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Abstract

Recent experiments showed that the Lode parameter, which distinguishes between axisymmetric and shear

dominated stress states, has a profound effect on material ductility, especially at low stress triaxiality (Bao

and Wierzbicki, 2004; Barsoum and Faleskog, 2007a). Consequently, the theoretical framework for void

growth and coalescence is currently being revisited, which often involves performing representative volume

element (RVE) calculations. The present study investigates an RVE composed of a cubic unit cell contain-

ing a spherical void at its center. The void cell is subjected to a triaxial stress state with Σ11/Σ22 = ρ11,

Σ33/Σ22 = ρ33, plus an additional shear stress component Σ12/Σ22 = ρ12. In the coordinate axes aligned

with the edges of the cubic void cell, xi (i = 1, 2, 3), the non-dimensional stress ratios ρ11, ρ33, and ρ12 can

be fully characterized by 3 parameters: the stress triaxiality, T , Lode parameter, L, and shear ratio, S. The

aim of this paper is to provide an effective method to keep T , L, and S values constant in the entire course

of the loading. The effectiveness of the proposed method is validated through several examples covering a

wide range of T , L, and S values; the calculations are performed by using the general purpose finite element

software ABAQUS.
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1. Introduction

Finite element (FE) calculations performed on representative volume elements (RVE’s) for ideal materials

containing periodically distributed voids have been widely used to investigate the growth and coalescence of

voids since the seminal works of Needleman and his co-authors (Koplik and Needleman, 1988; Needleman,

1972). Owing to the periodic distribution of voids, the RVE’s for such materials correspond to unit cells

containing a void at the center, referred to as void cells in the following. Among many others, Barsoum

and Faleskog (2007b, 2011); Benzerga et al. (2012); Keralavarma et al. (2011); Leblond and Mottet (2008);

∗Corresponding author. Tel.:+90 312 292 42 29 ; fax:+90 312 292 40 91.
Email address: cihantekoglu@etu.edu.tr; C.Tekoglu@gmail.com (C. Tekog̃lu)

Preprint submitted to Elsevier August 18, 2014



Lecarme et al. (2011); Nielsen and Tvergaard (2011); Scheyvaerts et al. (2011); Srivastava and Needleman

(2013); Tekog̃lu et al. (2012); Tvergaard and Nielsen (2010); Yerra et al. (2010) exemplify void cell cal-

culations performed in recent years in order to shed light on different aspects of microscopic mechanisms

inherent in the growth and coalescence of voids.

For an RVE subjected to a general stress state with mesoscopic stresses Σ11/Σ22 = ρ11, Σ33/Σ22 = ρ33,

and Σ12/Σ22 = ρ12, the stress ratios ρ11, ρ33, and ρ12 can be described by 3 parameters, namely, the stress

triaxiality, T , Lode parameter, L, and shear ratio, S, in the coordinate axes aligned with the edges of the

RVE, see Section 2. Most of the studies on ductile fracture in the literature focus only on the effect of T

on ductility, while taking L = −1 and S = 0, i.e., uniaxial tension plus a hydrostatic stress state (Benzerga

and Leblond, 2010; Pardoen et al., 2010; Pineau and Pardoen, 2007; Tvergaard, 1990). Different strategies

on how to keep T constant for L = −1 and S = 0 are discussed by Lin et al. (2006), on circular cylindri-

cal RVE’s that allow using two-dimensional (2D) axisymmetric FE meshes. Recent experiments, however,

showed that the Lode parameter has a pronounced effect on material ductility, especially at low stress triaxi-

ality (Bao and Wierzbicki, 2004; Barsoum and Faleskog, 2007a). In the literature, there exists several studies

systematically investigating the effects of both T and L (e.g. Barsoum and Faleskog, 2007b, 2011; Gao and

Kim, 2006; Zhang et al., 2001), and T and S (e.g. Leblond and Mottet, 2008; Nielsen and Tvergaard, 2011;

Scheyvaerts et al., 2011; Tekog̃lu et al., 2012), on ductility. However, to the best knowledge of the author of

this article, the effects of T , L and S have not yet been simultaneously investigated. More importantly, what

is missing in the literature is an easy to implement and computationally efficient method that can be used

for performing void cell calculations under constant T , L and S ratios, which this paper is aiming to provide.

