⋆g
t

F.54

Conservation of energy for an arbitrary sub-body U ⊂ Bt is written as55

d

dt

∫
U
ρ

(
E +

1

2
⟨⟨V,V⟩⟩g

)
dV =

∫
∂U

(
⟨⟨T,V⟩⟩g − ⟨⟨H,N⟩⟩G

)
dA+

∫
U

(
ρ ⟨⟨B,V⟩⟩g +R

)
dV , (A.3)

where T(X, t) is the traction vector, B(X, t) is the body force (per unit mass), R(X, t) is a heat source/sink,

i.e.,
∫
U RdV is the rate at which the heat is generated or absorbed in U , and G =

t

F∗G̊ is the material metric,
which explicitly depends on the temperature field, c.f., (2.11) [Sadik and Yavari, 2017b, Yavari, 2010]. Using
(3.3), (3.17) and the fact that PN♭ = T on ∂U , (A.3) can be localized to read56

ρ Ė = S :D−DivG H+R , (A.4)

where S = PF⋆ is the second Piola-Kirchhoff stress and D = 1
2Ċ

♭. The localized Clausius-Duhem inequality
reads

ρ Ṅ +DivG

(
H

T

)
− R

T
≥ 0 , (A.5)

which can be rewritten in terms of the rate of energy dissipation as

η̇ = ρT Ṅ +DivG H− 1

T
⟨dT,H⟩ −R ≥ 0 . (A.6)

Note that C♭ = φ∗g = (
e

F
t

F)⋆g
e

F
t

F =
t

F⋆
e

F⋆g
e

F
t

F =
t

F⋆
e

C♭
t

F =
t

F∗ e

C♭. We assume an isotropic material,
which is materially covariant57 [Marsden and Hughes, 1983].58 Thus

Ψ̂(X,T,
e

C♭, G̊) = Ψ̂(X,T,
t

F∗ e

C♭,
t

F∗G̊) = Ψ̂(X,T,C♭,G) , (A.7)

where G =
t

F∗G̊
t

F is the material metric. Therefore

Ψ̇ =
∂Ψ̂

∂T
Ṫ +

∂Ψ̂

∂C♭
:Ċ♭ +

∂Ψ̂

∂G
:Ġ =

dΨ̂

dT
Ṫ +

∂Ψ̂

∂C♭
:Ċ♭ , (A.8)

where
dΨ̂

dT
=
∂Ψ̂

∂T
+
∂Ψ̂

∂G
:
∂G

∂T
. (A.9)

54One can show that for isotropic solids Ψ = Ψ̂(X,T,
e

C♭, G̊) = Ψ̂(X,T,C♭,G) [Yavari and Sozio, 2023]. In the case of
anisotropic solids, a similar identity holds, provided that structural tensors are included as arguments of the free energy.

55A term ρ ∂E
∂G

: ∂G
∂t

was included in the energy balance in [Sadik and Yavari, 2017b]. It turns out that this term should not
appear on the right-hand side of the energy balance, as it would lead to an incorrect heat equation. A detailed discussion of
energy balance in the presence of eigenstrains will be given in [Sadik and Yavari, 2024].

56In components, S :D = SAB DAB .
57Let us consider an arbitrary material (referential) diffeomorphism Ξ : B → B such that Ξ(X) = X. A free energy function

Ψ̂(X,T,
e

C♭, G̊) is materially covariant if it is invariant under Ξ, i.e., Ψ̂(X,T,Ξ∗
e

C♭,Ξ∗G̊) = Ψ̂(X,T,
e

C♭, G̊).
58Extension of this analysis to anisotropic solids involves including structural tensors as arguments of the free energy [Yavari

and Sozio, 2023]. In this paper, we restrict our analysis to isotropic materials.
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Recall that free energy, internal energy, entropy and temperature are related as

E = Ψ+ TN . (A.10)

Notice that E = Ê(X,N ,C♭,G), Ψ = Ψ̂(X,T,C♭,G), and N = N̂ (X,C♭,G). Taking partial derivatives of
both sides with respect to T , one obtains

0 =
∂Ψ

∂T
+N , (A.11)

and hence

N = −∂Ψ
∂T

. (A.12)

