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Material failure is mediated by the propagation of cracks, which in realistic 3D materials typically
involve multiple coexisting fracture planes. Multiple fracture-plane interactions create poorly un-
derstood out-of-plane crack structures, such as step defects on tensile fracture surfaces. Steps form
once a slowly moving, distorted crack front segments into disconnected overlapping fracture planes
separated by a stabilizing distance hmax. Our experiments on numerous brittle hydrogels reveal that
hmax varies linearly with both a nonlinear elastic length Γ(v)/µ and a dissipation length ξ. Here,
Γ(v) is the measured crack velocity v-dependent fracture energy and µ is the shear modulus. These
intrinsic lengthscales point the way to a fundamental understanding of multiple-crack interactions
in 3D that lead to the formation of stable out-of-plane fracture structures.

Materials fail by the propagation of cracks. The struc-
ture and dynamics of ‘simple cracks’ in brittle materials
are well-described by the classical theory of cracks, Lin-
ear Elastic Fracture Mechanics (LEFM) [1, 2]. We define
a ‘simple crack’ as a smooth straight line left behind a
propagating tip in an effectively 2D medium. A simple
crack produces a scale-free singular stress field ∼1/

√
r, as

a function of the distance r from its tip. In general, real
materials are not 2D, hence there are no true 1D cracks.
Yet, if the leading edge of a crack is a smooth, straight
line in the thickness direction z, normal to its propaga-
tion direction x, simple cracks correspond to smooth x−z
planes, whose edge forms a ‘singular front’ (see Fig. 1 for
a definition of the coordinate system). When a crack
front is translationally invariant along z, the 2D LEFM
description is valid and fracture becomes an effectively
2D problem.

Even under these conditions there are two tacit as-
sumptions: the material surrounding the crack tip is lin-
early elastic down to the smallest r and all dissipative
processes in fracture are confined to a point-like region
at r → 0. Breaking these assumptions defines two length-
scales, a nonlinear elastic length ℓnl ∼Γ(v)/µ and a dis-
sipation length ξ [3–7]. ℓnl is the scale where nonlinear
elasticity significantly affects the deformation around the
crack front. ℓnl is proportional to the ratio of the frac-
ture energy Γ(v), which generally depends on the crack
propagation velocity v, and the shear modulus, µ [3–7].
Dissipation occurs at the scale ξ. Both of these ‘internal’
scales break the scale invariance of the 1/

√
r field [3, 6–

10]. In tensile (mode-I) fracture, where loading is applied
normal to the crack plane (in the y direction), these scales
play critical roles in determining the near-tip structure
and stability of 1D cracks [3–15].

Once translational invariance in z is lost, cracks be-
come decidedly more complex, featuring both in- and
out-of-plane structures [16–36]. This may result from
dynamic symmetry-breaking instabilities at medium to
high v [16, 17]. In the slow fracture regime — our focus
here — invariance may be lost due to mode-mixity, i.e.,
remote tensile loading (mode-I) accompanied by a small
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FIG. 1. Fracture experiments on steps formed by segmented
crack front interactions in polyacrylamide gels. (a) (top) Step
structure; steps are composed of straight (blue) and curved
(red) segments that overlap in the x−z plane (a right-handed
Cartesian coordinate system x− y− z is consistently used
throughout the figure). (center) Microscopic photograph of
an arrested crack front with a step, imaged through the trans-
parent gel. Light is reflected from the lower fracture surface
into the microscope. Both fracture planes are clearly visible
(colors as in the top panel). The yellow curve traces the step-
line. (Bottom) A second step, enhanced with overexposed
lighting. Green arrows denote overlapping regions. Cracks
propagate in x. Scale bars: 50 µm. (b) Schematic of exper-
imental set-up used to image (a). Step-lines are marked by
black lines. (c) Measured step on a fracture surface by pro-
filometer. The out-of-plane height, h, is the separation in y of
the intersecting fracture planes. (d) Typical evolution of h(t)
and v(t) during step formation. Steps grow before stabilizing
at an asymptotic height, h→hmax(v) as v→vmin.

shear along z (anti-plane shear, mode-III) [18]. Extensive
theoretical and experimental work on mixed-mode I+III
fracture [19–28] showed that planar crack fronts transi-
tion to arrays of tilted segments under these conditions.
These segments coarsen with time until only few such
fragmented sections remain, each forming its own frac-
ture plane. Propagating step-like structures, ‘steps’, on
fracture surfaces mark the intersection of these planes.
Steps also occur in nominally mode-I fracture [27–34],
emerging from the coupled effect of finite quenched dis-

ar
X

iv
:2

40
4.

