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Cracks develop various surface patterns as they propagate in three-dimensional (3D) materials.
Facet formation in nominally tensile (mode-I) fracture emerge in the slow, non-inertial regime and
oftentimes takes the form of surface steps. We show that the same phase-field framework that
recently shed basic light on dynamic (inertial) tensile fracture in 3D, also gives rise to crack surface
steps. Step formation is shown to be an intrinsically nonlinear phenomenon that involves two
essential physical ingredients: finite-strength quenched disorder and a small, mesoscopic anti-plane
shear (mode-III) loading component (on top of the dominant tensile, mode-I loading component).
We quantify the interplay between disorder (both its strength and spatial correlation length) and
mesoscopic mode I+III mixity in controlling step formation. Finally, we show that surface steps
grow out of the small-scale, background surface roughness and are composed of two overlapping
crack segments connected by a bridging crack, in agreement with experiments.

Introduction.—Crack propagation is the main process
that mediates material failure. Yet, despite its prime sci-
entific and technological importance, our understanding
of the spatiotemporal dynamics of cracks is still incom-
plete, especially in 3D. In 3D fracture, under nominally
tensile (mode-I) conditions, cracks are known to form
various surface structures out of the tensile symmetry
plane [1–24]. In the slow fracture regime, i.e., when the
crack propagation velocity is much smaller than elastic
wave-speeds, faceted fracture surfaces emerge, oftentimes
featuring symmetry-breaking topological defects in the
form of surface steps [1–11].

Step formation is not yet fully understood. In par-
ticular, linear stability analyses [25–28] and recent com-
puter simulations [24, 29] show that slow cracks in 3D
are linearly stable against out-of-plane perturbations un-
der pure tensile loading conditions. These results suggest
that basic physical ingredients might be missing in our
current understanding of step formation. One possible
ingredient might be related to nonlinear effects [5, 28, 30],
in particular finite quenched disorder (characterized by
finite strength and correlation length), which has been
very recently shown to play decisive roles in dynamic
(inertial) tensile fracture in 3D [24].

Another possible missing ingredient has been sug-
gested by recent experiments on brittle polymer gels [8].
It has been shown that experiments on nominally ten-
sile (mode-I) fracture quite often include a small, un-
controlled anti-plane shear (mode-III) loading compo-
nent. Importantly, it has been demonstrated that once
the small mode-III loading component is carefully elimi-
nated, surface facets disappear, i.e., these results indicate
that step formation crucially depends on the existence of
a small mode I+III mixity (see Fig. 1).

These observations are in line with earlier experiments
on soft hydrogels [5], where steps/facets observed in the
presence of a controlled, global mode I+III mixity —
similarly to a large body of literature on mixed-mode
I+III fracture [27, 28, 30–40] — were related to steps
that emerged in nominally mode-I fracture [4]. The lat-
ter steps were attributed to sufficiently large mesoscopic
structural fluctuations accompanied by some mode I+III

FIG. 1. The fracture surface (green) generated by a crack in a
long bar of height Ly and thickness Lz under predominantly
tensile (mode-I, long red arrow) loading. A small anti-plane
shear (mode-III, short blue arrow) loading component is su-
perimposed. The initial flat notch is located in the middle
plane and the crack subsequently propagated predominantly
in the x direction. The coordinate system (x, y, z) is marked
(in units of the dissipation length ξ), and the parameters used
are KIII/KI =0.05, σ=0.5 and R/ξ=5, see text for details.
(inset) A zoom-in on a ridge line (see text) corresponding to
the rectangle in the main panel.

mixity, and as such precisely highlight the two physical
ingredients discussed above. This picture is also consis-
tent with experiments on glasses and brittle thermoset-
ting polymers [11, 41], where steps emerged under very
small levels of controlled, global mode I+III mixity. Fi-
nally, hydraulic fracture experiments on brittle hydrogels
demonstrated the effect of material heterogeneity on step
formation through the addition of microbeads of various
sizes and number density [7].

