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Abstract

Biochemical processes of tissue growth lead to production of new proteins, cells, and other material particles at the microscopic level.
At the macroscopic level, growth is marked by the change of the tissue shape and mass. In addition, the appearance of the new material
particles is generally accompanied by deformation and, consequently, stresses in the surrounding material. Built upon a microscopic toy-
tissue model mimicking the mechanical processes of mass supply, a simple phenomenological theory of tissue growth is used in the pres-
ent work for explaining residual stresses in arteries and studying stresses around growing solid tumors/multicell spheroids. It is shown, in
particular, that the uniform volumetric growth can lead to accumulation of residual stresses in arteries because of the material anisot-
ropy. This can be a complementary source of residual stresses in arteries as compared to the stresses induced by non-uniform tissue
growth. It is argued that the quantitative assessment of the residual stresses based on in vitro experiments may not be reliable because
of the essential stress redistribution in the tissue samples under the cutting process. Concerning the problem of tumor growth, it is shown
that the multicell spheroid or tumor evolution depends on elastic properties of surrounding tissues. In good qualitative agreement with
the experimental in vitro observations on growing multicell spheroids, numerical simulations confirm that stiff hosting tissues can inhibit

tumor growth.
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1. Introduction

Understanding growth of living tissues is of fundamental
theoretical and practical interest. Analytical models of
growth of both plant and animal tissues can predict the
evolution of the tissue, which may improve the treatment
of pathological conditions and offer new prospects in tis-
sue engineering. Biological or biochemical mechanisms of
growth are not well understood although plenty of scenarios
exist in the biological literature. There is no doubt that
biochemistry is the driving force of tissue growth. Under-
standing the biochemistry of growth is most desirable.
Biochemistry can explain why a tissue grows. This is not
enough, however. It is also necessary to know how a tissue
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grows. The latter means macroscopic description in terms
of the macroscopically measurable parameters. There is
no shortage of macroscopic models of soft tissue growth
[1-18]. However, the mathematical apparatus of the existing
approaches is rather complicated and it includes variables
that are difficult to interpret in simple terms and to assess
in measurements, such as the cofactors in the multiplicative
decomposition of the deformation gradient or the partial
stresses and tractions in the mixture theories. This complex-
ity requires an additional effort for the careful experimental
calibration of the theories as, for example, in the case of the
cartilage growth considerations by Klisch et al. [19,20].

In the present work, a continuum mechanics framework
for modeling growth of living tissues is used, which does
not include internal variables [21,22].> Moreover, this

2 Guillou and Ogden [23] present an alternative theory of soft tissue
growth without the internal variables.
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theory is driven by a simple microstructural model of mate-
rial supply that motivates the balance and constitutive
equations. Two applications of the growth theory pre-
sented are considered.

First, the formation of residual stresses in arteries under
the restriction of purely genetic and uniform mass supply is
studied. It is shown that the arterial anisotropy can play the
crucial role in the appearance and accumulation of stresses
in growth. This is complementary to a more traditional
point of view, which attributes residual stresses to non-uni-
form (differential) growth. We emphasize that the quantita-
tive assessment of the residual stresses in arteries would
require in vivo experiments. The existing in vitro experiments
may lead to inaccurate estimates of residual stresses because
of the necessity to cut the arterial pieces. The cutting process
is accompanied by a redistribution of stresses, which can
essentially affect their estimates. We propose a possible
experiment in order to emphasize the stress redistribution
issue in the in vitro tests.

Second, we apply the theory to the study of stresses
around growing solid tumors. A growing tumor may press
neighbor tissues and lead to their remodeling and necrosis
or, ultimately, to the failure of organs to carry out their reg-
ular functions. For example, expanding tumors can initiate
the collapse of immature blood vessels formed during the
angiogenic phase, and the inflation and rupture of capsules,
membranes and ducts the tumor grows into. Another
example is an expanding brain tumor, which can deform
brain areas responsible for various kinds of human activity
and disturb the normal action of the organism. Thus, it
can be important to know what is the expected tumor shape
and mass for planning the date and strategy of operative
invasion. A simplistic description of tumor development is
attributed to Winsor [24], who adapted Gompertz’s [25]
empirical formula for modeling tumor growth: In(In(V/
Vo)) = —vt + Viax/ Vo, where V is a measure of tumor size,
V, the initial size, and V.4 the final size. The rate of cell
proliferation is v and ¢ is time. Evidently, this formula
accounts neither for tissue elasticity nor for material supply.
However, recent experiments with tumor cell spheroids
demonstrate the importance of these issues and the defi-
ciency of the Gompertz simple formula. In particular, mim-
icking tumor development in vivo, Helmlinger et al. [26]
considered in vitro growth of multicell tumor spheroids
embedded in agarose gels. Spheroids were cultured in gels
of increasing agarose concentration, thereby increasing
the stiffness of the embedding matrix. It was observed that
tumor growth was inhibited by the increasing gel stiffness.
Evidently, this result emphasizes the role of the hosting tis-
sue in the tumor growth process in vivo. Mathematical mod-
eling of solid tumor growth has a long history [27]; however,
the main emphasis of the research has been on problems of
fluid transport and chemical reactions during the process of
tumor formation [28—44]. Elasticity of the tumor/multicell
spheroid was recently considered by Ambrosi and Mollica
[45,46] who used a rather abstract approach, typical of