The paper is organized as follows. Section 2 presents 3 variants of the proposed method, each being the

most effective one for a different range of stress states. The method is validated trough several void cell

calculations in Section 3. Section 4 discusses the capabilities of the method, and Section 5 highlights the

main conclusions of this study.

2. Method

Figs. A-1 and B-1 show the void cell investigated in this study: a cubic unit cell containing a spherical

void at its center. In the undeformed (initial) configuration, the edges of the void cell are aligned along the

coordinate axes xi (i = 1, 2, 3), and the initial edge lengths of the void cell are 2L10 = 2L20 = 2L30. The

initial volume fraction of the spherical void with radius R0 is therefore given by f0 = (πR3

0
)/(6L10L20L30).

The void cell is subjected to a triaxial stress state with Σ11/Σ22 = ρ11, Σ33/Σ22 = ρ33, plus an additional

shear stress component Σ12/Σ22 = ρ12. It is worth noting that Σ12 6= 0 prohibits the use of 2D axisymmetric
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meshes. The corresponding principal stresses read

ΣI =
Σ11 +Σ22

2
+

√

√

√

√

(

Σ11 − Σ22

2

)2

+Σ2

12
,

ΣII = Σ33,

ΣIII =
Σ11 +Σ22

2
−

√

√

√

√

(

Σ11 − Σ22

2

)2

+Σ2

12
, (1)

with ΣI ≥ ΣII ≥ ΣIII. As mentioned earlier, with respect to the coordinate axes aligned with the edges of

the void cell, this stress state can be characterized by three non-dimensional parameters, namely, the stress

triaxiality T , the Lode parameter L, and the shear ratio S, defined as

T =
Σh

3 Σeq

,

L =
2 ΣII − ΣI − ΣIII

ΣI − ΣIII

,

S =

√
3 | Σ12 |
Σeq

,

Σh = Σ11 +Σ22 +Σ33,

Σeq =
1√
2

√

(

Σ11 − Σ22

)2

+
(

Σ11 − Σ33

)2

+
(

Σ22 − Σ33

)2

+ 6 Σ2

12
, (2)

where Σh and Σeq are respectively the hydrostatic and Von Mises equivalent stresses. Expressed in terms of

the stress ratios ρ11, ρ33, and ρ12, the non-dimensional parameters read

T =

√
2
(

1 + ρ11 + ρ33

)

signum

(

Σ22

)

3

√

(

1− ρ11

)2

+
(

1− ρ33

)2

+
(

ρ11 − ρ33

)2

+ 6 ρ2
12

,

L = −

(

1 + ρ11 − 2 ρ33

)

signum

(

Σ22

)

√

(

1− ρ11

)2

+ 4 ρ2
12

, | L |≤ 1

S =

√
6 | ρ12 |

√

(

1− ρ11

)2

+
(

1− ρ33

)2

+
(

ρ11 − ρ33

)2

+ 6 ρ2
12

0 ≤ S ≤ 1. (3)

It is worth emphasizing that there is no unique way for choosing non-dimensional parameters to express a

stress state; other equally valid expressions can also be constructed. T , L, and S, in the form presented in

Eqs. (3), are those most often encountered in the literature.

T , L and S values are kept constant by keeping the non-dimensional stress ratios ρ11, ρ33, and ρ12 constant.

Depending on the values of the stress ratios, the same method can be presented in 3 different forms, each

being the most effective one for a different range of ρ11, ρ33, ρ12 combinations. The boundary conditions for
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all 3 formulations are given in Appendices A and B.

The void cell is meshed by using 8-node linear brick elements (C3D8 elements of the ABAQUS element

library, see ABAQUS (2012)). The fundamental theorem of homogenization states that the mesoscopic

stress components Σij of an RVE are related to the microscopic Cauchy stresses σij (i, j = 1, 2, 3) through

Σij =
1

V

∫

V

σij dV, (4)

with V being the volume of the RVE, see H. J., Böhm (2012) and references therein. Σij for the void cell can

therefore be calculated by looping over all the elements: Σij =
∑N

e=1

(

∑p

q=1
σ
{q}
ij v{q}

){e}

/V , where N is

the total number of elements, p is the number of integration points in an element (p = 8 for C3D8 elements),

σij and v are, respectively, the local stress and local volume values at the corresponding integration point.