Overall, our proposed physical picture in which steps
emerge from a combination of a small, mesoscopic mode
I+III mixity and finite-strength quenched disorder ap-
pears to be consistent with experiments on a broad range
of amorphous (disordered) materials. Yet, it has never
been directly and conclusively demonstrated. More-
over, basic questions regarding step nucleation and sub-
sequent spatiotemporal dynamics remain open. Here, we
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FIG. 2. (a) A fracture surface generated by a 3D crack with KIII/KI =0.15, σ=0.25 and R/ξ=5. (b) Same as panel (a), but
with R/ξ=10. (c) Same as panel (a), but with σ=0.5. (d) A zoom-in on a step generated with KIII/KI =0.2, σ=0.5 and
R/ξ=10 (there is another, coexisting step, which is not shown). See text for discussion.

study slow 3D fracture using a flexible computational
framework in which material quenched disorder is in-
corporated. It is based on a phase-field fracture ap-
proach [24, 42–50], which has been very recently shown to
unprecedentedly predict both the oscillatory and branch-
ing instabilities in 2D dynamic fracture [42–44], and the
inertial dynamics of tensile fracture in 3D [24, 48].

We show that step formation is an intrinsically nonlin-
ear phenomenon that crucially involves both of the two
aforementioned physical ingredients: quenched disorder
(of finite strength and correlation length) and a small,
mesoscopic anti-plane shear (mode-III) loading compo-
nent. We numerically compute a comprehensive phase
diagram for step formation in terms of quenched disor-
der and mode I+III mixity. We also show that steps grow
out of background surface roughness ridges and are com-
posed of two overlapping crack segments connected by a
bridging crack, in line with experiments.

The emergence of steps in slow 3D fracture.—We em-
ploy the recently-developed, disordered 3D phase-field
fracture framework of [24], where displacement field
u(x, t) is coupled to an auxiliary field, the scalar phase-
field ϕ(x, t) [24, 42–44, 48, 51]. The latter satisfies its own
dissipative field equation, featuring a characteristic dissi-
pation length ξ and a dissipation time [24, 42–44, 48, 51],
which manifest themselves near a crack front (cf. Fig. 1,
also for the definition of the Cartesian coordinate system
x=(x, y, z), and note that t is time).

Over spatial scales larger than ξ away from the front,
one has ϕ(x, t)=1 and u(x, t) corresponds to linear elas-
ticity, featuring a nearly singular gradient (∇u∼ 1/

√
r,

where r is the distance from the front [20, 52]). For r<∼ξ,
ϕ(x, t) drops towards zero, spontaneously generating the
traction-free boundary conditions that define the crack
and giving rise to a rate-dependent fracture energy Γ(v)
(v is the crack propagation velocity). The crack tra-
jectory is spontaneously selected without invoking any
extraneous path-selection criteria, allowing to track the
in silico real-time 3D spatiotemporal crack dynamics in
a way that goes well beyond current experiments. The
crack is defined as the ϕ(x, t)=1/2 iso-surface.

We employ the same disordered 3D phase-field fracture
model of [24], including the sample geometry, numeri-
cal implementation of the field equations and large-scale
GPU-based computer simulations [24, 51]. Quenched
disorder, which is a generic feature of amorphous ma-
terials, is incorporated into the static fracture energy
Γ0 = Γ(v = 0) such that Γ(x; v = 0)/Γ0 is a Gaussian
field characterized by unity mean, width σ and spatial
correlation length R [24, 51]. It has been recently shown
to play crucial roles in predicting the 3D dynamics of ten-
sile (mode-I) cracks in the inertial regime (i.e., where v
is comparable to elastic wave-speeds), in agreement with
a broad range of experimental observations [24]

There are only two differences compared to [24]. First,
as step formation is experimentally observed in slow
3D fracture, we focus on the quasi-static regime [51],
where v is much smaller than elastic wave-speeds. Sec-
ond, we incorporate a small mode-III loading compo-
nent in addition to the dominant mode-I one, quantified
by the mode I+III mixity K

III
/K

I
[51]. Here, K

I
and

K
III

are the mode-I and mode-III stress intensity fac-



3

tors (SIFs), respectively (the SIF is the amplitude of the
linear elastic 1/

√
r stress singularity for each symmetry

mode [20, 52]). We fix the dimensionless crack driving
force G/Γ0, where G=

[
(1− ν)K2

I
+K2

III

]
/2µ is the en-

ergy release rate [20, 52]. Finally, we employ periodic
boundary conditions across the thickness direction (of
size Lz, see Fig. 1), and set Ly=192ξ and Lz=318ξ. The
latter value, which is much smaller compared to macro-
scopic Lz values, implies that mode I+III mixity in our
computations represents mesoscopic mode-mixity, which
may arise from a variety of experimental and/or material
sources.

