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High-performance stretchable electronics have to utilize high-quality inorganic electronic materials such
as silicon, oxide or nitride dielectrics, and metals. These inorganic materials usually crack or yield at very
small intrinsic strains, for example, 1%, whereas bio-integrated electronics are expected to at least match
the stretchability of bio-tissues (20%) and deployable structure health monitoring networks are expected
to expand from wafer scale (several centimeters) to cover macroscopic structures (several meters). To

Is<eywor4s: minimize strains in inorganic materials under large deformation, metallic and ceramic films can be pat-
Sfrrftec?srblﬁit terned into serpentine-shaped ribbons. When the ribbon is stretched, some sections of the ribbon can
Stiffness y rotate and/or buckle to accommodate the applied displacement, leaving much smaller intrinsic strain

in the materials compared to the applied strain. The choice of the shape of the serpentine depends on sys-
tematic studies of the geometric variables. This paper investigates the effect of serpentine shapes on their
stretchability and compliance through theoretical, numerical, and experimental means. Our closed-form
curved beam solutions, FEM results, and experimental measurements have found good agreement with
one another. Our results conclude that in general, the narrower ribbon, the larger arc radius and arc angle,
and the longer arm length will yield lower intrinsic strain and effective stiffness. When the arm length
approaches infinite, the stretchability can be enhanced by several orders. A few unexpected behaviors
are found at arc angles that are close to straight bars. With additional practical constraints such as min-
imum ribbon width and finite overall breadth, the optimal serpentine shape can be accurately deter-
mined using our closed-form analytical solution.

Curved beam theory

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, stretchable electronics start to find exciting
applications in wearable electronics, smart surgical tools, compli-
ant power sources, as summarized in four recent review articles
(Kim et al., 2012a,b,c; Lu and Kim, 2013). Examples include epider-
mal electronics for vital-sign monitoring (Kim et al., 2011; Huang
et al., 2012; Yeo et al., 2013), fingertip electrotactile actuators for
smart surgical gloves (Ying et al., 2012), instrumented balloon
catheters for minimally invasive surgeries (Kim et al., 2011), mul-
tifunctional cardiac webs (Kim et al., 2012), and stretchable batter-
ies (Xu et al, 2013). A fundamental challenge of stretchable
electronics is to build a mechanically compliant system which is
able to deform drastically without affecting its electrical function-
alities. High-performance stretchable electronics have to utilize

* Corresponding author. Tel.: +1 512 471 4208.
E-mail address: nanshulu@utexas.edu (N. Lu).

http://dx.doi.org/10.1016/j.ijsolstr.2014.07.025
0020-7683/© 2014 Elsevier Ltd. All rights reserved.

high-quality, inorganic electronic materials such as silicon, gold,
and oxides or nitrides, which are known to be very stiff and even
brittle materials. For example, thin films of ceramic materials such
as silicon, oxides, and nitrides tend to rupture at very small strains,
around 1% (Leterrier et al., 1997; Gleskova et al., 1999; Sun et al.,
2012). Although copper thin films well bonded to polyimide sub-
strates have been stretched beyond 50% without fracture (Lu
et al., 2007), most of the deformation is plastic and therefore, irre-
versible. The elastic regime of metal deformation is still limited to
1% or less (Hommel and Kraft, 2001). To minimize strains in metal
interconnects under large deformation, either out-of-plane sinu-
soidal nanoribbons/nanomembranes (Lacour et al., 2005; Khang
et al., 2006) or in-plane serpentines (Gray et al., 2004; Kim et al.,
2008) are employed to replace straight wires. Comparing the two
popular strategies, in-plane serpentines are more fabrication and
integration friendly because no pre-stretch of the rubber substrate
is required and low profile is preserved. In fact, not only metals but
also silicon and two-dimensional graphene can be patterned into


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.07.025&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.07.025
mailto:nanshulu@utexas.edu
http://dx.doi.org/10.1016/j.ijsolstr.2014.07.025
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

T. Widlund et al./International Journal of Solids and Structures 51 (2014) 4026-4037 4027

serpentine ribbons to achieve high stretchability (Kim et al., 2011,
2008, 2011; Zhu et al., 2014). Recently developed micro-transfer-
printing techniques (Meitl et al., 2006) has enabled the integration
of well-patterned inorganic films and ribbons on elastomer sub-
strates. When the substrate is stretched, serpentine ribbons can
rotate in plane and buckle out of plane to accommodate the
applied deformation, resulting in greatly reduced intrinsic strains
in the inorganic materials as well as minimized stiffness at the
system level. Low system-level effective stiffness is critical for
bio-integration because devices as compliant as bio-tissues can
conform to and deform together with the bio-tissue without
detachment or imposing any significant mechanical constraint
(Kim et al., 2011; Huang et al., 2012; Yeo et al., 2013).