the theories of soft tissue growth when the deformation gra-
dient is decomposed into growth and elastic cofactors that
correspond to the incompatible ‘pure growth’ of the mate-
rial and the elastic deformation providing the final material
compatibility. Contrary to Refs. [45,46] we will use a
growth theory that does not introduce internal variables
and that can be directly calibrated in experiments. We will
show that stiff hosting tissues can inhibit tumor growth in
a good qualitative agreement with the in vitro observations
of growing multicell spheroids.

2. Methods
2.1. Governing equations

The assumption that continuous deformation and mass
flow can describe the mechanics of growing living bodies
is central to further development. To make this assumption
sound, the geometry of growth should be analyzed qualita-
tively. A sharp distinction between the real physical mate-
rial, i.e., material particles comprising continuum, and the
mathematical concept of material point should be kept in
mind. This distinction is illustrated in Fig. 1, where material
deformation-growth is considered on different length scales.
On the macroscopic scale, we assume that a material body
can be divided into an infinite set of material points. It is
assumed that position X in the physical space can be
ascribed to every material point before growth-deforma-
tion. These material points form the material continuum.
It is further assumed that during growth-deformation every
point moves to a new position x = y(X) preserving the com-
patibility of the body. This mapping is smooth to the neces-
sary degree. Moreover, it is assumed that the mapping is
one-to-one, i.e., the ‘infinite number’ of material points is
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Fig. 1. Multiscale mechanics of growth.
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not changing during growth-deformation. Of course, the
concept of the material point is purely mathematical. Mate-
rial points do not exist: they are mathematical abstractions.
Material always occupies some volume. In saying ‘material
point’, one means a very small volume. Such small volumes
are considered on the mesoscale of the growth-deformation
process as shown in Fig. 1. Under ‘higher resolution’ it can
be seen that the material point is a very small physical vol-
ume, which in the case of living tissues includes cells, mole-
cules, pores, and various tissue particles. It is crucial that
the number of material particles is changing within a mate-
rial point due to division and diffusion. Therefore, if we
could track the behavior of a referential material point we
would find the changing mass density within it. The latter
means that the referential mass density is changing during
deformation-growth: p # constant, and mass is not con-
served. The violation of mass conservation is inherent in
open systems exchanging material with their environment.

While the qualitative analysis of the geometry and phys-
ics of tissue growth justifies the use of continuum mechanics
for an open system, it is insufficient for the development of
the particular equations of a macroscopic phenomenologi-
cal theory. Such development requires some microscopic
reasoning in order to motivate the continuum field and con-
stitutive equations. It seems that a reasonable insight into
the tissue growth mechanisms can be gained by considering
a simple toy-tissue model presented in Fig. 2. The regular
initial tissue can be seen on the top of the figure. This is a
collection of the regularly packed balls. The balls are inter-
preted as the tissue elementary components — cells, mole-
cules of the extracellular matrix, etc. The balls are
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Fig. 2. A microstructural toy-tissue model of material supply.

arranged in a regular network for the sake of simplicity
and clarity. They can be organized more chaotically — this
does not affect the subsequent qualitative analysis. Let us
assume now that a new material, i.e., a number of new balls,
is supplied pointwise as it is shown on the bottom of
Fig. 2. This supply is considered as a result of injection:
the tube with the new material is a syringe. Usually, the
new material is created in real tissues in a more complicated
manner following a chain of biochemical transformations.
However, the finally produced new material still appears
pointwise from the existing cells. Thus, the injection of
the balls is a quite reasonable model of tissue growth. Such
a model can be constructed physically, of course. It seems
that the latter is not necessary and the toy-tissue model
can be easily imagined. The result of such a thought-exper-
iment is represented in the figure and it can be described as
follows: (a) the number of the balls in the toy-tissue
increases with the supply of the new ones; (b) the new balls
are concentrated at the edge of the tube and they do not
spread uniformly over the tissue; (c) the new balls cannot
be accommodated at the point of their supply — the edge
of the tube — they tend to spread over the area at the vicinity
of the edge and the packing of the balls gets denser around
the edge of the tube; (d) the more balls are injected the less
room remains for the new ones; (e) the new balls press the
old ones; (f) the new balls tend to expand the area occupied
by the tissue when the overall ball rearrangement reaches
the tissue surface. These six qualitative features of the toy-
tissue microscopic behavior can be translated into the
language of the macroscopic theory accordingly: (A) mass
of the tissue grows; (B) mass growth is not uniform — the
mass density changes from one point to another; (C) there
is a diffusion of mass; (D) the diffusion is restricted by the
existing tissue structure and its mass density: the denser
the tissue is the less material it can accommodate; (E)
growth is accompanied by stresses; (F) the expansion of
the tissue is volumetric — it is analogous to the thermal
expansion of structural materials, such as steel, for
example.