We study the emergence of out-of-plane crack struc-
tures in slow 3D fracture as a function ofK

III
/K

I
≪1 and

the quenched disorder parameters σ and R/ξ. In Fig. 2a,
we present a fracture surface generated by a crack with
K

III
/K

I
= 0.15, σ = 0.25 and R/ξ = 5. Here, the sur-

face features out-of-plane roughness, but a distinct step
does not emerge above the small-scale roughness level.
Out-of-plane roughness has been extensively discussed in
the literature, mainly in the context of self-affine scal-
ing properties (e.g., [53]), but is not commonly studied
along with step formation. Notable exceptions are [3, 5],
where small-scale roughness has been demonstrated both
in the absence of steps and in their presence. Specifically
in [4, 5], roughness has been shown to reveal ridges in
the crack propagation direction (see Fig. 2b in [4]) and
when steps emerged, they appeared to grow out of these
roughness ridges [5].

Shallow roughness ridges are observed in Fig. 2a (e.g.,
the ridge line along the propagation direction x, in
the vicinity of z/ξ ≃ 250). Ridge lines are localized
out-of-plane front distortions that persist mainly in the
crack propagation direction. Their out-of-plane distor-
tion angle is smaller than 90◦, leaving the front contin-
uous (unlike steps, which involve a topological change).
Steeper ridge lines are observed in Fig. 1, where the inset
(bottom-left corner) shows a zoom-in on part of the ridge
line marked by the black rectangle in the main panel.
Ridges, and the distinction between them and steps, are
also discussed in relation to Fig. 5.

In Fig. 2b, we present part of a fracture surface emerg-
ing in a simulation as in Fig. 2a, with everything being
the same except that we set R/ξ = 10. A distinct step
(marked by the blue arrow) is observed, involving a 90◦

facet that is followed by a topological change, resulting in
two crack segments (as will be further discussed in rela-
tion to Fig. 2d and Fig. 5). The step in Fig. 2b appears to
grow out of a roughness ridge. A coexisting ridge, which
eventually did not transform into a step, is marked by
the red arrow.

In Fig. 2c, we present part of a fracture surface emerg-
ing in a simulation as in Fig. 2a, with everything being
the same expect that we set σ = 0.5. The larger am-
plitude disorder results in steeper multiple ridges, one
of which transforms into a step (marked by the blue ar-
row) that drifts at an angle relative to the crack prop-
agation direction. These highly localized steps are con-

sistent with corresponding observations in a broad range
of experiments [1–11]. Figure 2 constitutes a major find-
ing that steps formation in slow 3D fracture involves a
small mesoscopic mode I+III mixity and finite-strength
quenched disorder, of either sufficiently large correlation
length R or sufficiently large amplitude σ. Our next
goals are to quantify the onset conditions for steps, and
to gain deeper insight into their dynamics and topol-
ogy/geometry.
Step formation phase diagram.—The above results in-

dicate that step formation depends on K
III
/K

I
, σ and

R/ξ, and that the threshold in K
III
/K

I
is a decreasing

function of both σ and R/ξ. To quantify the onset con-
ditions for steps, we present in Fig. 3 two planar cuts of
the step formation phase diagram in the K

III
/K

I
−σ−R/ξ

space.

FIG. 3. (a) Step formation phase diagram in the KIII/KI−σ
plane for fixed R/ξ=10. Diamonds correspond to steps and
circles for their absence, and the shaded area marks the tran-
sition region (guide to the eye). (b) Same as panel (a), but in
the KIII/KI −R/ξ plane for fixed σ= 0.25. Spatial patterns
that correspond to the thick-boundary symbols appear in ei-
ther Fig. 2 or Fig. 5.

We observe that indeed the mode I+III mixity thresh-
old for step formation is a decreasing function of σ
(Fig. 3a) and R/ξ (Fig. 3b). Moreover, the threshold
becomes small for large σ and/or R/ξ, which is con-
sistent with experimental observations regarding a very
small mode I+III mixity threshold for facet formation
and hence indirectly supports the importance of finite-
strength disorder in the amorphous materials employed.
The finite values of σ and R/ξ, and the transition trig-
gered by increasing them, also highlight the intrinsically
nonlinear, disorder-induced nature of step formation.