Besides stretchable electronics, serpentine structures can also
be found in a lot of expandable systems made out of intrinsically
stiff materials. Examples include the cardiovascular stents for angi-
oplasty (Beyar et al., 1997) or percutaneous coronary intervention
(Roguin et al., 1997), and deployable sensor networks for structural
health monitoring (Lanzara et al., 2010). Tubular metallic stents in
the form of a serpentine-meshed scanfold can be inserted into
blood vessels in a very small initial diameter, tunnel through the
veins and arteries, and get expanded by more than 200% using a
balloon catheter, to provide support inside the patient’s arteries.
As another example, ultra narrow, highly tortuous serpentines
were incorporated in the design of a spider-web-like highly
expandable sensor network (Lanzara et al., 2010). The microfabri-
cation of inorganic-material-based sensors which has to utilize
regular-sized spinners, mask aligners, and vacuum chambers can
all be performed on a wafer-sized rigid substrate. Once the circuit
is released from the rigid substrate, the sensor network can be
deployed by more than 100 times in area so that they can cover
macroscopic civil or aerospace structures to perform structure
health monitoring. In both examples, the large expandability
comes from just the in-plane rigid body rotation of the freestand-
ing serpentine ligaments.

Although serpentines have been widely used as the stretchable
configuration of stiff materials, the designs of the serpentine shape
are still largely empirical. According to existing studies, the applied
strain-to-rupture of metallic serpentine ribbons varies from 54% to
1600%, depending on the geometric parameters such as ribbon
width, arc radius, arm length, substrate support, and so on (Gray
et al, 2004; Kim et al., 2008; Lanzara et al.,, 2010; Hsu et al,,
2009; Brosteaux et al., 2007; Xu et al., 2013). A few experimental
and finite element modeling (FEM) studies have been conducted
to provide insights into the shape-dependent mechanical behavior
(Gray et al., 2004; Hsu et al., 2009; Li et al., 2005) of serpentine rib-
bons. Two recent theoretical articles provided viable routes to pre-
dict the stretchability of buckled serpentines (Zhang et al., 2013a)
and self-similar serpentines (Zhang et al., 2013b), but the shapes of
the unit cells are very limited. Moreover, the effective compliance
of the serpentine structure and the shape optimization under prac-
tical constraints have been rarely discussed. This paper performs
analytical, FEM, and experimental studies on freestanding serpen-
tines with three systematically varied dimensionless geometric
parameters. The closed-form plane strain solution can be applied
to predict the stretchability and effective stiffness of numerous
serpentine structures. The analytical solution can also be used to
optimize the three dimensionless geometric parameters under
one optimization goal - maximum stretchability, and two practical
constraints - e.g. no material overlap and finite breath of the
structure at a given ribbon width resolution.

This paper is organized as follows. Section 2 summarizes the
analytical, FEM, and experimental approaches we use. Section 3
compares the analytical, FEM, and experimental results for system-
atically varied serpentine shapes. Section 4 demonstrates how to
determine the optimal serpentine shape under certain practical

constraints using the analytical solutions. Concluding remarks
are provided in Section 5. In Appendix A, derivations based on
elasticity theory (i.e. Airy’s function) are provided. Appendix B
derives the load-displacement relation using Castigliano’s method
(i.e. energy method) and the strain distribution using the Winkler
curved beam (CB) theories.

2. Analytical, fem, and experimental approaches

It has been observed that when freestanding serpentine ribbons
have large width-to-thickness ratio, they tend to buckle out-of-
plane when subjected to end tensile displacements (Kim et al.,
2011, 2008; Li et al., 2005) whereas when their width-to-thickness
ratios are small, the deformation is completely in plane (Lanzara
et al., 2010). Although general three-dimensional (3D) theories
for curved thin rods are available (Love, 2011), out-of-plane
buckling and post-buckling analysis for curved beams only yields
analytical solutions for very limited shapes and loading conditions
(Kang and Yoo, 1994). To initiate the theoretical analysis and
optimization of free standing serpentine ribbons, we start with a
two dimensional (2D) plane strain model, which suppresses the
out-of-plane buckling deformation. A unit cell cut out of a
one-directional periodic serpentine ribbon is depicted in Fig. 1A.
The unit cell of a so-called “horseshoe” serpentine is composed
of an arc joined end to end with its upside-down mirror image.
Based on the conventional horseshoe shape, we add a linear
“arm” section between the two arcs. The unit cell of this generic
serpentine can be well defined by four geometric parameters: the
ribbon width w, the arc radius R, the arc angle «, and the arm
length L The ribbon thickness t is assumed to be unit in the plane
strain model. Hence the end-to-end distance S of a unit cell can be
expressed by

S:4<Rcosoc—%sinoc) (1)

When this unit cell is subjected to a tensile displacement ug at
each end, the effective applied strain &qp,, is defined as

2u
€app = TO (2)

Therefore a straight ribbon (i.e. o= —-90°) of length S should
have a uniform strain of ¢4, if the end effects are neglected. Attrib-
uting to symmetry and anti-symmetry, a unit cell can ultimately be
represented by a quarter cell with fixed boundary at the axis of
symmetry and a displacement of uy/2 at the end, as shown in
Fig. 1B. The reaction force is named P in Fig. 1B. The end of the unit
cell is considered free to rotate because we assume it is a unit cell
cut out of a long, periodic serpentine ribbon whose boundary con-
ditions (i.e. whether clamped or simply-supported) do not affect
the unit cell.

