
Is Thermoelectric Conversion Efficiency of a Composite Bounded

by its Constituents?

Y. Yang1, F. Y. Ma1, C. H. Lei 1, Y. Y. Liu2, and J. Y. Li1,∗

1Department of Mechanical Engineering, University of Washington,

Seattle, Washington 98195-2600, USA and

2Faculty of Materials, Optoelectronics and Physics,

and Key Laboratory of Low Dimensional Materials

& Application Technology of Ministry of Education,

Xiangtan University, Xiangtan, Hunan 411105, China

Abstract

We analyze the conversion efficiency of thermoelectric composites, and conclude that thermo-

electric figure of merit ZT as we know it is ill-defined for composites, and is irrelevant for their

conversion efficiency. In addition, we prove that thermoelectric conversion efficiency of a composite

is not bounded by its constituents, and can be higher than all its constituents in the absence of

size and interface effects, in contrast to previous claim. Conditions on constituent phases for en-

hanced conversion efficiency in layered composites are also identified, and the upper bound on their

conversion efficiency is established. This points to a new route for high efficiency thermoelectric

materials.
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Thermoelectric materials have attracted significant interests in recent years due to their

capability to convert heat directly into electricity and vice versa1, which promises a wide

range of energy and environmental applications in waste heat recovery2,3, solid state cooling

and thermal management4, solar energy harvesting5, and carbon reduction6, among others.

In this letter, we examine whether the conversion efficiency of a thermoelectric composite is

bounded by its constituents in the absence of size and interfacial effects, motivated by the

reality that the wide spread applications of thermoelectric materials are largely hindered by

their relatively low efficiency7. It is well known that thermoelectric conversion is governed

by the figure of merit ZT of materials8,

ZT =
ε2σT

κ
, (1)

wherein high conversion efficiency requires not only high Seebeck coefficient ε, but also high

electric conductivity σ and low thermal conductivity κ. These competing requirements turn

out to be rather difficult to satisfy simultaneously in a single-phase thermoelectric since

all these properties are intimately connected to each other9,10, and much of the recent ad-

vances in thermoelectrics originates from nanostructured materials with prominent quantum

confinement effects or phonon scattering at interfaces.11–24.

While many properties of composite materials can be enhanced with respect to their con-

stituent phases as demonstrated by both theories and experiments25–27, it was suggested from

micromechanical analysis that the thermoelectric figure of merit of a composite is bounded

by its constituents in the absence of size and interfacial effects28,29. As a result, majority

of the efforts in thermoelectric composites focus on quantum confinement at nanoscale and

phonon scattering at interfaces30–33. The analysis, however, was based on a rather strong

assumption that both Tεσ and Tε2σ are constants independent of temperature T , which

is not realistic. In this work, we revisit the problem, and conclude that (1) thermoelectric

figure of merit ZT as we know it is ill-defined for composites, and is irrelevant for their

conversion efficiency; (2) thermoelectric conversion efficiency of a composite is not bounded

by its constituents, and can be higher than all its constituents; and (3) conditions on con-

stituent phases for enhanced conversion efficiency in layered composites are identified, and

the upper bound on their conversion efficiency is established. This thus points to a new route

for high efficiency thermoelectric materials that does not rely on either size or interfacial
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effects.

FIG. 1: Schematics of (a) a bilayered composite and (b) a fictitious thermoelectric module.

To this end, we analyze a bilayered composite consisting of two constituent phases, as

schematically shown in Fig. 1a. For each individual phase, the nonlinearly coupled transport

of electric current density J and heat flux JQ are governed by34

−J = σ∇ϕ+ σε∇T, (2)

JQ = −Tεσ∇ϕ− (Tε2σ + κ)∇T, (3)

wherein all the material coefficients are assumed to be independent of temperature as well as

boundary conditions for the time being, which can be relaxed later. Under such conditions,

the distributions of temperature and potential in the bilayered composite are both piece-wise

quadratic35,

Ti = − J2

2σiκi

x2 + aix+ bi, (4)

ϕi =
εiJ

2

2σiκi

x2 − (
J

σi

+ εiai)x+ ci, (5)

and the uniform current density can be derived as

J =
1

2Ω
{−[Φ + Γ(∆ϕ+ ε2Tc − ε1Th)]