We note that while the phase diagram in Fig. 3 ap-
pears to be binary (i.e., either steps emerge or not),
the disorder-induced nature of step formation indicates
that it is in fact a probabilistic process. Consequently,
the actual transition may be smoother and likely to be
better quantified in terms of probabilities. Indeed, in
hydraulic fracture experiments on brittle hydrogels in
which discrete material heterogeneity was externally con-
trolled through the addition of microbeads [7], it has
been demonstrated that the step formation probability
increases with the microbeads size — that is directly
analogous to the correlation length R —, as well as with
their number density.
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Overall, the crucial role of material quenched disorder
in step formation in slow 3D fracture seems to bear close
analogy to its roles in relation to the localized branching
typically observed at higher crack propagation velocities,
including in the inertial regime, as discussed extensively
in [24]. As such, quenched disorder — and its associ-
ated lengthscale R — appears to be an essential physical
ingredient in 3D fracture of amorphous materials.

Small-scale roughness, spatiotemporal facet dynamics
and step topology/geometry.—To quantify the spatiotem-
poral dynamics of fracture facets, we start by plot-
ting in Fig. 4 the out-of-plane root-mean-square (RMS)

roughness hRMS(t) =
√
L−1
z

∫ Lz

0
[fy(z, t)− ⟨fy(z, t)⟩z]2 dz

vs. ⟨fx(z, t)⟩z of several crack surfaces. Here, f(z, t) =
(fx(z, t), fy(z, t)) is the front position and ⟨ · ⟩z is an av-
erage over the thickness dimension z. The lowest curve
corresponds to a pure mode-I crack (K

III
/K

I
= 0), with

σ=0.25 and R/ξ=5. The roughness level, hRMS≃0.2ξ, is
much smaller than R, demonstrating the large resistance
of the crack front to out-of-plane distortion. The spa-
tial distribution of roughness (not shown) is anisotropic,
revealing persistent ridges in the crack propagation di-
rection, as shown in Fig. 2 and as observed experimen-
tally [5].

FIG. 4. The RMS roughness hRMS(t)/ξ vs. ⟨fx(z, t)⟩z for the
parameters indicated in the legend. See text for discussion.

One expects that the introduction of a small mode-
III loading component would give rise to larger ridges
and overall roughness. Indeed, setting KIII/KI =0.15 —
corresponding to the fracture surface shown in Fig. 2a
—, larger ridges are observed and the roughness level in-
creases, see orange curve in Fig. 4, yet no step emerges.
Increasing the correlation length R at fixed K

III
/K

I
and

σ is expected to leave the roughness level roughly un-
changed, but can lead to step formation. Consequently,
we expect that setting R/ξ = 10, such that we have
K

III
/K

I
= 0.15, σ = 0.25 and R/ξ = 10 as in Fig. 2b,

hRMS(t) would overlap the roughness of the R/ξ=5 case
(orange curve in Fig. 4) for some time, but then signifi-
cantly depart from it once a step forms. This is indeed
observed, see green curve in Fig. 4 and the arrow that
marks step formation.

Our main finding that steps can form upon increasing
either σ or R at fixed small, mesoscopicK

III
/K

I
, together

with the indications that roughness ridges may serve as
nucleation sites for steps, indicate that out-of-plane dis-
tortions of the continuous crack front should be strong
enough, either in magnitude and/or in angle, for steps
to emerge. Moreover, the subsequent growth and even-
tually stabilization of steps imply that nontrivial crack
structures should emerge, as described in [2, 6, 8], pre-
venting the step from decaying back to the roughness
level. To address this important issue, we present in
Fig. 2d a zoom-in on one of the steps emerging in our
calculations (see figure caption).
It is observed that the upper and lower parts of a

distorted front form two crack segments (i.e., undergo
a topological change [2, 6, 8]) that reside at different
overlapping y planes, which eventually connect through
a predominantly vertical bridging crack [11]. This topo-
logical/geometric structure, composed of several inter-
acting cracks, appears to produce an effective repulsion
between the overlapping segments, as envisioned and
stressed in [6]. Figure 2d further highlights the 3D multi-
crack nature of surface steps [2, 6, 8].