In this problem, two mechanical behaviors of serpentines are of
particular interest to us: the stretchability and the effective stiff-
ness. Stretchability is defined as the critical applied strain beyond
which the material of the serpentine ribbon will rupture and will
be denoted by &, Therefore, if the failure criterion &max = & IS
adopted, where €4« and &, represent the maximum tensile strain
and the intrinsic strain-to-rupture of the material, respectively, the
normalized maximum tensile strain in the serpentine, &max/€app,
will govern the stretchability by
8cr _ Ecr (4)

app "~ €max
Eapp

Effective stiffness is defined as the ratio between the reaction
force P and the effective displacement, 2u,. With Young’s modulus
E and Poisson’s ratio v, the stiffness of a plane strain straight ribbon
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Fig. 1. (A) Schematics of a serpentine unit cell where R is the radius of the arc median line, w is the width, « is the arc angle, [ is the arm length, and S is the end-to-end
distance of the unit cell. The ribbon thickness t is assumed to be unit in the plane strain model. The unit cell is subjected to a tensile displacement of ug at each end. (B)
Schematics of a quarter of a 2D plane strain unit cell with boundary conditions. ¢ is the angular variable for the arc section and s is the linear variable for the arm section. P is
the reaction force as a result of an applied displacement of u,/2. (C) Schematics of systematically varied serpentine shapes where (a) o= 0°, /R = 0, w/R varies; (b) o =0°,
I/R =1, w/R varies; (c) o = 0°, w/R =5, I/R varies; (d) w/R=1/5, [[R=0, o varies; (e) w/R=1/5, I[R =1, o varies, and (f) w/R =1/2, ||[R =5, « varies.

of length S and width w is given by Ew/S, where E = E/(1 — v?) is the
plane strain modulus. Therefore the effective stiffness of a
serpentine ribbon normalized by that of straight ribbon of the
same end-to-end length is given by PS/(2Ewug). When
o approaches —90°, i.e. when serpentine degenerates to linear rib-
bon, normalized effective stiffness should approach 1. Through
dimensional analysis, the first objective of this paper is to derive
the functional forms of

PS w |

> —flo,—=,= 5
Ewig (“’R ’R) (3)
and
Emax _ wl
gapp 7g<a7E1R) (6)

which will be generic functions for all kinds of linear elastic
materials. Functional forms of Egs. (5) and (6) will be obtained from
analytical and finite element methods. By varying «, w/R, and I/R
systematically, various serpentine shapes can be achieved as
depicted in Fig. 1C. Since dimensionless variables are used, self-
similar serpentines, no matter macro-, micro-, or nano-scale, as long

as their o, W/R, and [/R are all the same, their normalized effective
stiffness and stretchability will not have any difference, assuming
no size-dependent material properties.

Plane strain elasticity theory (e.g. Airy’s function) and Winkler
curved beam (CB) theories can both be directly applied to analyze
the problem defined in Fig. 1B. Airy’s function gives the most accu-
rate solution even when w/R is close to 1, but CB theory offers
closed form analytical solutions for serpentines with arbitrary «,
w/R, and I/R. Results from CB theory agrees well with elasticity the-
ory up to w/R < 1/2 (Bickford, 1998), which is within the range of
interest. As a demonstration, we have applied Airy’s function to
find solutions to Egs. (5) and (6) of a simple horseshoe unit cell
with «=0° [/[R=0, and varying w/R, as derived in Appendix A.
Except for this example, analytical results obtained in the rest of
the paper are derived using CB theories, with details provided in
Appendix B.

Since the problem we analyze has a prescribed displacement
boundary condition (Fig. 1A), to perform strain analysis, we first
need to figure out the load-displacement relation for generic
serpentine shapes using the schematics provided in Fig. 1B. In
Appendix B, Castigliano’s energy method has been applied to find
out the load-displacement relation as follows:
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2 +sin20(6(2+ o) £+ 9)
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which is also the expression for the normalized effective stiffness,
as proposed before. It is obvious to conclude from Eq. (7) that the
effective stiffness decreases monotonically with the minimization
of w/R and the enhancement of I[/R whereas the effect of « is not
as straightforward.