The first three features (A, B, and C) prompt the form of
the quasi-static (0x/df ~ 0) mass balance law for growing
body Q:
a—p:—DiV\lJ—i—é, (1)
ot
where p is the referential mass density; \ is the vector of
mass flux per unit reference area; ¢ is the current mass sup-
ply per unit reference volume; and ‘Div’ is the divergence
operator with respect to the referential coordinates. Indeed,
the mass change means the failure of the mass conservation
law, which covers most theories of mechanics, and it means
the necessity to introduce a full-scale mass balance for an
open system. The fact that non-uniform mass growth is
related to the diffusion of mass is very important. It means
that the mass balance law should include both the volumet-
ric mass source and the surface mass flux. The latter is
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missed in many theories of growth. The absence of mass
diffusion in the theory leads to a nonphysical conclusion
that tissue density can change only at the point of material
supply. Mass diffusion should take place in order to accom-
modate a non-uniform mass supply. Finally, we should
mention that some authors do not include mass diffusion
in balance equations. Instead of that, they introduce mass
diffusion in the constitutive description directly. In this
case, the order of the differential equations increases
implicitly. The latter is often missed and the necessary
additional boundary conditions are lost in computations.

Boundary conditions complete the law of mass balance:

P(t:0)2,00 in Q,
p=p on 08, (2)
b=¢ on 00y,

where the bar means a given magnitude; ¢ =\ -nis a cur-
rent flux per unit reference area; and n is a unit outward
normal to the reference surface 0Q.

Momentum balance and corresponding boundary con-
ditions take the traditional form in the case of a quasi-sta-
tic process (see also Remark 1)

DivP = 0, (3)

PF' = FP", (4)
=3 00,

{ Xﬁ _X on x (5)
t=t on 0,

where P is the first Piola—Kirchhoff stress; F = Vy(X) is the
deformation gradient; y is the current position vector of
point X; and t = Pn is the surface traction.

The three last features (D, E, and F) of the toy-tissue
model motivate the constitutive law. They suggest that
the stress—strain relations should be analogous to thermo-
elasticty where the role of the temperature is played by
the mass density: the increase of the mass density results
in the volume expansion of the tissue

P = F(OW /OE — (p — py)), (6)

where W is a strain potential of a non-growing material;
E = (F'F — 1)/2 is the Green strain tensor and 1 is the
identity tensor; and n=n" is a symmetric’® tensor of
growth moduli, which are related to the material volume
expansion for the increasing mass density. The first term
on the right-hand side of Eq. (6) is that of the classical
hyperelasticity without growth. The second term is analo-
gous to the small-strain thermoelasticity where the temper-
ature increment is replaced by the density increment. In
setting this stress—strain law, we were guided by a micro-
structural model presented in Fig. 2. It should be noted,
however, that the idea of thermoelastic analogy was also
considered in Refs. [42,44] in the context of a hypoelastic
constitutive model. The first qualitative notion of the

3 This symmetry allows for satisfying the angular momentum balance —
Eq. (4) — identically.

analogy between growth and thermal expansion is, proba-
bly, due to Skalak [2].

As can be seen in Fig. 2, the mass supply should be
resisted by the tissue: the denser the tissue, the less is the
new mass accommodation
(=o+f—=(p—p) ()
where o > 0 is the genetic mass supply, which is analogous
to a quasi-static mechanical load for a quasi-static growth
process: 0p/dt ~ 0 (w is controlled by the tissue itself and
its proper determination requires experiments); f'is the epi-
genetic mass supply, which should depend on stress and/or
strain measures (its correct expression is a key problem when
tissue remodeling is considered); the last term on the right-
hand side of Eq. (7) including coefficient of tissue resistance,
y > 0, reflects the resistance of the tissue to accommodate
new mass for increasing mass density (roughly speaking,
the more new material the less room for it remains).

Finally, we introduce the constitutive equation for mass
flux in the simplest Fickean form

V= —pV(p =), (8)

where f is the mass conductivity of the material and V is
the gradient operator with respect to the referential
coordinates.