06
28

9v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  9
 A

pr
 2

02
4



2

order and mesoscopic mode-III fluctuations [28]. Close
examination of steps in elastomers [29–33] has revealed
that they are actually complex 3D topological structures,
as shown in Fig. 1a.

At a step, two crack fronts within different x−z planes
separated in y by a distance h, intersect. These fracture
planes meet at two disconnected and slightly overlapping
front segments, as highlighted by the blue and red lines
in Fig. 1a. The leading front in x creates a flat fracture
surface in its wake. The second front lags behind the first
and curves in the y−z plane towards the flat plane already
created by the leading front. This curved region always
overlaps (in z) the flat plane. Experimentally, steps are
topologically constrained, where loss of stability occurs
only when their topology is momentarily broken [31–33].

Once formed, steps can either grow or decay [31, 37].
Their separation distance h evolves (Fig. 1c,d) until sta-
bilizing at hmax, the ‘step size’. Little is known about
the 3D interaction between the two fronts, and in partic-
ular about how their interaction selects hmax. Charac-
terizing hmax and its scaling properties is an important
first step in understanding the nontrivial interactions be-
tween different fracture planes that both create these
unique, yet ubiquitous, out-of-plane structures, and pre-
vent them from merging/collapsing into a single fracture
plane. Here, we quantify hmax in a variety of different
materials and show how hmax is determined by nonlin-
ear interactions between the two fronts, involving both
intrinsic lengthscales ℓnl and ξ.

Our experiments utilized numerous polyacrylamide
hydrogel samples composed of acrylamide monomers
crosslinked with bis-acrylamide. These incompressible
brittle gels have been widely used to study material fail-
ure, both in the context of highly-deformable soft ma-
terials (e.g., [10]) and as representatives of a broader
class of brittle materials [8, 9]. As illustrated in Fig. 1b,
gel samples with dimensions x × y × z = 50 × 30 × 1
mm3 were loaded under uniaxial tension in y. We con-
trolled the nominally mode-I crack dynamics through
the stored strain energy prior to crack initiation. Each
sample was first loaded to a desired applied stretch,
1.04 < λ < 1.18. We then initiated crack propagation
in x by inserting a small cut on the mid-plane at a sam-
ple edge. Crack propagation was captured using a fast
1920× 1080 pixel camera, mounted above the sample,
with 4.25–15.7 µm/pixel spatial and 200–5000 Hz tem-
poral resolutions. The crack fronts’ mean velocity, v, was
measured using the centroids of the caustics surrounding
each crack front. (Caustics are caused by extreme de-
formation in z in the near-front region [32]). We focus
on slow crack propagation v < 0.15 c

R
, where c

R
is the

Rayleigh wave-speed of each material.

At low velocities, front segmentation forms steps that
nucleate from either the rough initial cut or interac-
tions with local material heterogeneities [28]. While het-
erogeneities can nucleate steps, they have no effect on
h beyond their characteristic size [28, 34, 38]. Steps
move along the propagating crack front in the direc-

tion that lengthens (shortens) the curved (straight) seg-
ment. Steps form faceted fracture surfaces by imprinting,
through their motion, step-like lines, ‘step-lines’ [29, 31].
We determined the step height, h[v(t)], through post-
mortem measurements of the step-lines on fracture sur-
faces using a white-light profilometer (Fig. 1c). For each
measurement position along a step-line, occurring at time
t, we also measured v(t) (see below). h(t) quantifies
the separation distance (in y) of the interacting frac-
ture planes forming the steps within the material (un-
deformed) frame [31].

Gel ◼ ◼ ◼ ◼ ◼ ◼

μ (kPa) 29.4 110 20 65.6 67.2 98.7

Γ0(J/m2) 5.53 8.64 9.51 9.70 19.9 37.7

(c) (d)

(a) (b)

ℓ𝑛𝑙

ξ

FIG. 2. (Top) Table of µ and Γ0 for the 6 gels used. (a)
Nominal tensile stress normalized by the shear modulus, s/µ,
vs. strain, λ − 1, for all 6 gels. Dashed and solid red lines:
linear elastic and neo-Hookean constitutive relations, respec-
tively. The normalized stress-strain curves of blue, red and
black gels perfectly overlap. (b) CTOD measurements of the
orange gel at different v, color bar: v/cR . (c) All CTOD in
(b) collapse (black), when scaled by Γ(v)/µ. CTODs devi-
ate from the LEFM prediction (red dashed parabola) within
the nonlinear elastic region near the crack tip, ℓnl. The dis-
sipation length ξ is schematically shown. (d) Fracture en-
ergies Γ vs. v/cR for all gels. Γ(v) are well described by
Γ0[1 + a(v/cR)

b] (black curves) [38].