FIG. 5. A sequence of fy(z, x) profiles corresponding to
KIII/KI = 0.1, σ = 0.5 and R/ξ = 10. The profiles (from
top to bottom) are shifted vertically for visual clarity and the
line thickness corresponds to the variation of ϕ (from 1 to 0).

Finally, to further elucidate the spatiotemporal dy-
namics of step nucleation and subsequent evolution —
complementing Fig. 2d —, we present in Fig. 5 a sequence
of fy(z, x) profiles (the out-of-plane front at fixed x val-
ues) before, during and after step nucleation. The first
(uppermost) snapshot shows the background roughness,
featuring a few ridges. One of the ridges, which we choose
to locate in the middle, strongly rotates out of the plane
and grows in amplitude (two subsequent snapshots). The
forming step then transforms into two overlapping, nearly
parallel crack segments, connected by a predominantly
vertical bridging crack [11]. Subsequently, one crack seg-
ment curves down and intersects with the other segment,
leaving another “hidden” segment beneath it and form-
ing a “τ -structure” [2, 6, 8].
In the last snapshot (lowermost), an unbroken ligament

starts to emerge (marked by the blue arrow) between
two “hand-shaking” segments [11], which will eventually
fail under the intense stress fields that develop. The re-
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sults in Fig. 5 demonstrate how steps form out of surface
roughness ridges and the subsequent evolution of their
topology/geometry. They agree with a broad range of
direct and indirect experimental observations [1–11], but
also go beyond experiments in revealing all stages of step
formation in slow 3D fracture.

Summary and outlook.—Our results show that step for-
mation in slow 3D fracture is a nonlinear, highly local-
ized process that depends on both a small, mesoscopic
mode I+III mixity and quenched disorder, of finite am-
plitude and correlation length. These findings, together
with the recent results on dynamic (inertial) 3D frac-
ture [24], highlight the essential roles played by quenched
disorder in 3D fracture of amorphous materials. We fur-
ther showed that steps emerge from the background sur-
face roughness and elucidated their topology/geometry
as they evolve.

Our findings are in agreement with a broad range of
experiments and provide a unifying physical picture of
step formation. We particularly highlight the experi-
ments of [4, 5], which stressed the importance of the
background fluctuations/roughness and suggested a close
relation between finite mode I+III mixity and nominally
mode-I step formation, and those of [6, 8], which provided
great insight into the topology/geometry of steps.

Our results are qualitatively consistent with the sug-
gestion that step formation is strongly subcritical with
respect to a linear helical instability [27, 30, 33], made in
an attempt to reconcile the large linear instability thresh-
old ((K

III
/K

I
)c ≃ 0.46 for our Poisson’s ratio [51]) with

experiments that indicate a very small, global threshold.
Yet, we also stress the differences between the nonlin-
ear, disorder-induced, localized step formation process
we discussed and the extended, quasi-sinusoidal linear
instability discussed in [27, 30, 33]. Future theoretical
developments should strongly depart from perturbative
approaches and incorporate realistic quenched disorder.

The mesoscopic mode I+III mixity we employed corre-
sponds to coherent mode-mixity over a simulation length
Lz, which may either represent a mode-mixity fluctuation
in a nominally mode-I experiment or part of a macro-
scopic system under global mode-mixity. In the former
context, future work should consider mode-mixity that
varies in space, including of different signs, and study its
effect on step formation and dynamics.

Finally, future work should address issues such as step
drift [4, 6, 9], step-step interactions [2, 4–6, 9] and the
interplay between steps and micro-branches [6], which
have not been addressed here. Moreover, steps have been
observed both in soft materials (e.g., [2, 4–6, 9]), where
an intrinsic nonlinear elastic lengthscale [42–44, 54–56] is
expected to play a role in the step formation process, and
in hard materials (e.g., [11, 41]), where other lengthscales
are expected to play a role. The effects of these intrinsic
lengthscales, e.g., on the asymptotic step height, should
also be explored in future work.
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Supplemental materials

The goal of this document is to provide some
technical details regarding the results presented in the
manuscript and to offer some additional supporting data.