The mesoscopic strains, Eii, are given by Eii = ln(Li/Li0), where Li and Li0 are, respectively, the initial

and current half edge lengths of the unit cell.

2.1. CASE I: ρ12 = 0

ρ12 = 0 corresponds to zero shear stress, i.e. S = 0. In this case, it is enough to mesh only 1/8 of the void

cell as shown in Fig. A-1. In the course of deformation, all the edges of the void cell remain straight and

aligned with the coordinate axes xi; i.e. the outer surfaces remain plane as in the undeformed configuration.

Symmetry boundary conditions are applied to the bottom, back and middle surfaces, see Appendix A. In

order to impose the boundary conditions on the remaining surfaces, a dummy node, M1, which is not a part

of the mesh for the void cell, is created. The displacements of the nodes located at the right, top and front

surfaces are coupled to (i.e. forced to have the same values as) the corresponding displacements of node M1:

u1 for the right surface is coupled to u
M1
1
, u2 for the top surface to u

M1
2
, and u3 for the front surface to u

M1
3
.

By this way, a concentrated (point) force applied to node M1 is fully transmitted to the unit cell.

For an RVE in equilibrium under the absence of body forces, the mesoscopic stresses Σij can be expressed

in terms of surface tractions, ti, as

Σij =
1

V

∫

S

xitj dS (5)

where S and x denote respectively the surface of the RVE and the position vectors of material particles on

the surface (see Lin et al. (2006) and references therein). Elaborating on Eq. (5), it is possible to express

the mesoscopic stresses acting on the void cell as

Σ11 =
F1

AR
, AR =

(

L20 + uM1
2

)(

L30 + uM1
3

)

,

Σ22 =
F2

AT
, AT =

(

L10 + uM1
1

)(

L30 + uM1
3

)

,
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Σ33 =
F3

AB
, AB =

(

L10 + uM1
1

)(

L20 + uM1
2

)

, (6)

where Fi denote the resultant of all tractions ti on the corresponding surfaces; AR, AT , and AB respectively

the current areas of the right, top and back surfaces, and Li0 the initial half edge lengths of the void cell.

In order to apply the forces Fi to the void cell, 3 additional dummy nodes, Ni, are created and connected to

node M1 via spring elements (CONN2D2 elements of the ABAQUS element library, see ABAQUS (2012)),

as shown in Fig. A-1. Now, the concentrated forces Fi read

F1 = k
(

uN1
1

− uM1
1

)

, F2 = k
(

uN2
2

− uM1
2

)

, F3 = k
(

uN3
3

− uM1
3

)

, (7)

with k being the spring constant. So as to keep the stress triaxiality T and the Lode parameter L constant,

the following 2 equations need to be satisfied at each strain increment

ρ11 =
Σ11

Σ22

= const ⇒
(

uN1
1

− uM1
1

)

− ρ11
AR

AT

(

uN2
2

− uM1
2

)

= 0,

ρ33 =
Σ33

Σ22

= const ⇒
(

uN3
3

− uM1
3

)

− ρ33
AB

AT

(

uN2
2

− uM1
2

)

= 0. (8)

Eqs. (8) contain 5 unknowns, uN1
1
, uN3

3
, uM1

1
, uM1

2
, and uM1

3
, while uN2

2
is a prescribed quantity. The multi-point

constraints given in Eqs. (8) are introduced to ABAQUS by a user defined subroutine (see the MPC sub-

routine in (ABAQUS, 2012)). At each strain increment, ABAQUS prescribes the value of uN2
2

and calculates

the 5 unknowns of Eqs. (8) iteratively. The calculation ends when uN2
2

reaches the value u
N2−max

2
, which is

the user prescribed boundary condition for uN2
2
.

Each term in Eqs. (8) represents the current value of the corresponding quantity; thus, the obtained T and

L values are very accurate. Moreover, as the spring constant k does not enter in Eqs. (8), the results are

independent of the value of k. However, both k and uN2−max
2

indirectly affect the calculations through the

”increment size”, as discussed in detail in Section 4.