We focus on crack fronts forming a single step-line. In
this configuration, the crack velocity at each step is ap-
proximately the mean velocity v determined using caus-
tics [32]. Figure 1d shows a typical example of both h(t)
and the resultant v(t). Upon nucleation, h increases from
a few µm to a v-dependent asymptotic value, hmax. In
satisfying energy balance, step growth (producing extra
fracture surface) causes v to decrease towards its asymp-
totic value, v→vmin, as h→hmax(vmin) [32, 33].
How is hmax selected? Emergent lengths in 2D

crack dynamics, e.g., high-speed oscillatory instability
wavelengths [39] and a length related to a quasistatic
macro-branching instability [40], are governed by either
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the nonlinear length, ℓnl, the dissipation length, ξ, or
both [4, 5, 12–15]. ℓnl has also been shown to be related
to the cross-hatching and échelon instabilities in soft ma-
terials [27, 30]. Are the 3D crack interactions producing
hmax also governed by these intrinsic scales? To address
this question, we used 6 different gels having a wide vari-
ety of mechanical properties controlled by the monomer-
to-crosslinker molar ratio, M , and the total polymer con-
centration ρg in the range 13.8%<ρg<40.6%. The blue,
orange and black gels in Fig. 2 have a fixed M , with
different ρg. The remainder differ in both M and ρg [38].

We first characterize the gels’ mechanical response in
uniaxial tension. Figure 2a shows that all gels follow
linear elasticity (red dashed line) for small strains, λ−1→
0. For moderate (up to ∼ 30%) strains, all follow the
nonlinear elasticity described by the incompressible neo-
Hookean law [38, 41] (red solid line), despite their wide
variation of shear moduli, µ. At large strains (∼ 60%),
the gels slightly deviate from neo-Hookean elasticity.

We also characterized the v dependence of all frac-
ture energies Γ(v), using the crack tip opening displace-
ment (CTOD) of simple cracks, as in [42]. The method
accounts for applied background stretches, and agrees
well with J-integral measurements for slow fracture un-
der moderate stretch levels [42]. Fig. 2b presents the
CTOD of one gel at different v. All CTOD collapse onto
a single shape (Fig. 2c), once normalized by the nonlin-
ear scale Γ(v)/µ [11]. The collapse at small scales, where
the CTOD deviates from the LEFM prediction (the red
parabola), indicates the existence of a nonlinear elastic
zone of size ℓnl∼Γ(v)/µ, surrounding a dissipation zone
of size ξ around the crack front. So long as ξ is small,
measurements of Γ using the CTOD are valid [42].

In Fig. 2d, we present the measured Γ(v) for 0 <
v/c

R
< 0.15. A wide variation of Γ(v), ranging from

few to hundreds of J/m2, is observed. For each gel,
Γ(v) is well-described by the nonlinear function, Γ(v) =
Γ0[1 + a(v/c

R
)b]. Γ0 ≡ Γ(v → 0) is determined through

best fits to the experimental data (a and b are given
in [38]). Such power-law dependence of Γ(v) exists in
a wide range of polymers, including PMMA [43]. More-
over, Γ(v) is nearly the same (similar values of b) for gels
with fixed M . b decreases for more highly entangled gels
(larger M), in agreement with recent experiments show-
ing that highly entangled polymer networks produce gels
with extreme fracture energies [44].

Numerous experiments in all of the gels provided
hmax(v). Three typical examples of h(x) for a given gel,
at different v (different applied λ) are given in Fig. 3a.
Upon step formation, h increases until asymptotically
reaching hmax(v), which increases with vmin. hmax(vmin)
is presented for all 6 gels in Fig. 3b. For each gel, hmax

varies nonlinearly with vmin [38].