From (A.10), ρT Ṅ = ρĖ − ρṪN − ρΨ̇. Substituting this relation and (A.4) into (A.6), the rate of energy
dissipation is simplified to read

η̇ = S :D− ρṪN − ρΨ̇− 1

T
⟨dT,H⟩ ≥ 0 . (A.13)

Using (A.8) the energy dissipation rate is further simplified as

η̇ =
1

2

[
S− ρ

∂Ψ̂

∂C♭

]
:Ċ♭ − ρṪ

[
N +

dΨ̂

dT

]
− 1

T
⟨dT,H⟩

=

[
S− 2ρ

∂Ψ̂

∂C♭

]
:D− ρ

∂Ψ̂

∂G
:
∂G

∂T
Ṫ − 1

T
⟨dT,H⟩ ≥ 0 ,

(A.14)

where (A.12) was used in the second equality. Thus

S = 2ρ
∂Ψ̂

∂C♭
, η̇ = −ρ ∂Ψ̂

∂G
:
∂G

∂T
Ṫ − 1

T
⟨dT,H⟩ ≥ 0 . (A.15)

From (A.10), ρ Ė = ρΨ̇ + ρṪN + Tρ Ṅ = S :D + ρT Ṅ . Substituting this back into the energy balance
equation (A.4), one obtains

ρT Ṅ + ρ Ṫ
∂Ψ̂

∂G
:
∂G

∂T
= ρR−DivG H . (A.16)

Using (A.12), one writes

Ṅ = −Ṫ d

dT

∂Ψ̂

∂T
− ∂2Ψ̂

∂C♭∂T
: Ċ♭ . (A.17)

Thus, (A.16) is written as

ρ

[
−T d

dT

∂Ψ̂

∂T
+
∂Ψ̂

∂G
:
∂G

∂T

]
Ṫ − ρT

∂2Ψ̂

∂C♭∂T
:Ċ♭ = ρR−DivG H . (A.18)

Note that

−T d

dT

∂Ψ̂

∂T
+
∂Ψ̂

∂G
:
∂G

∂T
= −T d

2Ψ̂

dT 2
+ T

d

dT

[
∂Ψ̂

∂G
:
∂G

∂T

]
+
∂Ψ̂

∂G
:
∂G

∂T
= −T d

2Ψ̂

dT 2
+

d

dT

[
T
∂Ψ̂

∂G
:
∂G

∂T

]
. (A.19)

Hence, (A.18) is simplified to read

ρ

{
−T d

2Ψ̂

dT 2
+

d

dT

[
T
∂Ψ̂

∂G
:
∂G

∂T

]}
Ṫ +DivG H = ρR+ ρT

∂2Ψ̂

∂C♭∂T
: Ċ♭ . (A.20)

Therefore, the heat equation is written as

ρCE Ṫ +DivG H = R+ T M :D , (A.21)
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where the specific heat capacity per unit mass at constant strain CE and the referential thermal stress
coefficient tensor M are given as

CE = −T d
2Ψ̂

dT 2
+

d

dT

[
T
∂Ψ̂

∂G
:
∂G

∂T

]
, M = 2ρ

∂2Ψ̂

∂C♭∂T
. (A.22)

Here, the
(
2
0

)
-tensor M is also referred to as the stress-temperature moduli [Marsden and Hughes, 1983,

Truesdell and Noll, 2004, Holzapfel, 2002, Gurtin et al., 2010].

A.2 Spatial heat equation

We next derive the spatial heat equation using the material heat equation (A.21). Let ψ(x, t) represent
the specific free energy in the current configuration, with the corresponding constitutive response function
denoted as ψ(x, t) = ψ̂(x, T ,g, c♭). Since φt(X) = x, it follows that ψt ◦φt = Ψt. Moreover, the spatial and
material response functions are related as

ψ̂(x, T ,g, c♭) = Ψ̂
(
φ−1
t (x), φt

∗T , φt∗g, φt∗c♭
)
. (A.23)

Note that
dψ̂

dT
=
∂ψ̂

∂T
+
∂ψ̂

∂c♭
:
∂c♭

∂T
. (A.24)