Combining Eq. (7) with the equilibrium equations in Appendix
B, the functional form of Eq. (6) is found to be:

w12 12 w i L L i
E[@JF <q—§)(smo¢—s—ﬁ cosoc)](cosa—ﬁsmoc)

&max

«=0° w/R=1/5 and Il/R=1, and C, a=-20° w/R=1/2, and
I/[R=5. Analytical results are plotted just for the arcs and are
always displayed in the left frames and unit cells modeled by
FEM are displayed in the right frames. Contour plots obtained from
the two distinct approaches look almost identical, suggesting the
CB theory and FEM have validated each other. Attributing to sym-
metry and bending effect, maximum strains always occur at the

Eapp cos%(%+3(§+oc)%+12£—12(§+oc))

+sin20(6(2+ a) 5+ 9)

+u [(g+ %) (5 cos o + sin o) + 5 (sinoc+g—§ cosoc)] +18(2+a)

It is not easy to tell the effect of the three different variables by
just examining Eq. (8). So we will later plot this equation in com-
parison with FEM and experimental results in Section 3.

Commercial FEM package ABAQUS 6.10 is used to perform
plane strain modeling of a unit cell as shown in Fig. 1A. The serpen-
tine material is assumed to be linear elastic, with Young’s modulus
E =130 GPa, and Poisson’s ratio v = 0.27 (e.g. silicon). Symmetric dis-
placement boundary conditions are applied at both ends to ensure
&qpp = 10% for all the models. Small deformation (i.e. linear geometric
relation) is assumed. After convergence test, element size is always
maintained to be smaller than w/40. Strain distribution and reaction
force can be directly output from FEM. Note that although we have to
specify E, v and &qpp to perform FEM, the normalized results FEM
results shown in Section 3 are independent of those inputs.

Experimental validation of the analytical and FEM approaches is
conducted with 3D-printed acrylonitrile butadiene styrene (ABS)
straight and serpentine ribbons. Instron Dual Column Testing Sys-
tem (Model 3367) and Bluehill 2 are used as the uniaxial tension test
and data acquisition system. Displacement control tension tests on
the 3D-printed serpentine ribbons are performed with a strain rate
of 0.1% s~!. Engineering strains, i.e. total elongation divided by ini-
tial gauge length, are measured in the experiments. The intrinsic
material strain-to-rupture &, is measured using a straight specimen
whereas the applied strains-to-rupture (or stretchability) &g, is
measured for various serpentine ribbons. Although ABS is an elas-
tic-plastic material and it ruptures within the plastic regime, the
inner edge of the crest of the ABS serpentine is always subjected
to pure tensile strain and small-scale yielding assumption has been
validated for its failure (Pijnenburg et al., 2005), therefore the failure
criterion &pqx = & is still applicable. If experimentally measured
Eer /sg;,p can agree with analytical and FEM &pax/&qpp, Our models
can be proved valid to capture the mechanics of plane strain serpen-
tine ribbons. Analytical, FEM, and experimental results will be com-
pared and discussed in Section 3.

3. Results

The strain distribution of three representative serpentine
shapes are plotted in Fig. 2: A, «=0° w/R=1/5, and [/R=0, B,

center of the inner arc, as we have expected. As small deformation
assumption is adopted in our theory and FEM, when subjected to
an applied strain of 10%, the normalized maximum strain in a basic
horseshoe serpentine is found to be 2% lower than that is calcu-
lated with nonlinear geometric relation turned on in ABAQUS.
The amount of error increases as the applied strain increases.
Among the three shapes plotted, the modified horseshoe in
Fig. 2B gives the lowest normalized maximum strain (&max/€app =
0.042), suggesting it is the most stretchable shape out of the
three.

Effects of different geometric parameters are summarized in
Figs. 3 and 4. Fig. 3 plots the effective stiffness of serpentine ribbons
normalized by the stiffness of a straight ribbon as given in Eq. (7),
which is equivalent to the ratio of reaction forces of serpentine
(P) to straight ribbons (P') under the same applied displacements,
P/P, as derived in Appendix B using energy methods. Closed-form
analytical solution, Eq. (7), is plotted as curves and FEM results
are plotted as dots. Unlike strain results to be discussed in Fig. 4,
the FEM results match the analytical solutions all the way up to
w/R =1 in Fig. 3A, indicating that energy method can provide quite
accurate global load-displacement results. When o = —90°, the ser-
pentine degrades to a straight bar, therefore P/P' = 1, as is obvious in
Fig. 3C and D. According to Fig. 3A-D, the effects of all three vari-
ables on the effective stiffness are all monotonic: the smaller w/R,
the bigger o, and the bigger [/R would all yield the lower effective
stiffness. The results also indicate that the stiffness of a structure
can be reduced by orders of magnitude by simply changing the
structure configuration, which is the enabling mechanism of mak-
ing tissue-like soft electronics out of serpentine-shaped stiff mate-
rials like silicon and gold (Kim et al., 2011, 2012). Because there are
three independent geometric variables in Eq. (7), it can generate
contour plots of the normalized effective stiffness as a function of
two variables, I/R and o, with w/R fixed to be 1/5 (Fig. 3E) and 1/2
(Fig. 3F), respectively. The color scale represents the magnitude of
the normalized stiffness and the blank zone represents inaccessible
shapes due to the non-overlapping constraint which will be dis-
cussed in greater detail in Section 4. Red dots overlaid on the con-
tour plot represent shapes with particular (o,I/R) combinations
which has been simulated by FEM. Contour plots derive similar con-
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Fig. 2. Contour plots of strain fields obtained from CB theory (left frames) and FEM (right frames) with the geometric parameters fixed as (A) o =0° w/R=1/5, [[R=0,

(B) =20°, w/R=1/5, |[R=1, and (C) o = —45°, w/R=1/2, l/R=5.

clusions as the graphs but they offer more visualized illustrations
and plot wider ranges of « and I/R.