+
√

[Φ + Γ(∆ϕ+ ε2Tc − ε1Th)]2 − 4Ω(Ψ∆T +Θ∆ϕ) }, (6)

where subscript i is used to indicate quantities for phase i, and relevant constants are listed

in the supplementary information. From the distributions of temperature and potential in

the bilayered composite, it is possible to define the effective thermoelectric coefficients using

a set of equivalency principle35. However, unlike a homogeneous material, these effective
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properties are not really material constants anymore as they depend on boundary condi-

tions, which is a well known issue for nonlinear composites25–27,36. Furthermore, in order

to define the three effective thermoelectric constants, two sets of thermoelectric boundary

conditions are necessary, which is impossible to match the working boundary conditions of

thermoelectric modules simultaneously. For example, by expanding current density J into

Taylor series of (ε2 − ε1), we can derive the effective electric conductivity of the bilayered

thermoelectric to the first order of (ε2 − ε1) as
35,

σ∗(∆ϕ) =
σ1σ2

σ1(1− f) + σ2f
− f(1− f)σ2

1σ
2
2∆ϕ(ε2 − ε1)

2[σ1(1− f) + σ2f ]2[κ1(1− f) + κ2f ]
, (7)

where f is the volume fraction, which clearly depends on the imposed potential difference

at boundaries. As such, the thermoelectric figure of merit ZT as we know it becomes ill-

defined for the composite, depending on the imposed potential difference or load resistance.

Thus we have to examine the thermoelectric conversion efficiency directly for a composite

material, rather than relying on the concept of thermoelectric figure of merit. This is the

first point we hope to make, which will be elaborated further later.

Another difficulty is that thermoelectric conversion efficiency is a performance measure

for devices instead of materials, depending on both legs of thermoelectric module. In order

to evaluate the thermoelectric conversion performance of a material, we propose a thermo-

electric module as schematically shown in Fig. 1b, with one leg made of material of interest,

and the other leg made of fictitious material with zero Seebeck coefficient and thermal con-

ductivity, yet infinite electric conductivity. As such, this fictitious leg only serves as a path

for electric current, and is not involved in energy conversion. The conversion efficiency of

this idealized thermoelectric module, as a result, measures only the performance of material

of interest. With this idealized model, the thermoelectric conversion efficiency H of the

material can be derived using standard procedure8,

H =
AJ2R

JU |x=0

, JU = −κ∇T + εTJ + ϕJ, (8)

with A being the cross-section area and the current density derived from
∮
∇ϕ ·dl = 0 across

the circuit. For a homogeneous material with optimal load resistance, this leads to classical
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formula relating conversion efficiency to ZT 8,

Hopt =
Th − Tc

Th

√
1 + Z Th+Tc

2
− 1√

1 + Z Th+Tc

2
+ Tc

Th

, (9)

but for composite materials, such simple relationship is no longer available, and we have to

evaluate Eq. (8) numerically in general.

FIG. 2: Conversion efficiency of the bilayered composite consisting of Bi2Te3 and an optimally

second phase for different temperatures; (a) enhanced conversion efficiency of the composite versus

the volume fraction of the second phase, normalized by the efficiency of the first phase; (b) the

effective figure of merit versus the volume fraction calculated from the effective thermoelectric

properties.

To examine if the composite can have higher conversion efficiency than both of its con-

stituent, we calculate efficiency of a bilayered composite consisting of Bi2Te3 and a second

phase optimally matched (in a sense to be elaborated later) with Bi2Te3 under different

temperatures, with Tc = 300K and Th chosen to be 800, 1000, 1200K, respectively. The

material constants used in the calculation are listed in the supplement information. The

results are illustrated as a function of volume fraction of the second phase in Fig. 2a, and

it is observed that higher efficiency than both constituents is indeed possible, in contrast to

previous claim. Furthermore, we evaluate the corresponding effective Z∗ with the effective

Seebeck coefficient and thermal conductivity calculated under open circuit condition and the

effective electric conductivity derived under optimal thermoelectric loading condition. As

evident in Fig. 2b, it shows no enhancement at all and there appears no correlation between

the effective Z∗ and the conversion efficiency of the composite, which further supports our

point that thermoelectric figure of merit ZT as we know it is irrelevant to their conversion

efficiency. Alternatively, we can define the effective thermoelectric properties using equiv-
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alency principle under optimal working condition in combination with the requirements of

Eqs. (1) and (9) instead, and these three conditions allow us to solve for three effective

thermoelectric constants simultaneously. Interestingly, this leads to two sets of effective

properties, as shown in Fig. 3 along with the effective Z∗ evaluated from Eq. (9). This

further demonstrates that the effective thermoelectric properties of composite is ill-defined,

and we have to examine the conversion efficiency directly.