The similarity between Egs. (6) and (8) of growth and
analogous equations of (small-strain) thermoelasticity is
obvious after replacing the mass density increment by the
temperature increment, mass flux by heat flux, mass conduc-
tivity by thermal conductivity, etc. In this case, Eq. (6) is
nothing but the thermoelastic generalization of Hooke’s
law, and Eq. (8) is just the Fourier law of heat conduction.
The constitutive equation analogous to (7) is usually absent
in thermoelasticity because of the lack of volumetric heat
sources. The thermoelastic analogy allows for a better
understanding of parameters of the growth model. For
example, the vector of mass flux is analogous to the vector
of heat flux. We feel the heat flow by changing temperature
without directly defining what the heat is. The same is true
for the mass flow. We ‘feel’ it by changing mass density
without directly defining what it is.

We apply the quasi-static boundary value problem
(BVP) described by Eqs. (1)—(8) to the problems of artery
and tumor growth in the next two subsections accordingly.

Remark 1. Continuum mechanics frameworks for open
systems developed in Refs. [9,15] account for a momentum
produced by the new mass supply. The additional momen-
tum is important, indeed, in the case of the missile flight
when the missile mass is changing rapidly because the solid
fuel is burning out. This is not the case of the very slowly
growing tissue. The momentum triggered by the new tissue
supply is negligible and it can be ignored in the studies of
tissue growth.* This is why the linear (3) and angular (4)
momentum balance equations enjoy the regular structure.

4 It is assumed that the newly created material has the same momentum
as the existing material, in a local fashion.
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2.2. Artery growth

We consider artery growth as a radial growth of an infi-
nite cylinder under the plane strain conditions where all
variables depend on the radial coordinate only

r=rR), 0=0, z=1Z, 9)

where a point occupying position (R, @,Z) in the initial
configuration is moving to position (r,6,z) in the current
configuration. Then the deformation gradient takes the
form

F = (0or/oR)k, @ Kz + (r/R)ky @ Ko + k., ® K7, (10)
where {Kz,Ko,K~} and {k,,ky,k.} form the orthonormal
bases’ in cylindrical coordinates at the reference and cur-
rent configurations accordingly.

As a consequence of the deformation assumption we
have for the nonzero Green strains

2{Ex, Eoo,Eoo} = {(0r/0R)* —1,(r/R)* —1,0}. (11)

The following nonzero components of the first Piola—
Kirchhoff stress tensor

P,r = (ce?(c1Erg + caEoo) — 11 (p — py))0r/OR,
Pyo = (ce®(c:Ep0 + c4Err) — 12(p — po))r/R, (12)
P.; = (ce®(csEoo + csErr) — 33(p — po))

can be obtained for the Fung strain potential (see Remark
2)

W = ce?/2,
0= ClEfl + CzEgz + C3E§3 + 2c4E 11 Ex + 2¢5E33En (13)
+ 2c6E11E3

with ¢ the only dimensional elastic parameter and c;
dimensionless.
The nonzero growth moduli are set as follows:

Ny = c(eron + caon + ceoi3),
Ny = c(c40t1 + €200 + €503), (14)
N33 = C(C()O(] + C500p + C30€3>7

where the coefficients of growth expansion o« = o; = oy = 03
define how much the relative volume changes for the given
increment of mass density. These coefficients are analogous
to the coeflicients of thermal expansion in small-strain ther-
moelasticity. The specific form of the growth moduli comes
from requirement of the thermoelastic analogy for small
strains. In this case the constitutive law can be written as
6=C:(g—(p — po)), where ¢ = P is the Cauchy stress
tensor; C = (OgOg W)(E = 0) is the linearized tangent stiff-
ness; ¢ is the linearized strain tensor; and oo = diag{ o, atp, 03}
is a diagonal matrix of the growth expansion coefficients.
Thus, we have for the growth moduli n = C : & where the

5> Kzr=(cosO,sin0,0)T, Ko =(—sin®,cos0,0)", K,=(0,0,1)T and
Ky ® Ky = KMKX,; k, = (cosf,sind, O)T, ky = (—sinf,cos H,O)T,
k.=(0,0,1)" and k,, ® k, = kK] .

components of C come from the linearization of the Fung
potential as it appears in Eq. (14).

Assume also that new material is supplied uniformly, i.e.,
o does not depend on position, and genetically only (' = 0).
In this case,

p—po=0w/y (15)
is a solution of the mass balance equation, where dp/0r = 0,
and ¢ = fn- V(p — pg) =0 on the boundary including in-
ner and outer surfaces of the tube.