Fig. 4 plots the normalized maximum strain as dots for FEM
results and curves or contours for analytical results, as given in
Eq. (8). Fig. 4A studies the effect of w/R at different I/R with « fixed
to be 0°, which corresponds to Categories (a) and (b) in Fig. 1C. We
found that FEM results match perfectly with the elasticity theory
but not with the CB theory when the ratio w/R is bigger than 1/2,
which is expected because CB theory made approximation on the
strain energies for rectangular cross-sections to simplify the
equations (Bickford, 1998). Fortunately, all of the commonly used
serpentine shapes as depicted in Fig. 1C are within the limit of
w[/R<1/2, so that the CB theory can accurately capture the
maximum strain in these serpentines. As I/R gets larger, the CB the-
ory can be accurate for larger range of w/R. The effects of w/R is
monotonic, as W/R drops, &ma/éapp can be reduced because the
bending-induced strain can be reduced. In practice, w/R can hardly
approach zero because the minimum width of the serpentine rib-
bons is limited by the resolution of the patterning technique (e.g.
photolithography or laser cutting) and the requirement on electri-
cal resistance of interconnects. For given w/R, &max/Eapp 1S lower
when the arm length [/R is longer when « = 0°. For most of the
cases plotted in Fig. 4A, €max/€app < 1, meaning the serpentine shape
is helpful in reducing the intrinsic strains of the serpentine mate-
rial, even when w approaches R. In practice, w/R = 1/5 is a popular

scheme used in stretchable electronics (Kim et al., 2011; Yu et al,,
2013). According to Fig. 4A, a strain reduction of more than ten
folds can be achieved even without allowing out-of-plane buckling.
Fig. 4B better illustrates the effect of I/R, with o fixed to be 0° and
varying w/R, which corresponds to Category (c) in Fig. 1C. Long
arms can help accommodate larger applied strain through rigid
body rotation, hence larger I/R yields lower &max/&qpp, for all cases
of w/R. The effect of « is given in Fig. 4C, with fixed w/R=1/5
and varying /R, which corresponds to Categories (d) and (e) in
Fig. 1C. When « = —90°, the serpentine ribbon degenerates into a
straight ribbon, therefore enax/€qpp = 1 always holds. As a increases
from —90°, &max/€qpp first increases due to increased bending effect
and then decreases due to enhanced rotational contribution. Note
that gmax/€qpp May even exceed 1, indicating the maximum intrinsic
strain in the material may exceed the applied strain due to super-
imposed tensile and bending strains. This surprising result alerts us
that serpentine design is not always effective in reducing strain or
in enhancing stretchability. Careful mechanics modeling should be
performed to predict and evaluate the different serpentine shapes.
As a comparison, we also fix w/R = 1/2 and showed the effects of «
in Fig. 4D, which corresponds to Category (f) in Fig. 1C. The results
are very similar to Fig. 4C except that there is a wider range of o
Where &may/€qpp €XCeeds 1.

Similar to Fig. 3E and F, contour plots of &ax/€qpp as a function of
o and [/R for two different w/R are offered in Fig. 4E and F using
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Fig. 3. (A) Plot of normalized stiffness as a function of w/R when o = 0° and I/R is varying. (B) Plot of normalized stiffness as a function of I/R when & = 0° and w/R is varying.
(C) Plot of normalized stiffness as a function of « when w/R=1/5 and [/R is varying. (D) Plot of normalized stiffness as a function of « when w/R=1/2 and I/R is varying.
(E) Contour plot of normalized stiffness as a function of « and I[/R when w/R=1/5. The red dots represent the cases that have been modeled by FEM. The blank region
represents the inaccessible shapes due to the non-overlapping constraint. (F) Contour plot of normalized stiffness as a function of o and I/R when w/R = 1/2. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Eq. (8). The color scale represents the magnitude of the normalized
maximum strain and the blank zone represents inaccessible
shapes. For example, when o is large, there is an upper limit of
the arm length because otherwise the ribbons will overlap. When
o asymptotically approaches 0° along the edge of the contour,
horseshoe degenerates into a U-shape and therefore, I/R could
approach infinite if no other geometric constraints are considered.
We will provide more detailed discussions on geometric con-
straints in Section 4. Red dots are used to denote cases where
FEM results are available. Unlike on stiffness, the effect of « on
strain is clearly not monotonic unless I/R is very large, i.e. the
arm is very long. As o increases from the far negative regime,
Emax/€app WIll first increase to a peak value before it starts to
decrease. When o falls somewhere between —90° and —45°,
€max/€app MAy even exceed 1, meaning these serpentine shapes
are even less stretchable compared to their straight counterparts.
According to the contour plots, the effect of I/R is monotonic under
most values of o but not all. Both Fig. 4E and F show that when «
falls in the far negative regime, the maximum strain will first
increase with increased I/R due to increased bending moment
and then decrease because of the decreased structure stiffness.
The plots in Fig. 4 has limited I/R to 10 but when o« = 0°, I/R can
be unlimited. The normalized maximum strain when « = 0° can be
simplified from Eq. (8) to be a function of just w/R and I/R:
€max — % [ﬁ + <ﬁ B %> TIR] (9)
b Ly g+ 12 3 g [15 4]