FIG. 3: Two sets of effective thermoelectric properties corresponding to a given conversion effi-

ciency evaluated at Th = 800K, with the second phase optimally matched with Bi2Te3; (a) electric

conductivity; (b) Seebeck coefficient; (c) thermal conductivity; and (d) figure of merit.

In order to understand the enhanced conversion efficiency in bilayered composite, we

rewrite the conversion efficiency as

H =
ϕcJ

JU |x=0

=
ϕcJ

ThαJ − J2L
2σ

+ κ(Th−Tc)
L

(10)

for a homogeneous material, which can be optimized with respect to current density for

given temperatures,

Jopt =

√
2κσε(Th − Tc)

[
√
2κ+

√
2κ+ σε2(Th + Tc)]L

. (11)

Since current density is a constant in the layered composite, this points to a need for carefully

matching the optimal current density in constituent phases for the optimal overall conversion

efficiency. Indeed, we can compare the bilayered composite with its homogenous constituents

in Fig. 4a, all operating at optimal conditions for respective overall conversion efficiency.

The temperature at the interface of the bilayer is labeled as Tm, which is also identified

in its homogeneous constituents. It is evident that the bilayered composite can have its

constituent phases matched for identical optimal current density by tailoring the material

properties, which is impossible for homogeneous materials to do. This is clearly illustrated
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in Fig. 4b, where it is observed that the optimal current density for the bilayered composite

between Th and Tc is identical to that for its constituent phases between Th and Tm as well

as between Tm and Tc. For homogeneous material, on the other hand, the optimal current

density for the overall structure between Th and Tc is different from that for individual

segments between Th and Tm or between Tm and Tc. In other words, both segments of

bilayered composite operate at optimal condition, while those of homogeneous materials

operate under less optimal ones. This explains higher conversion efficiency in optimally

matched bilayered composite, which can be rigorously proven, as shown in the supplement

information.

FIG. 4: Understanding enhanced efficiency in layered composites; (a) schematics for bilayered

composite and its homogeneous contituent phases; (b) optimal current density for each segment

under respective temperature difference; and (c) upper bound on the conversion efficiency in term

of figure of merit ZT , compared with classical formula, evaluated at Tc = 300K and Th = 1200K.

The analysis on bilayered composite points to a direction for optimal conversion efficiency

of thermoelectric module, wherein the optimal current density is matched everywhere, re-

sulting in highest conversion efficiency possible. To this end, we reorganize Eq. (11) by

replace L with dx, leading to a point-wise optimal current density of

Jopt = −κ∇T

√
1 + ZT − 1

εT
, (12)

which corresponds to maximum local conversion efficiency of

dHmax =

√
1 + ZT − 1√
1 + ZT + 1

dT

T
. (13)

This is equivalent to the concept of compatibility factor37. When the optimality is realized

7



everywhere, maximum overall efficiency is realized as

Hmax = 1− exp(−
∫ Th

Tc

√
1 + ZT − 1√
1 + ZT + 1

dT

T
)

= 1− exp(
2√

1 + ZTc + 1
− 2√

1 + ZTh + 1
+ 2ln

√
1 + ZTc + 1√
1 + ZTh + 1

), (14)

where we have taken Z to be a constant for simpler derivation. This is in fact the upper

bound on the conversion efficiency for the layered composite consisting of materials with

constant Z, and its comparison with classical conversion efficiency of a homogeneous material

with identical Z and boundary condition is shown in Fig. 4c, where a small yet definite

enhancement is evident.

Finally, we point out that our analysis is related to functionally graded thermoelectrics,

where it was suggested that the device thermoelectric figure merit can be higher than that

of materials38,39, for which the maximum thermoelectric performance for constant Z or ZT

was also discussed40–42. Our point, however, is that thermoelectric figure of merit ZT is ill-

defined for composites, and is irrelevant for their conversion efficiency, which was not noted

before. Furthermore, it is shown that thermoelectric conversion efficiency of a composite

is not bounded by its constituents, with the conditions on constituent phases for enhanced

conversion efficiency in layered composites identified, and the upper bound on their con-

version efficiency established. In this spirit, we note that Bergman and Levy’s analysis28

was based on local constant ZT in a heterogeneous material that linearizes the transport

equation, from which it was concluded that the composite ZT is bounded by that of its

constituents. Such local ZT , however, is not relevant for the overall conversion efficiency

of thermoelectric composite, since the conversion efficiency of the composite is not bounded

by that of its constituents as we demonstrated. This thus points to a new route for high

efficiency thermoelectric materials that does not rely on either size or interfacial effects.
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