The equilibrium equation (3) without the body forces
takes the form

6PrR PrR_Pﬁ@
D — T00 \ i o,
OR R

DivP = ( (16)
where all components have been defined already.

We will use the Cauchy stress ¢ =J 'PF' for the trac-
tion-free boundary conditions

w(R=1)= 07
o,(R=13)=0,
where
2z :J_l a_’Pr ) 0
Im=d w2 (18)
o =J " % Poe, R OR

After substituting Egs. (11)-(14) in the equilibrium
equation (16) and boundary conditions (17), we have a
nonlinear two-point BVP in terms of r(R). The two-point
BVP is solved for a number of varying elastic and growth
parameters. The solution is obtained by using the shooting
method when the initial value problem (IVP) is solved iter-
atively until fitting the BVP solution. We use Mathemat-
ica’s IVP solver ‘NDSolve’ [47].

Remark 2. Itis not uncommon that the general requirement
of polyconvexity of the strain potential is imposed on the
modern constitutive models of soft tissues. Polyconvexity
implies the existence of the solution of the statical elasticity
problem. It is clear, for example, that the process of rupture
of saccular aneurism cannot be described within the
framework of elastostatics and the requirement of polycon-
vexity of the strain potential is physically unreasonable.
Actually, none of the existing materials can sustain large
deformations in the statical mode. In our opinion, the
general requirement of polyconvexity should be replaced by
a less restrictive and more physical requirement of the
adequate description of material within a given range of
stresses and strains by a chosen strain potential. In partic-
ular, the experimentally calibrated Fung potential, which is
not polyconvex, is adequate for the purpose of our study
within the considered range of stresses and strains.

2.3. Tumor growth

Multicell spheroids are usually grown from the existing
tumor lines by suspending a few cells in the oxygen- and
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Central layer

Intermediate layer

Fig. 3. A microstructural tumor/multicell spheroid model.

nutrient-saturated environment suitable for their growth.
Experimental observations [48,49] show that the growing
spheroids have a three-layer structure. The outer layer,
which is a few cells thick, consists of active and dividing
cells. The intermediate layer, which can be three times
thicker than the outer layer, consists of non-proliferating
cells at rest. The central region consists of the necrotic
material composed of the cell debris (Fig. 3).

In the case of the spherically symmetrical growth of the
cell spheroid, we restrict deformation to the following one

r=rR), 6=0, ¢=09, (19)
where a point occupying position (R, @, @) in the initial con-

figuration is moving to position (r, 0, ¢) in the current con-
figuration. Then the deformation gradient takes the form

F = (6r/6R)k, ® KR =+ (V/R)k() ® K@ —+ (I"/R)k¢ ® Kq;,

(20)
where {Kg,Kg,Kq} and {k,, ko, k,} form the orthonormal
bases® in spherical coordinates at the reference and current

configurations accordingly; and k,, ® Ky = kaI,.
Then we have for the Green strain

2{Erx,Eo0;Eoo} = {(0r/0R)* — 1, (r/R)* — 1,(r/R)* — 1}.
(21)

Mass balance (1), momentum balance (3), and constitu-
tive laws (6)—(8) take the following forms accordingly:

OYr/OR + 2z /R — & =0, (22)
OP,x/OR + (2P,x — Poo — Pya) /R =0, (23)
Py = 0r/OR(OW [OEre — (p — o)1),
Pyo =1/R(OW [0E00 — (p — po)); (24)
Pyo = 1/R(@W [0Ess — (p — po)n),
Yr = —B0(p — po) /2R, (25)
S=w—(p—po)y, (26)

% Kz = (sin ®cos ®,sin O sin @, cos @)T, Ko =(cosO@cosP,cos @
sin @, —sin Q)T, Ks = (—sin®, cos<15,())T; k, = (sinfcos ¢, sin Osin ¢, cos H)T,
kg = (cosOcos ¢,cosOsin ¢, —sin0)T, ky = (—sin¢,cos ¢,0)T.

where the remodeling issue is ignored, i.e., f=0; and iso-
tropic growth n = #1 is assumed.
Boundary conditions (2) and (5) are set as follows:

p(R=a)=w+p,
{0 2
{r(R =a) =a,
-2 (28)
6,.,(R=b)=(r/R) "Pr(R=0b)=o0.

According to these conditions, it is assumed that the
fixed tumor boundary is a source of new mass . In addi-
tion, it is assumed that mass flux vanishes approaching
infinity, i.e., away from the tumor boundary. The condition
of infinity is used for the sake of clarity. It will be seen from
the obtained results that the density increment decays from
the tumor boundary very fast, that infinity is not involved
in analysis, and a finite number can replace it. The condi-
tion on radial stress away from the tumor boundary is
imposed in order to study the effect of the tissue pre-stress
on the tumor development.