2R

To study the effect of long-armed serpentines as shown in
Fig. 5A, Fig. 5B plots &max/€app in log scale as a function of I/R up
to 100 using Eq. (9). It is found that increasing I/R is a very effective
way to reduce the max intrinsic strains in serpentines, which will
lead to significant enhancement of the stretchability, up to three
orders of magnitude, even without any out-of-plane buckling or
twisting. This means that a brittle material with an intrinsic
strain-to-rupture of 1% can be made to deploy by 1000% when they
are patterned into long-armed serpentines like Fig. 5A. This formu-
lation also explains why the gold serpentine network can be as
expandable as spider webs (up to 1600%) (Lanzara et al., 2010).

Comparison between modeling and experimental results is
offered in Fig. 6. Fig. 6A shows three different sets of 3D printed
serpentine specimens with systematically changing shapes. Every
specimen shown in this figure has a thickness of 0.1 in and a ribbon
width of 0.039 in. Because of the relatively large thickness, the ser-
pentine specimens undergo in-plane elongation during the tensile
tests, which is compatible with our plane strain assumption for the
models. As mentioned in Section 2, measured & /€qpp aTE compared
with CB theory and FEM results as given by Fig. 6B-D. Fig. 6B plots
€max/€app as a function of I/R with fixed o = 0° and w/R = 1/5. Fig. 6C
and D plot gne/€qpp as a function of o, with w/R=1/5, I[R=0
(Fig. 6C) and w/R=1/2, I[R =5 (Fig. 6D), respectively.

In summary, we have obtained consistent results for the maxi-
mum strain and stiffness of freestanding serpentines under linear
elastic, plane strain assumptions using CB theories, FEM, and
experimental approaches. Effects of «, w/R, and I/R are carefully
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function of o when w/R = 1/5 and I/R is varying. (D) Plot of &max/€app as a function of & when w/R = 1/2 and I/R is varying. (E) Contour plot of &nax/€app as a function of o and I/R
when w/R = 1/5. The red dots represent the cases that have been modeled by FEM. The blank region represents the inaccessible shapes due to the non-overlapping constraint.
(F) Contour plot of &nax/€app as a function of « and I/R when w/R = 1/2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 5. (A) lllustration of ultra-long-armed serpentine. (B) Eq. (9) is plotted for ultra
large I/R: normalized maximum strain can be reduced by orders of magnitude as
arm length is orders larger than the arc radius.

revealed. In general, the narrower ribbon, the larger arc radius and
arc angle, and the longer arm length will yield lower effective stiff-
ness and intrinsic strain. However, although serpentines are
always effective in reducing structure stiffness, not all serpentines
can lead to strain reduction. A few unexpected behaviors are found
at arc angles that are close to straight bars. Orders of magnitude
enhancement of stretchability can be achieved when o =0° and
I/R approaches infinite.

4. Optimal serpentine shape under practical constraints

In practical circuit design, stretchable serpentine interconnects
are usually subjected to design and fabrication constraints. For
example, although we find in Section 3 that narrower serpentines
are always more compliant and more stretchable, the width of ser-
pentines cannot approach zero due to limitations of fabrication
resolution as well as electrical resistance considerations. Assume
that a practically possible minimum width is pre-determined, this
section will demonstrate how to construct the most stretchable
serpentine shape under certain geometric constraints.

For a given w, the mathematical procedure of finding out the
optimal shape under certain geometric constraint is to identify
three equations to solve for three unknowns, o, w/R, and [/R. The
first equation comes from the non-overlapping requirement, i.e.
the distance between the two nearest ribbons, X as defined in
Fig. 7A, should be larger or equal to 0, i.e.

X:(R—K)cosoc—lsinoc—<R+g)(l—cosoc):0 (10)

2

Solving this equation we can get the largest possible o for given
(w/R,1/R) combinations:

2(2%+%+6)
(6+3%)°

Olmax = 2 - arctan + (11)

1
—“R
6+Y
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Fig. 7. (A) Illustration of geometric constraints. For example, non-overlapping constraint: X =0 and finite breadth constraints: Y is bonded. (B) Contour plot of the largest
possible values of o, oax, as a function of w/R and I/R considering the non-overlapping constraint given by Eq. (10). (C) Contour plot of &pax/€4pp Values as a function of w/R, I/R
and omay, as given by Eq. (8). Optimal shape can be determined by the position of minimum &mqx/€qpp values on each isoline representing a constant Y. (D) Optimal serpentine
shape under the constraint of X=0 and Y = 10w.