2.2. CASE II: 0 < ρ12 < 1, | ρ11 | < 1, | ρ33 | < 1

In this case, besides the 3 forces given in Eqs. (7), a shear force denoted as F12 also acts on the void cell.

In order to apply F12, 2 additional dummy nodes, M2 and N4, are created and connected to each other via

a spring element (CONN2D2 elements of the ABAQUS element library, see ABAQUS (2012)), as shown in

Fig. B-1. These 4 concentrated forces associated with 4 springs are transmitted to the void cell by coupling

the displacements of the nodes located at the outer surfaces to the corresponding displacements of nodes

M1 and M2: u1 for the right surface is coupled to u
M1
1
, u1 for the left surface is coupled to −u

M1
1
, u1 for the

top surface to u
M2
1
, u2 for the top surface to u

M1
2
, and u3 for the front surface to u

M1
3
. The details of the

boundary conditions are given in Appendix B. Assuming that F12 causes only shear stress in the void cell,
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the mesoscopic stresses read

Σ11 =
F1

2AR
, Σ22 =

F2

AT
, Σ33 =

F3

AB
, Σ12 =

F12

AT
=

k
(

uN4
1

− uM2
1

)

AT
, (9)

where Fi are exactly as given in Eqs. (7)1. Then, the equations that need to be satisfied to keep the stress

triaxiality T , Lode parameter L, and shear ratio S constant, take the form

ρ11 =
Σ11

Σ22

= const ⇒
(

uN1
1

− uM1
1

)

− ρ11
2AR

AT

(

uN2
2

− uM1
2

)

= 0,

ρ33 =
Σ33

Σ22

= const ⇒
(

uN3
3

− uM1
3

)

− ρ33
AB

AT

(

uN2
2

− uM1
2

)

= 0,

ρ12 =
Σ12

Σ22

= const ⇒
(

uN4
1

− uM2
1

)

− ρ12

(

uN2
2

− uM1
2

)

= 0. (10)

Note however that, if the edges of the void cell do not remain straight and parallel to the coordinate axes,

F12 does not only cause shear stress but also contributes to the normal stress Σ11. Therefore, Eqs. (10)

provide acceptable accuracy only if the shear strain of the void cell is relatively small. This is obviously a

severe limitation that needs to be resolved. The exact values of the stress ratios at the current increment

”d” can be expressed as

Σd
11

Σd
22

= Qd
0

F d
1

2AR−d

AT−d

F d
2

= Qd
0

AT−d

2AR−d

F d
1

F d
2

= QdF
d
1

F d
2

,

Σd
33

Σd
22

= Rd
0

F d
3

AB−d

AT−d

F d
2

= Rd
0

AT−d

AB−d

F d
3

F d
2

= RdF
d
3

F d
2

,

Σd
12

Σd
22

=
F d
12

F d
2

, (11)

where Qd and Rd are two constants that take different values at each increment. It is not possible, however,

to determine Qd and Rd before actually performing the calculation for increment d. Yet, ensuring that the

increment size is ”small enough” (see Section 4 for a discussion on the increment size), Qd-1 and Rd-1 —

obtained in the previous increment — can be employed for the current increment d. Now, Eqs. (10) can be

written as

ρ11 =
Σ11

Σ22

= const ⇒
(

uN1
1

− uM1
1

)

− ρ11
Qd-1

(

uN2
2

− uM1
2

)

= 0, Qd-1 =
Σd-1

11

Σd-1
22

F d-1
2

F d-1
1

,

ρ33 =
Σ33

Σ22

= const ⇒
(

uN3
3

− uM1
3

)

− ρ33
Rd-1

(

uN2
2

− uM1
2

)

= 0, Rd-1 =
Σd-1

33

Σd-1
22

F d-1
2

F d-1
3

,

ρ12 =
Σ12

Σ22

= const ⇒
(

uN4
1

− uM2
1

)

− ρ12

(

uN2
2

− uM1
2

)

= 0. (12)

Eqs. (12) contain 7 unknowns, uN1
1
, uN3

3
, uN4

1
, uM1

1
, uM1

2
, uM1

3
, and uM2

1
, while uN2

2
is a prescribed quantity.