The 3D phase-field fracture framework is identical to
the one detailed in [24, 48]. Here, for completeness, we
very briefly repeat the main elements of the formulation
and highlight its main merits in the context of the present
work. A general material is described in this framework
by the following potential energy U , kinetic energy T and
dissipation function D [24, 42–44, 48]

U =

∫ [
1

2
κ (∇ϕ)2 + g(ϕ) e(u) + w(ϕ) ec

]
dV , (S1)

T =

∫
1

2
f(ϕ) ρ (∂tu)

2
dV , (S2)

D =
1

2χ

∫
(∂tϕ)

2
dV , (S3)

in terms of a 3D time-dependent vectorial displacement
field u(x, t) and a 3D time-dependent auxiliary scalar
phase-field 0 ≤ ϕ(x, t) ≤ 1 (x = (x, y, z) are Cartesian
coordinates). Here, dV is a volume differential and the
integration extends over the entire system. The evolution
of ϕ(x, t) and u(x, t) follows Lagrange’s equations

∂

∂t

[
δL

δ (∂ψ/∂t)

]
− δL

δψ
+

δD

δ (∂ψ/∂t)
= 0 . (S4)

Here L=T −U is the Lagrangian and ψ=(ϕ, ux, uy, uz),
where u=(ux, uy, uz) are the components of the displace-
ment vector field.

An intact/unbroken material state corresponds to ϕ=
1, for which g(ϕ)=f(1)=1−w(1)=1. It describes a non-
dissipative, elastic material response characterized by an
energy density e(u). For the latter, we use the linear
elastic energy density

e(u) =
1

2
λ tr2(ε) + µ tr(ε) , (S5)

where ε= 1
2 [∇u+(∇u)T] is the infinitesimal (linearized)

strain tensor, and λ and µ (shear modulus) are the Lamé
coefficients. We set λ=2µ in all of our calculations.

Dissipation, loss of load-bearing capacity and eventu-
ally fracture accompanied by the generation of traction-
free surfaces are associated with a strain energy den-
sity threshold ec. When the latter is surpassed, ϕ de-
creases from unity and the degradation functions g(ϕ),
f(ϕ) and 1−w(ϕ) also decrease from unity towards zero,
upon which fracture takes place. We adopt the so-called
KKL choice of the degradation functions [44, 45], cor-
responding to f(ϕ) = g(ϕ) and w(ϕ) = 1 − g(ϕ), with
g(ϕ) = 4ϕ3 − 3ϕ4. The main merit of the phase-field
framework is that it self-consistently selects both the near
crack front dissipation and the front spatiotemporal evo-
lution in 3D, without invoking any extraneous criteria

(e.g., for crack path selection). In particular, tracking a
small value iso-surface of the phase-field, conventionally
ϕ(x, t) = 1/2, allows to obtain the in silico real-time 3D
spatiotemporal dynamics of cracks in a way that goes
well beyond current experiments.
The resulting set of nonlinear partial differential field

equations feature a dissipation lengthscale ξ =
√
κ/2ec

near crack fronts and an associated dissipation timescale
τ=(2χec)

−1. Upon expressing length in units of ξ, time
in units of ξ/cs, energy density in units of µ and the mass

density ρ in units of µ/c2s (cs=
√
µ/ρ is the shear wave-

speed), the dimensionless set of equations depends on
just two dimensionless parameters: ec/µ and β= τ cs/ξ.
The latter controls the v dependence of the fracture en-
ergy, Γ(v) [42–44]. In our calculations, we set ec/µ=0.01
and β=13.8 (a larger value compared to other applica-
tions of the framework, see discussion below). We also set
Ly =192ξ and Lz =318ξ, where Lx is essentially indefi-
nitely large due to an employed treadmill procedure [44]
(the simulation box size in the x direction is 192ξ). The
actual value of Lx is limited by the simulation run time,
which is typically very large (see below). The bound-
ary conditions are specified below and the details of the
numerical implementation are provided in [24, 48].
Quenched disorder is incorporated into the static frac-

ture energy, exactly as described in [24]. It results in
Γ(x; v = 0)/Γ0, which is a Gaussian quenched disorder
field characterized by unity mean, standard deviation
proportional to σ (see [24] for a discussion of the pro-
portionality prefactor) and spatial correlation length R.
An example of the quenched disorder field is presented
in [24]. Each calculation is performed on a single GPU
(NVIDIA RTX A6000 or NVIDIA A40), either owned by
the Bouchbinder group or available on one of the com-
puter clusters at Weizmenn Institute of Science. A typi-
cal simulation time is ∼5 days.
As noted in the manuscript, there are only two differ-