The second equation reflects the finite breadth constraint when
considering limited real estate on the circuit board, e.g. Y= 10w,
where the breadth Y is defined in Fig. 7A:

Y =2R+w+ 2Rsino +lcosa = 10w (12)

The third equation is the minimization of &mqx/€app, i.€. minimiz-
ing the values given by Eq. (8). Since the optimization problem
now reduces to a problem of minimization under two constraints,
we can certainly use Lagrangian multiplier. Since the final results

are too complicated to show, solutions to the three variables can
be more easily illustrated with two contour plots. Fig. 7B plots
the value of o4 as a function of w/R and IR, as derived in Eq.
(11). Plugging that into Eq. (8) will yield the value of &max/€app as
a function of w/R and [/R as plotted in Fig. 7C. The finite breadth
constraint given in Eq. (12) can be plotted as a curve in the
(W/R,1/R) space, and the point on the curve which yields the lowest
value of &mqx/eapp represents the most stretchable shape, which is
highlighted by a red dot in Fig. 7C. Plot the coordinates (W/R,l/R)
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of this dot read from Fig. 7C in Fig. 7B, the corresponding o;;,q, Value
can be read from the color scale and hence all three parameters «,
w/R, and [/R are uniquely determined. Their dimensionless nature
dictates that the actual dimension of the optimal serpentine is
completely scalable with the ribbon width, w. In addition to 10w,
Fig. 7B and C also plots isolines of various breadth values, from
5w to 15w. For finite breadth of 10w, the optimal serpentine design
can be finally determined by reading the figures as o =8.7°,
w/R=0.71, and [/R=4.12. Therefore, with given constraints of
w and Y, the most stretchable serpentine shape is depicted in
Fig. 7D. Shape optimization under other geometric constraints
can be formulated following similar approaches.

5. Conclusions

We have applied plane strain CB theories and FEM to study the
effects of several dimensionless geometric parameters on the nor-
malized effective stiffness and maximum strain (or stretchability)
of freestanding serpentine ribbons in a systematic manner. The
CB theories are able to accurately predict &mnax/€qpp When wjR is
small or [/R is large, which is validated by both FEM and tension
tests of 3D-printed serpentine specimens. Our study reveals that
ribbons with small w/R, large I/R and large « are going to be com-
pliant and stretchable with some rare exceptions. The stretchabil-
ity can be enhanced by several orders when I/R approaches infinite.
In practical stretchable circuit designs, there are often design and
fabrication constraints such as non-overlapping requirement or
finite breadth constraint. In these cases, the optimal serpentine
shapes can be analytically determined using our closed-form CB
solutions.
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Appendix A. Elasticity theory

In elasticity theory, the elastic field of equations are given by:
i. The strain-displacement relation (tensor notation):

(Ui + i) (A1)

N[ —

&j =
where ¢; is the strain tensor and u; is the displacement.

ii. The equilibrium equations:
O','jy,'%»Fj:O (AZ)

where ¢7;; is the stress tensor and F; is the body forces.
iii. Hooke’s law:

gjj = /18](,(51] -+ 2,1181] (AB)

where Z is Lamé’s constant, J; is Kronecker’s delta and u the
shear modulus.
iv. Saint Venant compatibility equations:

&ijl + Extij — Eikjl — ik = 0 (Ad)

In our case, we are dealing with a plane stain problem as
depicted in Fig. 1B.

The deformation field in plane strain can be reduced to:
Uy = uy(x,y), Uy, = uy,(x,y) and u, = 0.
By Eq. (A1), the strains become in plane:

8_% a—% ¢ _1/0ou, ouy
*Tox Y T oy M2\ ox oy

& =8z = 8yz =0 (A5)

The isotropic form of Hook’s Law gives:

ouy duy Olly
=/ (— + —) +2U—— B

ox oy
_ 5 (%ux , Ouy ouy
= (8 +8y> Wy

0, =0(0x+ 0y)

Ouy | duy
Ty =M 5 T ay

Tz =Ty, =0 (AG)
The equilibrium equations give:
00y 0Ty
F,=0
X + ay +
day (%Xy
F,=0 A7
ay OX + y = ( )
Finally the Saint Venant’s equations become:
e 0P8 Py

dy Tox T oxdy (A8)

Combining Egs. (A5) and (A8) and vanishing the body forces, the
problem is reduced to the following form:

Vip=0 (A9)

where ¢ is the Airy stress function.
In our case, curved beam with end loads, the Airy stress func-
tion takes the form:

¢(r,0) = R(r)cosnd (A10)
Plugging into Eq. (A9) yields the following solution,
¢ = (Ar3+$+Cr+Drlogr> sin (A11)