The specific heat capacity at constant strain cE and the spatial thermal stress coefficient m in the current
configuration are defined as

cE = −T d
2ψ̂

dT 2
+

d

dT

[
T ∂ψ̂

∂c♭
:
∂c♭

∂T

]
, m = 2ϱ

∂2ψ̂

∂g ∂T
. (A.25)

Notice that cE = CE .
59 Further, since

∂2ψ̂

∂gab∂T
=
∂CAB
∂gab

∂2Ψ̂

∂CAB∂T
= F aAF

b
B

∂2Ψ̂

∂CAB∂T
, (A.26)

the spatial and material thermal stress coefficients are related as

Jmab = 2Jϱ
∂2ψ̂

∂gab∂T
= 2ρF aAF

b
B

∂2Ψ̂

∂CAB∂T
= F aAF

b
BM

AB . (A.27)

Thus, m and M are related as M = Jφt
∗m. Observe that60

M :D = Jm :d , (A.30)

where d = 1
2Lvg is the Lie derivative of the spatial metric along the spatial velocity. Let U ⊂ Bt (U∩∂Bt = ∅)

and Pt = φt(U). Notice that ∂Pt = φt(∂U). Using the divergence theorem in the deformed and the material
manifolds, one has∫

Pt

divg h dv =

∫
∂Pt

⟨⟨h,n⟩⟩gda , and

∫
∂U

⟨⟨H,N⟩⟩GdA =

∫
U
DivG HdV . (A.31)

59This is implied using ∂ψ̂
∂T = ∂Ψ̂

∂T
, dψ̂
dT = dΨ̂

dT
and ∂ψ̂

∂c♭
: ∂c

♭

∂T = ∂Ψ̂
∂G

: ∂G
∂T

.
60The components of Ċ♭ read

ĊAB = FaAF
b
B
∂gab

∂xc
V c + gab

[
∂V b

∂XB
FaA +

∂V a

∂XA
F bB

]
= gab

[
V b|BFaA + V a|AF

b
B

]
, (A.28)

and the components of Lvg are written as (Lvg)ab = gacvc|b + gcbv
c
|a. Since V a|B = va|bF

b
B , the components of D = 1

2
Ċ♭

and d = 1
2
Lvg can be related as

DAB = dab F
a
AF

b
B , (A.29)

i.e., D = φ∗
td. Thus, (A.26) and (A.29) imply that MABDAB = J mab dab.
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Further, by the change of variables formula∫
∂Pt

⟨⟨h,n⟩⟩gda =

∫
∂U

⟨⟨H,N⟩⟩GdA. (A.32)

Hence, it is implied from (3.1), (A.30), (A.31), (A.32) and (A.21) that61∫
Pt

[
ϱ cE Ṫ + divg h− T m :d− r

]
dv =

∫
U

[
ρCE Ṫ +DivG H− TM :D−R

]
dV = 0 , (A.34)

which holds for an arbitrary sub-body Pt. Therefore, the localized spatial heat equation reads

ϱ cE Ṫ + divg h = T m :d+ r . (A.35)

Notice that ( )̇ = ∂
∂t

∣∣
X
( ) represents the material time derivative.

B A constitutive model for thermoelastic solids

We consider the following constitutive model for thermoelastic solids

Ψ̌s(I1, J, T ) =

[
µs
0

2
(J− 2

3 I1 − 3) +
κs0
2
(J − 1)2

]
T

T s
0

− κs0 β
s
0 (J − 1)(T − T s

0)− ρ

∫ T

T s
0

T − τ

τ
cE(τ) dτ . (B.1)

Here, µs
0, κ

s
0, and β

s
0 represent the shear modulus, bulk modulus, and volumetric thermal expansion coefficient

of the solid at the reference temperature T s
0 [Ogden, 1992, Holzapfel and Simo, 1996, Sadik and Yavari,

2017b].62 The shear and the bulk moduli are assumed to evolve linearly with temperature, i.e.,

µs(T ) =
µs
0T

T s
0

, κs(T ) =
κs0T

T s
0

. (B.2)