An isotropic version of the Fung-type material is chosen
for numerical simulation. We define the strain potential as
follows:

W = cpe? /2,
0 = K(trE)’ + G(trE* — (trE)*/3)

= CI(E12eR + Eé)@ + E?pr)
+2¢:(ErrEoo + ErrEos + EvoEo0),

(29)

where shear strains are ignored for the spherically symmetric
deformation; ¢; = K+ 2G/3 and ¢, = K — G/3 are dimen-
sionless parameters; and ¢ is the only dimensional parame-
ter (the dimension of stress).

Differentiating W with respect to strains we get the
terms, which appear on the right-hand side of Eq. (24):

OW JOErg = coe?(c1Erg + ¢2E00 + ¢2E¢0),
6W/6E@9 = Cer(ClE@@ —+ CzERR —+ CQE4>¢), (30)
6W/6EM = cer(clE(pq) + CzE@@ + CzERR).

Solution of the equation of mass balance (22) with
account being taken of boundary conditions (27) provides
the following analytical expression for the density incre-
ment distribution around the tumor

p = o(R/a)" explaz(l - R/a)] + py, (31)

where © = /y/ is a normalized tissue resistance parame-
ter (Fig. 4).

Substituting this solution in the equations of momentum
balance (23) and imposing boundary conditions (28) it is
possible to formulate a nonlinear two-point boundary-
value problem for the position function r(R). This problem
is solved numerically by using the procedure described in
the previous subsection.
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Fig. 4. The exponential decrease of the mass density in the vicinity of
tumor surface, Eq. (31).

3. Results
3.1. Artery growth
Radial displacements, radial and circumferential Cau-

chy stresses (Figs. 5 and 6) were computed for two sets
of material parameters:
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Fig. 5. Radial displacements (r — R) (a); normalized radial stress o,,/c (b);
normalized circumferential stress ago/c (¢) for aw/y =1 for free volumetric
growth of the cylinder: the first set of material parameters, Eq. (32).
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Fig. 6. Radial displacements (r — R) (a); normalized radial stress o,,/c (b);
normalized circumferential stress ago/c () for aw/y =1 for free volumetric
growth of the cylinder: the second set of material parameters, Eq. (33).

[50]

c; =0.0499; ¢, =1.0672; 3 =0.4775; (32)
¢y =0.0042; 5 =0.0903; ¢ =0.0585.

[51]

¢y =1.744; ¢, =10.619; 3 =0.0405; (33)
¢y = 0.004; ¢5 =0.0667; c¢¢=0.0019.

Every set of material parameters was considered with
aw/y = 1, which corresponds to the 50% deformation along
the radius. Resulting displacements vary almost linearly
along the radius (Figs. 5a and 6a). Absolute values of the
radial stresses increase towards the mid-surface of the wall
(Figs. 5b and 6b), while the absolute values of the circum-
ferential stresses approach zero at the mid-surface and they
vary almost linearly along the radius (Figs. 5¢ and 6c). It
should be noted that circumferential stresses are larger
than the radial stresses by an order of magnitude in both
cases of material parameters. It is interesting that the direc-
tions of the stresses are different for the two sets of material
parameters. This is, in particular, critical for the circumfer-
ential stresses because it means that different bending resul-
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Fig. 7. Bending moments and opening modes for two sets of material
parameters.

tants appear in the ring. If the ring is cut radially, then it
opens as shown in Fig. 7 (right) for the first set of elastic
parameters. A ring with the second set of material param-
eters behaves differently: it closes (Fig. 7, left) after the cut,
i.e., its edges overlap.

3.2. Tumor growth

A wide variety of simulations were carried out based on
the described formulation of the growth boundary-value
problem in order to reveal the effect of tissue stiffening
and stressing on tumor expansion. Two typical sets of
results, including displacements and radial and tangent
stresses, are presented in Figs. 8 and 9 for the following
(unitless) material parameters of the surrounding tissue:
K=1,G=3/2,7=10,n=1,a=1, b=>5. In the first set,
the elasticity coefficient ¢y was varied from 0.01 to 0.1 and
to 1.0 while the material supply was fixed w = 1 and remote
stresses were not applied ¢ = 0 (Fig. 8). In the second set,
the remote stress ¢ was varied from —0.01 to 0.0 and to
+0.01 while the elasticity coefficient and material supply
were constant: ¢o = 0.1; w =1 (Fig. 9).