In elasticity, we have the following relations in polar coordinate:

g 100 109
"Tror ' r? o
2%
=512 (A12)

9 (19
T " ar \r 90

In our case, this theory is applied to a specific serpentine shape
where I[R=0 and « = 0°.
As a consequence,

212 2 2
O'r_2A<r+ab—a +b)sin@

;
212 2 2

00:2A<3rarfa ib>sin9 (A13)
22 2 2

Tr()__2A<r+—a? _¢ er)cos@
T r
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where

w w
a:R—j andb:RJrj

P

2A = 2 2
@ — b+ (a> + b")Ink

(A14)

Applying the strain-displacement relation, the reaction force is
obtained as

2 _ B2 2 2\In b
p_plod b* + (a +2b)lna
2 n(a? + b%)

=u 4w 4
(-t ()
+R7 +R

The maximal strain & is obtained for 6 = 5 and r = g, so that by
Hook’s law:

(A15)

B N _0(0=%r=aq)

nar = &0(0 =537 =) = L (A16)

Thus

a® —b*) + (a* — b*)Int
Emax = —Uo ( ) ( 7] ) g (Al 7)
na(a® + b%)

According to Fig. 1A, the applied strain is given by 2u/S:
Gapp = 2(Rcos o — Isin o) (A18)

Lastly, we can obtain the normalized strain

a? — b*) + (a* — b*)Int .

fmax __ )+ ( . ) “(Rcosoc—lmnoc) (A19)
8app %a(az + b ) 2

This exact elasticity solution is plotted as the dashed curve in
Fig. 4A, which matches with FEM perfectly.

Appendix B. Curved beam theory

The force equilibrium of a curved beam as shown in Fig. 1B
yields:

Nare = Pcos 0 (A20)
Vare = —Psing (A21)
24(L T 2 1_1p(z
, cos oc<2R3+3(2+ac)Rz+12R 12(2+ac))
Up PR .
2 = Wik +sin20(6(2+ o) £ +9)

Ngm = Psino (A25)

where N is the internal normal traction at the centroid of the cross-
section, M is the internal moment.

The energy method (Castigliano) provides us the link between
the applied displacement ug and the reaction force P:

Up - ou _ 8(Uarm + Uarc)

2 P op (A26)

where U is the elastic energy:

Ugrm = /0 ‘ {x ‘g”gj + 1\;‘%’:’: + A;’;'ﬂ ds (A27)

and

Uare = / " {(N““R_ More) + Miﬂ Rdo (A28)
0 2EAR 2EL

where x = 1.5, is the correction coefficient for strain energy in a
rectangular section.

This yields
Wae _ p| R (m+20) (4 coscx+Rsino<)2
oP 2E AR
8Rcoso(} cosor+ Rsina) — Rsin2a
Jr
2l
(m+20)(5+ 2R+ (§—R) (4+R) cos 20+ 21 Rsin 2cx)
N 21
(A29)
and
g Pi 3cos? +§ cos?o  sin’o (A30)
oP 2\ 2AG 3LE AE
For plane strain, we assume thickness h =1 so that
w3 - E
A=w, I2_ﬁ,andE_ﬁ (A31)
Thereby we obtain
(A32)

+ {(%4—0()(% cos o + sin o) +§(sino¢+% cos? oc)] +18(2+ )

Mgre = PR(sino + cos 0) + Pl cos o

Since the stiffness of a straight ribbon is given by Ew/S, where S
is given in Eq. (1), the normalized effective stiffness can be

(A33)

5 (A22)
Marm = Ps cos (A23) expressed as:
Vam = —Pcos o (A24)
PS ¥ (cos o — 5 sin o)
2Ewuy cos2a(%+3(§+a)§+12§—12(g+a))
2 +sin20(6(3+ ) £ +9)

+u [(%—i—oc)(z—’R cosoc-i-sinoc)2 +2—’R<sin2<x+% cos? oc)] +18(%+ «)
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which is the same as Eq. (7).
According to Fig. 1A, the applied strain is given by 2u/S:

Up
Eap = ——————————— A34
P 2(Rcoso 14 sina) (A34)
The hoop stress in the arc is given by:
N-M My
_ _ A

where A is the cross-sectional area and y is the distance from the
centerline.

And
Ry?
L= [|-— A36
=[xty (A36)
Applying Hook’s law, the hoop strain is easily obtained by:
o
&oo = %

As maximum strain occurred at the center of the curvature, for
0=0° and y = —w/2, and by the equilibrium equations the maxi-
mum strain obtained by the curved beam theory is given by:

P(-sino +55 cosa)  6P(R(sina+ 1) +4 cos o)

— A37
Ew (1 — ) Ew? (A37)

Emax =

Combining Eqgs. (A34) and (A37), the normalized maximum
strain is

w12 12 w i L L i
E[@ (Q—E)(smowﬁcosoc)](cosoc—ﬁsmoc)

Emax
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