Is the nonlinear behavior of hmax inherited from that of
Γ(v) through ℓnl(v)? To test this, we plot hmax vs. Γ(v)/µ
in Fig. 3c. Remarkably, hmax is a well-defined linear func-
tion of Γ(v)/µ (dashed lines) for all gels, as originally
suggested and anticipated in [27, 30]. This strongly sug-

vmin

hmax
(a) (b)

(c)

y
x

FIG. 3. (a) h vs. step propagation distance in x for the
orange gel in Fig. 2, for asymptotic velocities vmin/cR =
0.0014, 0.0063, 0.021 (bottom to top, see arrow). (b) hmax

vs. vmin/cR (colors as in Fig. 2). Black dashed curves denote
the best power-law fits, see text and [38]. (c) hmax vs. Γ(v)/µ.
Dashed lines are the best linear fits. Inset: Data for green gel
in the main panel extends over one decade. The data point
for a step with the largest hmax is shown in the photograph
of the crack surface. Scale bar: 500µm.

gests the importance of the nonlinear scale, ℓnl∼Γ(v)/µ
in multi-crack interactions. The aforementioned linear
function corresponds to

hmax = α (Γ(v)/µ− ℓ0) , (1)

where the slope α is nearly identical for all of the gels.
The approximate material independence of α in Eq. (1),
therefore, suggests that the interaction between crack
front segments is governed by the nonlinear elastic scale
ℓnl, which, in turn, may govern the stability of segmented
crack fronts. This is a major finding.
What determines α? The nearly singular material de-

formation near the crack front implies that front inter-
actions take place at high local stretch levels [36]. Up
to ∼ 80% strain, our uniaxial tension measurements in
Fig. 2a indicate that all gels predominantly follow neo-
Hookean elasticity, with small, yet systematically in-
creasing deviations at large values of λ. The nearly neo-
Hookean response may account for the predominantly
material-independent α, while the deviations may be re-
lated to non-neo-Hookean elastic nonlinearity.
To quantify the material deviations from incompress-

ible neo-Hookean elasticity, we follow [45] and express the
2D plane-stress energy functional of incompressible gels
as

U(I, J) =
1

2
µ(I̊1 − 3) + ϵ µ(I̊1 − I̊2) . (2)

Here, I̊1 = I + J−2 and I̊2 = J2 + IJ−2 are expressed in
terms of I = tr(FF T ) and J = det(F ) [45], where F is
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the 2D (in-plane) deformation gradient [41]. The dimen-
sionless parameter ϵ quantifies the deviation of ‘strongly’
nonlinear elasticity from the nonlinearity inherent in neo-
Hookean elasticity (the first term in Eq. (2)).

(a)

(b) (c)

N
H

FIG. 4. (a) Tensile nominal stress s vs. stretch λ for the differ-
ent gels (colors as in Fig. 2). The red dashed lines correspond
to Eq. (2), with ϵ = 0.0965 ± 0.0088 (red), 0.0871 ± 0.0167
(blue), 0.0861 ± 0.0016 (black), −0.0121 ± 0.0068 (yellow),
−0.0437 ± 0.0099 (purple), −0.0819 ± 0.0017 (green). (b)
α−αNH vs. ϵ, αNH is for a purely neo-Hookean material (Eq.
1). Dashed line is the best linear fit. (c) The shift ℓ0, defined

in Eq. (1), as a function of
√
M .

In Fig. 4a, we show that Eq. (2) perfectly describes
the uniaxial tension stress-strain response of each gel
at large λ, with deviations from neo-Hookian elasticity,
−0.0819 < ϵ < 0.0965, that are only apparent at large λ.
Figure 4b shows that the small variations in α are linearly
dependent on ϵ, when comparing α to α

NH
, the value of

α for a purely neo-Hookean material, where ϵ=0. hmax

is, therefore, related to strongly nonlinear elastic behav-
ior, provided by both neo-Hookean nonlinearity and its
strongly nonlinear correction, as quantified by ϵ.

In contrast to α, the shift in Eq. (1), ℓ0, is a material-
dependent quantity. What is its physical origin? De-
spite widely different values of Γ(v) and µ in the gels
corresponding to the blue, orange and black symbols in
Fig. 3c, their values of ℓ0 are nearly identical. These
gels have the same value of M , suggesting that ℓ0 de-
pends on M . Figure 4c indeed shows that ℓ0 is linearly
related to

√
M . The value of M corresponds to the aver-

age number of monomers between sequential crosslinks.
The folded length between crosslinks, therefore, scales
as

√
M [46, 47]. This indicates that ℓ0 depends on a

molecular length scale related to the polymer mesh size.
As the Lake-Thomas model predicts that polymer chain
scission occurs at scales ξ∝

√
M [48], the linear relation

between ℓ0 and
√
M suggests that, in terms of fracture,

ℓ0 is related to the dissipation length ξ.