The multi-point constraints given in Eqs. (12) are introduced to ABAQUS by a user defined subroutine

1Unlike in Eqs. (6), in Eqs. (9), Σ11 =
F1

2AR
because the force F1 acts on both the right and left surfaces of the void cell,

and AL = AR; see Appendix B.
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(see the MPC subroutine in (ABAQUS, 2012)). At each strain increment, ABAQUS prescribes the value of

uN2
2

and calculates the 7 unknowns of Eqs. (12) iteratively. The calculation ends when uN2
2

reaches the value

u
N2−max

2
, which is the user prescribed boundary condition for uN2

2
. The force ratios F d-1

2 /F d-1
1 and F d-1

2 /F d-1
3

encountered, respectively, in the expressions for Qd-1 and Rd-1 are calculated simply by using Eqs. (7) with

the displacements calculated in the previous increment, d-1. The mesoscopic stresses in the void cell can be

calculated by looping over all the elements as explained in the text below Eq. (4). Hence, the stress ratios

that enter into the definitions of Qd-1 and Rd-1 are given as

Σd-1
11

Σd-1
22

=

∑N
e=1

(

∑p
q=1

σ
{q}
11

v{q}
){e}

∑N
e=1

(

∑p
q=1

σ
{q}
22

v{q}
){e}

∣

∣

∣

∣

∣

∣

∣

d-1

,

Σd-1
33

Σd-1
22

=

∑N

e=1

(

∑p

q=1
σ
{q}
33

v{q}
){e}

∑N

e=1

(

∑p

q=1
σ
{q}
22

v{q}
){e}

∣

∣

∣

∣

∣

∣

∣

d-1

. (13)

In order to perform the summations in Eqs. (13), an ABAQUS user subroutine that can access the results file

during an analysis is written (see the URDFL subroutine in ABAQUS (2012)). For the very first increment

of a calculation, i.e. for d = 1

d = 1 ⇒ Qd−1 = Q0 =
AT−0

2AR−0
=

L10

L20

, Rd−1 = R0 =
AT−0

AB−0
=

L30

L20

. (14)

The smaller the increment size the more accurate the results obtained by using Eqs. (12) to (14). The

examples solved in Section 3 for a variety of T , L, and S values show that accurate results are obtained in

moderate computation times.

2.3. CASE III: 0 < ρ12 < 1, | ρ11 | > 1, | ρ33 | > 1

In this case, uN2
2

cannot be chosen as the prescribed quantity because it does not increase monotonically.

Instead, uN4
1

should be prescribed. This leads to the following modifications in Eqs. (12)

ρ11
ρ12

=
Σ11

Σ12

= const ⇒
(

uN1
1

− uM1
1

)

− ρ11
ρ12Qd-1

(

uN4
1

− uM2
1

)

= 0, Qd-1 =
Σd-1

11

Σd-1
12

F d-1
12

F d-1
1

,

ρ33
ρ12

=
Σ33

Σ12

= const ⇒
(

uN3
3

− uM1
3

)

− ρ33
ρ12Rd-1

(

uN4
1

− uM2
1

)

= 0, Rd-1 =
Σd-1

33

Σd-1
12

F d-1
12

F d-1
3

,

1

ρ12
=

Σ22

Σ12

= const ⇒
(

uN2
2

− uM1
2

)

− 1

ρ12

(

uN4
1

− uM2
1

)

= 0. (15)

The force ratios F d-1
12

/F d-1
1

and F d-1
12

/F d-1
3

encountered, respectively, in the expressions for Qd-1 and Rd-1

are calculated simply by using Eqs. (7) with the displacements calculated in the previous increment, d-1.

Similar to Eqs. (13), the stress ratios are expressed as

Σd-1
11

Σd-1
12

=

∑N

e=1

(

∑p

q=1
σ
{q}
11

v{q}
){e}

∑N
e=1

(

∑p
q=1

σ
{q}
12

v{q}
){e}

∣

∣

∣

∣

∣

∣

∣

d-1

,
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Σd-1
33

Σd-1
12

=

∑N
e=1

(

∑p
q=1

σ
{q}
33

v{q}
){e}

∑N

e=1

(

∑p

q=1
σ
{q}
12

v{q}
){e}

∣

∣

∣

∣

∣

∣

∣

d-1

, (16)

Qd-1 and Rd-1 for the very first increment d=1 are given by Eqs. (14). The ABAQUS subroutines written

for CASE II (MPC and URDFIL, see Section2.3) can be used for CASE III as well after implementing the

modifications given in Eqs. (15) and (16). As in CASE II, accurate results are obtained for a variety of T ,

L, and S values in moderate computation times, see Section 3.