Consider a homogeneous body initially at a uniform temperature T0, which, when changed to another
uniform temperature T1, undergoes a stress-free volumetric deformation in the process. The state of stress

for a purely volumetric deformation is quantified by σ = 1
3 trσ = ∂Ψ̌s

∂J . Therefore, one has ∂Ψ̌s

∂J = κs0, and
hence it follows that

J = 1 + βs
0T

s
0

[
1− T s

0

T

]
. (B.3)

Further, since the Jacobian in such a process is J = eβ
s(T ), it is implied that

e3ω
s(T ) = 1 + βs

0T
s
0

[
1− T s

0

T

]
. (B.4)

Thus, the coefficient of thermal expansion at temperature T is written as

βs(T ) =
βs
0

[
T s
0

T

]2
1 + βs

0T
s
0

[
1− T s

0

T

] , (B.5)

where the relation βs = 3dωs

dT has been used. We shall use this model in our numerical examples. For more
details, see [Sadik and Yavari, 2017b].

61Here, ∫
Pt

hb|bdv =

∫
∂Pt

hbnbda =

∫
∂U

HBNBdA =

∫
U
HB

|BdV , (A.33)

and
∫
U RdV =

∫
Pt

rdv.
62Recall that, in the thermally accreted part of the body, T0(X) represents the temperature during accretion, while in the

initial body, it denotes the initial temperature.
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C Christoffel symbols of the spatial and material metrics

The nonzero Christoffel symbols for the spatial metric g (4.1) read

γrθθ = −r , γrϕϕ = −r sin2 θ , γθrθ = γϕrϕ =
1

r
, γθϕϕ = − sin θ cos θ , γϕϕθ = cot θ . (C.1)

The nonzero Christoffel symbols for the material metric
L
G given in (4.5) are listed as

◦
ΓRRR = αf T,R ,

◦
ΓRΘΘ = −

[
αf T,R +

1

R

]
R2 ,

◦
ΓRΦΦ = −

[
αf T,R +

1

R

]
R2 sin2 Θ ,

◦
ΓΘ
RΘ =

◦
ΓΦ
RΦ = αf T,R +

1

R
,

◦
ΓΘ
ΦΦ = − sinΘ cosΘ ,

◦
ΓΦ
ΦΘ = cotΘ ,

(C.2)

where αf(T ) = dωf(T )
dT . Here we have used the notation (·)′ := d

dR (·). Similarly, the nonzero Christoffel

symbols for the material metric
B
G given in (4.18) are

ΓRRR = αs T,R +
ς ′

ς
, ΓRΘΘ = −

[
αs T,R +

r̄ ′

r̄

]
r̄2

ς2
, ΓRΦΦ = −

[
αs T,R +

r̄ ′

r̄

]
r̄2

ς2
sin2 Θ ,

ΓΘ
RΘ = ΓΦ

RΦ = αs T,R +
r̄ ′

r̄
, ΓΘ

ΦΦ = − sinΘ cosΘ , ΓΦ
ΦΘ = cotΘ ,

(C.3)

where αs(T ) = dωs(T )
dT and ς(R) = ū(R)η2(R)

Ū(R)
.

D Constitutive equations for hyperelastic fluids

The constitutive equation of an elastic fluid explicitly depends only on the mass density [Truesdell and
Noll, 2004, Gurtin et al., 2010]. The specific free energy function ψ(X,T,F,G,g) for hyperelastic flu-

ids can be expressed as a function of J =
√

det g
detG detF63 [Wang and Truesdell, 1973, p. 198], such that

ψ(X,T,F,G,g) = ψ̂(X,T, J). Using this function, the Cauchy, the first and the second Piola-Kirchhoff
stress tensors can be expressed as

σ = −p̂g♯ , P = −Jp̂g♯F−⋆ , S = Jp̂F−1g♯F−⋆ , (D.3)

63In the literature of continuum mechanics, it is common to write J = detF, which is incorrect unless the physical components
of the deformation gradient are used. For vectors W = WA ∂

∂XA ∈ TXB and w = wa ∂
∂xa

∈ TxS, the physical components are

defined as ŵa =
√
gaa wa (no summation on a) and ŴA =

√
GAAWA (no summation on A) [Truesdell, 1953]. The physical

components of deformation gradient F̂aA are defined such that ŵa = F̂aA ŴA. This implies that F̂aA =
√
gaa

1√
GAA

FaA (no

summation). In a coordinate chart {XA} the Riemannian material volume element is written as µG =
√
detG dX1∧dX2∧dX3.