The front of the growing tumor does not have a well-
defined boundary, instead it is a layer (1.1 < R/a<1.4)
where the mass density increment is decreasing quickly —
see Figs. 3 and 4. This front evolves with the supply of
new cells. However, its evolution depends on the stiffness
of the hosting tissue, as follows from Fig. 8 at the top.
The maximum displacements (r — R) correspond to the
tumor front and they decay away from the tumor. It is cru-
cial that the peak displacements at the tumor front are
essentially different for various tissue stiffnesses. For a ‘soft’
tissue with ¢o = 0.01, the tumor front advances up to 25% of
the initial tumor radius; for an ‘intermediate’ tissue with
¢o = 0.1, the tumor front advances up to 12% of the initial
tumor radius; and for a ‘hard’ tissue with ¢y = 1.0, the
tumor front advances up to 3% of the initial tumor radius.

Radial ¢,, and tangent gy = o, Stresses generated in
the area of tumor growth also change for the varying
tissue stiffness — Fig. 8 mid and bottom accordingly. The
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Fig. 8. Displacements (top), radial stresses (middle), and tangent stresses
(bottom) around the tumor under varying tissue stiffness ¢y = 0.01;0.1;1.0.

maximum absolute values of these stresses occur at the sur-
face of material supply where the density increment is most
significant. These magnitudes are not seen in the figure and
we give them explicitly

0.13 (cy =0.01),
0.09 (cp=0.10),
0.02 (cp = 1.00),
—0.38 (co = 0.01),
—0.44 (co = 0.10),
—0.56 (co = 1.00).

0,(R=a) =

op(R = a) =

Evidently, compressive tangent stresses dominate the arca
of tumor growth and they increase with the increasing stiff-
ness of the hosting tissue.

The front of the growing tumor is weakly affected by the
varying remote stresses while the displacements outside the
growing tumor are very sensitive to these stresses — Fig. 9
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Fig. 9. Displacements (top), radial stresses (middle), and tangent
stresses (bottom) around the tumor under varying remote stress ¢ =
—0.01;0.0;+0.01.

top. Indeed, the peak displacement at the tumor front does
not change much in tension, compression, or the neutral
state. In contrast, the displacements at the distance of
R =3a are essentially different and the radial material
fibers can shorten or lengthen depending on the remote
compression or tension accordingly. The radial and tan-
gent stresses away from the tumor are shifted with respect
to each other in correspondence with the remote stresses.
The magnitudes of the stresses at the surface of material
supply are as follows:

0.11 (o =+0.01),

6,-(R=a)=1< 0.09 (o=0.00),
007 (o= —0.01),
—0.43 (o6 =+40.01),

gw(R=a)=¢ —0.44 (o =0.00),
044 (o =—0.01).

4. Discussion
4.1. Artery growth

A simple phenomenological theory of tissue growth has
been used in the present work for qualitatively explaining
the phenomenon of residual stresses in arteries. Material
anisotropy was included in the theoretical setting in accor-
dance with the experimental data. The theory was applied
to the problem of free and uniform radial growth of a cylin-
drical blood vessel. Displacement and stress fields were com-
puted for the experimentally obtained values of the elasticity
parameters. The computations give evidence of the appear-
ance of the circumferential stresses resulting in the bending
moments, which provide the compatibility of the grown
arterial cross-section. The radial cut of the arterial ring will
lead to the release of the bending moments and opening or
closing of the ring as it is observed in experiments.

Itis important that the circumferential stresses, which are
accumulated into the residual stresses during the long-term
growth, appear due to anisotropy. These stresses would not
appear in the ‘isotropic artery’. The latter suggests the inter-
pretation of the arterial anisotropy as a constraint imposed
on the volumetric growth. It is interesting that this conclu-
sion is novel as compared to the traditional point of view
that the material inhomogeneity and differential growth
are the main sources of the residual stresses [4,52]. It is very
likely that the material anisotropy is a complementary fac-
tor to the material inhomogeneity and differential growth
in causing the residual stresses. In principle, the considered
theory allows for including the material inhomogeneity and
differential growth in analysis. Unfortunately, there is no
clear enough experimental data to do so yet.

It is equally important that depending on the specific val-
ues of the elasticity moduli both ring closing or opening
may take place after the radial cut as shown in Fig. 7. Both
these scenarios are in a qualitative agreement with the
experimental data [53-57].

It should not be missed that also radial stresses appear in
the considered arterial growth. The magnitude of these
stresses is of lower order as compared to circumferential
stresses. Nonetheless, the radial stresses can play a role in
forming the global residual stresses. Particularly, the radial
stresses are a good candidate for the explanation of Voss-
oughi experiments [58]. These authors cut the opened artery
ring along the midline and found that the inside segment
opened more while the outside segment closed more. Prob-
ably, this happened because the radial residual stresses had
been relieved partially.