What determines h
(0)
max, the minimal value of hmax, in

each gel? h
(0)
max defines the minimum length for which

front interactions are stabilized. Equation (1) predicts

that the minimum measured values, h
(0)
max, correspond

to h̃
(0)
max ≡ α(Γ0/µ − ℓ0), where Γ0 = Γ(v → 0). This

prediction is verified in Fig. 5a.
The above physical picture of step size selection implies

that we can use Eq. (1), together with energy balance,
to predict hmax and vmin as follows. The total energy
dissipation along the crack front is given by

∫ w

0
Γ(v) dz≃

Γ(v)(w + 1.4h) [32], which equals Gw, where w is the
sample thickness and G the measured energy flux into
the crack. Substituting Γ(v) above into Eq. (1), and
using energy balance, yield hmax and vmin. Denoting
the prediction for the former as h̃max, Fig. 5b shows that
the measured hmax are in perfect agreement with this
prediction.

(a) (b)

FIG. 5. (a) Predictions for minimal h
(0)
max, h̃max(v = 0), vs.

hmax (measured at v ≃ 10−5cR), see text for definitions and
discussion. The dashed line of slope unity is a guide. (b) The

predicted h̃max vs. the measured hmax, see text for details.
The dashed line highlights a perfect agreement.

To sum up, we have shown that interacting fronts in 3D
select a well-defined and stable separation distance, the
step size hmax. This interaction is governed by two intrin-
sic lengthscales, a nonlinear elastic scale, ℓnl ∼ Γ(v)/µ,
and a length ℓ0 that, like the dissipation scale ξ, de-
pends on

√
M [48]. Interestingly, recent experiments

have shown that a scale proportional to
√
M also gov-

erns a crack’s transition to states propagating beyond
the shear wave speed [49]. ℓnl has been previously shown
to play key roles in determining the shape (CTOD) of
simple cracks [3–6, 8, 9, 42] and in governing the transi-
tion to oscillatory motion of rapid simple cracks, where
the oscillation wavelength’s linear variation with both ℓnl
and ξ [14, 15] is remarkably analogous to Eq. (1).
Recent work has demonstrated that steps are initiated

by material inhomogeneities of a characteristic scale [28].
Here, we have shown that the selection of a unique and
stable topology that characterizes steps is independent of
how they are triggered and solely determined by the non-
linear interactions of fracture fronts in different planes.
The stabilization of these entities is critically linked to
nonlinear elasticity in soft brittle materials. The growth,
decay and eventual stabilization of steps are determined
by ℓnl, together with global energy balance. This discov-
ery is an important step towards obtaining a fundamental
understanding of crack front interactions in 3D systems,
a largely open question. Additional work, e.g., regard-
ing step drifting [25] and step-step interactions [37], is
required. To this end, a 3D fracture framework incorpo-
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rating the intrinsic scales discussed here should be devel-
oped.
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Supplementary materials

S-I. GEL PREPARATION

Our experiments were performed on polyacrylamide gels, composed of acrylamide monomer chains crosslinked with
bis-acrylamide crosslinker. The elastic properties of the gels are controlled by the concentration of the monomer
and crosslinker. We prepared six different gels with different concentrations (w/v) of monomer. The monomer-to-
crosslinker molar ratio, denoted as M , was the same for three of these. The polymerization was initiated by adding
ammonium persulfate (APS) with a fixed concentration of 0.2% (w/v) and catalyzed with tetramethylethylenediamine
(TEMED) with a fixed concentration of 0.05% (w/v). Table S-1 provides details of the gels composition (monomer
and crosslinker concentrations) and the measured shear modulus µ (here, unlike in the table in Fig. 2 in the main
text, we add the measurement error bars). Colors correspond to the gel labels in the main text. For gels with a fixed
M , µ increases with the total polymer concentration ρg (see gels marked in blue, black and red in Table S-1, and
its caption to infer the values of ρg). Moreover, µ decreases with decreasing crosslinker concentration under a fixed
monomer concentration (see gels marked in blue and orange in Table S-1).