ences in the present application of the phase-field frame-
work compared to [24]. First, we add on top of the dom-
inant mode-I (tensile) loading a small mode-III (anti-
plane shear) loading component. Specifically, we set
the displacement boundary conditions to be uy(x, y =
±Ly/2, z, t)=∆I/2 (mode-I) and uz(x, y=±Ly/2, z, t)=
∆III/2 (mode-III). Mode I+III mixity is commonly ex-
pressed as the ratio of the respective stress intensity fac-
tors [20], KI and KIII , which quantify the intensity of the
linear elastic 1/

√
r stress singularity associated with each

symmetry mode. They are given by [20]

K
I
=2µ∆

I

√
1 + (λ/µ)

Ly
, K

III
=µ∆

III

√
2

Ly
, (S6)

implying that

KIII

K
I

=
∆III

∆
I

√
1

2 [1 + (λ/µ)]
. (S7)
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We consider small mode I+III mixity values, in the range
0≤K

III
/K

I
≤0.2. Finally, the mode I+III mixityK

III
/K

I

(which depends on the two loading displacements, ∆
I
and

∆
III
) is varied under the constraint of a fixed a energy

release rate (crack driving force) G/Γ0=2.25, where G=[
(1− ν)K2

I
+K2

III

]
/2µ [20? ]. Consequently, our loading

conditions are controlled by a single parameter.
In the manuscript, we mention the linear stability

threshold (KIII/KI)c ≃ 0.46 for triggering an extended,
quasi-sinusoidal instability in infinite systems [27, 30].
The latter corresponds to the expression (KIII/KI)c(ν)=√

(1−ν)(2−3ν)

3(2−ν)−4
√
2(1−2ν)

[27, 30], which for our value of ν =

λ/[2(λ + µ)] = 1/[2(1 + (µ/λ))] = 1/3 (using λ= 2µ, see
above), gives (K

III
/K

I
)c(ν=1/3)=0.4627≃0.46.

The second difference compared to [24] is that we study
slow cracks, i.e., we consider small crack propagation ve-
locities in the quasi-static, non-inertial regime, because
fracture surface steps were experimentally observed in
this regime. An example of the crack velocity time evo-
lution (corresponding to Fig. 2a in the manuscript) is
presented in Fig. S1. Therein, we plot the reduced aver-
age crack front velocity v(t)/cs, with v(t)= ⟨∂tfx(z, t)⟩z,
against ⟨fx(z, t)⟩z/ξ (where ⟨ · ⟩z is an average over the
thickness dimension z). It is observed that v(t) ≪ cs
at all times (the asymptotic velocity is ≃0.16cs). Quasi-
static crack propagation is achieved both by selecting the
crack driving force G/Γ0 = 2.25 and by using a rather
large value of β, i.e., β=14 (as stated above), such that
dΓ(v)/dv is large. The resulting v-dependent fracture en-
ergy Γ(v) (for a homogeneous material) is plotted in the
inset of Fig. S1.

FIG. S1. v(t)=⟨∂tfx(z, t)⟩z (in units of cs) vs. ⟨fx(z, t)⟩z/ξ of
the crack shown in Fig. 2a in the manuscript. (inset) Γ(v)/Γ0

vs. v/cs for a homogeneous material (σ=0).

As stated above, all of the results reported on in the
manuscript were obtained with Ly=192ξ and Lz=318ξ,
i.e., Ly/Lz ≃ 0.6. These are very large-scale computa-
tions performed on cutting-edge GPUs, which run for
∼5 days each. We are unable to further increase the sys-
tem size using single-GPU calculations. Yet, in order to
test for possible finite-size effects in our results, we per-
formed calculations with Ly/Lz =2 at fixed σ=0.5 and
R/ξ=10, and variable K

III
/K

I
. We found that the onset

of steps occurs at a mode I+III mixity level similar to the
one obtained with Ly/Lz ≃ 0.6 (reported on in Fig. 3a
in the manuscript), indicating weak/negligble finite-size
effects.
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