Finally, it is worth emphasizing that we gave a qualitative
explanation of the residual stresses in arteries. In order to
estimate the residual stresses quantitatively in vivo experi-
ments are necessary. The existing attempts of the quantita-
tive estimate of the residual stresses in arteries based on
the in vitro ring-cutting techniques may not be reliable.
The problem is that every cut leads to a redistribution of
residual stresses. This redistribution of stresses starts from
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Fig. 10. Redistribution of stresses as a result of the ring cutting.
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Fig. 11. A suggested experiment for the demonstration of the stress
redistribution under cutting.

the very first cut when a ring is taken from the artery
(Fig. 10). Indeed, such a ring is approximately under the
plane strain state before the cut. However, after the cut
the state of the ring is closer to the plane stress. Thus,
extracting the ring from the artery we cause a new distribu-
tion of stresses in it. This same happens after all subsequent
cuts. Actually, every subsequent cut relieves stresses in the
previous configuration and not in the initial one. In order
to illustrate this point we suggest the following experiment
— Fig. 11. Let two neighbor rings be cut from an artery in
such place along the artery that it is reasonable to assume
that the residual stresses are the same in both rings. These
rings are further cut radially and circumferentially, i.e.,
along the midline. It is crucial, however, that the order of
cutting is different for the different rings. One ring should
be cut first radially and then circumferentially, while the
other ring should be cut first circumferentially and then
the two obtained thinner rings should be cut radially sepa-
rately. Both initial rings are finally split into two open seg-
ments. This is done, however, in the different sequences of
cuts. The final shape of the segments should be different in
both cases because the order of cutting does matter for large
deformations where the superposition principle is not valid.
Indeed, the cutting is equivalent to applying tractions on the
cut surfaces to make these surfaces traction-free. In
the case of large deformations, the order of application of
the external forces is crucial. The difference in the experi-
mentally cut segments should be visible if the residual radial
stresses are comparable in the magnitude with the resid-
ual circumferential stresses. The expected results of the

described experiment could clearly illustrate insufficiency
of the artery-cutting experiments for estimating the magni-
tudes of the residual stresses. It seems that the artery-cutting
experiments can only be useful for the qualitative compari-
son purposes and not for the quantitative estimates of the
residual stresses: the more artery is cut, the less information
can be gained about its residual stresses.

4.2. Tumor growth

Experimental observation of the inhibited tumor growth
under stiffening of the hosting tissue has been explained the-
oretically in the present work. For this purpose, a simple
microstructural model of tumor growth was considered.
This model was used as a basis for the subsequent develop-
ment of a continuum solid mechanics theory of tumor
growth. In addition to the classical momentum balance
laws, the theory includes a full-scale mass balance law,
i.e., volumetric mass supply and mass diffusion. The latter
allows for an average description of the cell proliferation
out of the tumor. The diffusive term, which is missed in most
modern theories of tissue growth, is critical for a physically
reasonable description of the tumor expansion. Besides the
balance law, the microstructural model also prompts the
form of constitutive equations. In the case of small strains,
these equations are analogous to thermoelasticity where the
temperature increment is replaced by mass density incre-
ment, and the growth process is considered analogous to
a thermal expansion. A problem of spherically symmetric
growth of a pre-existing tumor was considered within the
framework of the developed theory. It was assumed that
material surrounding the tumor is Fung-type isotropic.
Such material is characteristic of living tissues, which exhi-
bit exponential stiffening behavior because of the straight-
ening of collagens and other long molecules comprising
the material matrix.

Qualitatively, the results of numerical simulations can
be summarized as follows:

(I) In perfect correspondence with histological examina-
tion, computer modeling revealed that active growth
is restricted to a thin shell at the periphery of the
tumor.

(IT) Growth is accompanied by stressing and compressive
tangent stresses dominate, which may potentially lead
to the tumor patterning [59].

(III) Consistent with experiments on multicellular tumor
spheroids, computer modeling shows that stiffening
of the hosting tissue inhibits growth.

(IV) Moderate remote stressing of the hosting tissue
should not essentially affect tumor development.

The fact that tissue stiffening inhibits growth prompts an
idea to reinforce the real tissue surrounding the actively
growing tumor by injecting small solid particles. In this
way it is possible to significantly stiffen the tissue and
encapsulate the tumor preventing from its expansion.
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The explanation of the inhibited tumor growth given in
the present work includes various assumptions, i.e., spher-
ical symmetry, quasi-equilibrium state, material isotropy,
boundary conditions on infinity, etc. These assumptions
seem to be reasonable for a qualitative explanation of the
observed phenomenon. It is crucial that the proposed the-
ory does not rely upon any kind of internal variables,
which are not accessible in experiments. If the properties
of a real tissue, as well as the characteristics of the tumor
are known, then the theory can be calibrated and it can
be used for quantitative predictions of the tumor develop-
ment. The latter may be important in tumor treatment and
preoperative planning.
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