Gel Monomer % Crosslinker % M µ (kPa)

■ 1 13.44 0.36 81.25 29.4 ± 1.5

■ 2 29.22 0.78 81.25 110.4 ± 1.9

■ 3 13.44 0.16 183.19 20.2 ± 0.5

■ 4 21.04 0.56 81.49 63.1 ± 1.6

■ 5 27.87 0.3 192.56 67.1 ± 0.3

■ 6 40.34 0.25 353.94 99.7 ± 3.9

TABLE S-1. A summary of the gels composition (monomer and crosslinker concentrations) and shear modulus µ. Colors
correspond to the gel labels in the main text. The total polymer concentration ρg, defined in the main text, is the sum of the
monomer and crosslinker concentrations appearing in the table.

S-II. VELOCITY-DEPENDENT FRACTURE ENERGY AND hmax

We measured the fracture energy of each gel using the crack tip opening displacement (CTOD) of the simple crack,
as detailed in [42]. As shown the main text, the fracture energy obeys a power-law dependence on the crack speed,
v, according to Γ(v) = Γ0[1 + a(v/c

R
)b]. The values of Γ0 and dimensionless parameters a and b obtained through

the best fit of measured data are presented in Table. S-2. It is interesting to note that gels with a fixed monomer
concentration and decreasing crosslinker concentration feature an increasing fracture energy (see gels marked in blue
and orange in Table S-1 for the monomer and crosslinker concentrations, and Table. S-2 for the Γ0 values). This
is in line with recent experiments showing that polymer networks with a longer chain length, corresponding in our
context here to a fixed monomer concentration and decreasing crosslinker concentration, give rise to gels with higher
fracture energy [51]. In addition, the relation between the asymptotic step height hmax and the asymptotic crack
speed vmin/cR also shows a well-defined power-law. The best fit of hmax−vmin/cR using a power-law is highlighted
by the black dashed curve in Fig. 3b in the main text. In Table. S-2, we present the exponent of such power-law
dependence (denoted as c therein). The value of c is very close to b, in agreement with the linear dependence of hmax

on Γ(v)/µ.

S-III. FRACTURE EXPERIMENTS ON PARTICLE-EMBEDDED GELS

We tested the effect of material heterogeneities on the scaling relation between the asymptotic step height, hmax,
and Γ(v)/µ. To this end, additional experiments were performed using gels with 13.44%/0.36% (blue in Table. S-1)
and 13.44%/0.16% (orange in Table. S-1) monomer/crosslinker concentration (w/v). We mixed a small amount of
polyamide particles with a diameter of ∼ 50µm in the polymer solution. These particles, having a stiffness of a few
GPa, can be considered as ‘infinitely rigid’ inclusions in the gels [50]. Upon polymerization of the gels, the particles
are randomly distributed in the gel sample with an average number density of 4-12 particles per mm2.
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Gel Γ0 a b c

■ 1 5.53 3.46 0.624 0.625

■ 2 8.64 8.99 0.586 0.601

■ 3 9.51 4.19 0.569 0.627

■ 4 9.70 5.94 0.645 0.671

■ 5 19.9 8.02 0.573 0.522

■ 6 37.7 26.55 0.477 0.431

TABLE S-2. The static fracture energy Γ0 and fitting parameters a, b and c (see text for details) for the different gels.

The fracture experiments are as described in the main text. Figures S1a-b show two snapshots of the crack
propagation in the particle-embedded gels. Steps are intensively triggered in these gels, particularly when the crack
meets particles. We consider cracks generating a single step. In Fig. S1c, we present the measured hmax versus
Γ(v)/µ for steps both generated spontaneously (no embedded particles) and gels where the steps were triggered via
particle interactions. The measurements in gels with particles embedded are highlighted by the solid symbols. The
comparison clearly shows that while local heterogeneities trigger step formation [28], they have no effect on the
subsequent evolution of the steps [34].

(a)

(b)

(c)

Steps

Steps

FIG. S1. (a) and (b) present snapshots of typical crack propagation in particle-embedded gels composed of monomer/crosslinker
concentrations 13.44%/0.36% and 13.44%/0.16%, respectively. Examples of step left on the crack surface are marked by the
white arrows. Scale bar: 1 mm. (c) hmax as a function of Γ(v)/µ for the gels marked in blue and orange as in the main text.
Solid symbols: step height measured in gels with embedded particles. Open symbols: step heights in the same gels with no
embedded particles. The dashed lines correspond to the best linear fits.
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