Similarly, the Riemannian volume element in the current configuration with respect to a coordinate chart {xa} has the following
coordinate representation: µg =

√
detg dx1∧dx2∧dx3. The Jacobian relates the deformed and undeformed Riemannian volume

forms as φ∗µg = J µG. Note that φ∗(dx1 ∧ dx2 ∧ dx3)) = detF dX1 ∧ dX2 ∧ dX3. Thus

φ∗µg =
√

detg φ∗(dx1 ∧ dx2 ∧ dx3) =
√

detg detF dX1 ∧ dX2 ∧ dX3 = J
√
detG dX1 ∧ dX2 ∧ dX3 . (D.1)

Hence, J =
√

det g
detG

detF. Using the explicit form of the physical deformation gradient

F̂ =


√
g11√
G11

F 1
1

√
g11√
G22

F 1
2

√
g11√
G33

F 1
3

√
g22√
G11

F 2
1

√
g22√
G22

F 2
2

√
g22√
G33

F 2
3

√
g33√
G11

F 3
1

√
g33√
G22

F 3
2

√
g33√
G33

F 3
3

 , (D.2)

we see that det F̂ =
√
g11g22g33√
G11G22G33

detF. If {XA} and {xa} are orthogonal curvilinear coordinates, e.g., cyclindrical and spherical

coordinates,
√
g11g22g33 = detg and

√
G11G22G33 = detG, and hence J = det F̂.
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where p̂ = −∂ψ̂
∂J . Since hydrostatic stresses are compressive in fluids, one must have ∂ψ̂

∂J < 0. Note that

(divg σ)
a = −

(
p̂ gab

)
|b = −gab ∂p̂

∂xb
=

[
∂2ψ̂

∂J2

∂J

∂xb
+

∂2ψ̂

∂J∂T

∂T

∂xb
+

∂2ψ̂

∂XA∂J
(F−1)Ab

]
gab . (D.4)

For homogeneous fluids, ψ̂ is independent of X, and hence, the term ∂2ψ̂
∂XA∂J

vanishes. In the absence

of any heat flow, one can simply work with the smooth and strictly convex free energy function W̆ (J),
with the property that limJ→0+ W̆ = +∞. The Cauchy, the first, and the second Piola-Kirchhoff stress
tensors are calculated using this free energy function W̆ as per the formulae described in (3.15). Since
(divg σ)

a = W̆ ′′(J) ∂J
∂xb g

ab, the balance of linear momentum reads

W̆ ′′(J)
∂J

∂xb
gbc + f c = ac , (D.5)

where W̆ ′′ = d2W̆
dJ2 . Moreover, in the absence of inertial and body forces, one can assume that W̆ ′′(J) > 0.

Thus, one concludes that ∂J
∂xb = 0. Hence, in the absence of body and inertial forces, J = J(t) in homogeneous

fluids at constant temperature [Podio-Guidugli et al., 1985]. For example, Ghosh and Lopez-Pamies [2022]
considered the following free energy function for hyperelastic liquid inclusions

W̆ (X, J) = Jη(X) +
κ

2
[J − 1]2 . (D.6)

It is implied that σ =
[
η + κ(J − 1)

]
g♯.64 Here, η(X) represents the pressure in the undeformed liquid

(which is not necessarily zero) while the bulk modulus κ quantifies compressibility.
In the fluid mechanics literature, a compressible hyperelastic fluid is analogous to an unconstrained elastic

fluid, which is characterized by the constitutive relation σ = −P(ϱ)g♯. It is known by several other names,
such as, Euler fluid, ideal compressible fluid, perfect compressible fluid, inviscid compressible fluid, and
barotropic fluid [Truesdell and Rajagopal, 2000, p. 44].

64A similar constitutive relation for thermoelastic fluids has been proposed in [Ateshian and Shim, 2022].
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