3. Results

The effectiveness of the proposed method is validated through several examples, each with a different T ,

L, and S combination. An initial porosity of f0 = 0.01 is used for all the examples. The matrix material

of the void cell obeys isotropic Hookean elasticity with Young’s modulus E and Poisson ratio ν, and the

plastic behavior of the matrix is modeled by the rate independent J2 flow theory. The true stress - true

strain behavior for the matrix material is taken to be

σ

σ0

=
Eε

σ0

when σ < σ0,

σ

σ0

=

(

1 +
Eεpeq
σ0

)n

when σ ≥ σ0, (17)

where σ0 is the initial yield stress, εpeq the equivalent plastic strain, and n the strain hardening exponent.

The material properties and the initial porosity has no influence on the effectiveness of the proposed method.

Therefore, E/σ0 = 300 and ν = 0.3, which are close approximations for a wide range of metallic alloys, are

used in this study.

It is worth noting that T and L both depend on the sign of the mesoscopic stress Σ22, see Eqs. (3). Without

loss of generality, Σ22 is taken to be larger than zero in all the calculations. However, both positive and

negative values of T and L are tested, which, in the end, corresponds to altering the sign of Σ22. All the

calculations are performed on an ”HP Z420” workstation, on 4 central processing units in parallel (cpus=4

in the terminology of ABAQUS, see ABAQUS (2012)).

3.1. CASE I: ρ12 = 0

For ρ12 = 0; T , L, and S reduce to

T =

√
2
(

1 + ρ11 + ρ33

)

3

√

(

1− ρ11

)2

+
(

1− ρ33

)2

+
(

ρ11 − ρ33

)2

,
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L T ρ11 ρ33 CPU Time (s)

-1
1 + 2ρ11
3(1− ρ11)

3T − 1

3T + 2
ρ11 -

-1 -1 4 4 936.5

-1 0.35 0.0164 0.0164 298.5

-1 1 0.40 0.40 515.6

-1 2 0.625 0.625 380.3

0
1 + ρ11√
3(1− ρ11)

√
3T − 1√
3T + 1

1 + ρ11
2

-

0 1 0.2680 0.6340 757.5

1
2 + ρ11

3(1− ρ11)

3T − 2

3T + 1
1 -

1 1 0.25 1 1045.7

Table 1: Values of the non-dimensional parameters used for CASE I (ρ12 = 0). The first line for each different L value shows

the remaining parameters in a general form, while the following lines show the corresponding values used in the calculations.

The last column entitled ”CPU Time” presents the total CPU time in seconds measured by ABAQUS.

L = −

(

1 + ρ11 − 2 ρ33

)

(

1− ρ11

) ,

S = 0, (18)

with Σ22 > 0 and ρ11 6= 1. Table 1 shows the values of the non-dimensional parameters used in the calcu-

lations and the corresponding computation time for each case: for the longest calculation, with L = T = 1,

the total CPU time (for 4 CPU’s) is less than 18 minutes.
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Figure 1: Evolution of: (a) the equivalent stress, Σeq , with the equivalent strain, Eeq, (b) the mesoscopic strain E11 with E22,

and (c) E33 with E22, for the FE calculations introduced in Table 1. The cross signs on curves show the onset of a uniaxial

straining mode (with strain rates Ė22 6= 0; Ė11 = Ė33 = 0), after which the plastic flow localizes into the ligaments connecting

radially adjacent voids, while the regions off the ligaments unload elastically.

For L = T = −1, uN2
2

does not increase monotonically; therefore, either uN1
1

or uN3
3

should be used as the

prescribed displacement. Employing uN1
1

leads to the following modifications in Eqs. (8)

1

ρ11
=

Σ22

Σ11

= const ⇒
(

uN2
2

− uM1
2

)

− 1

ρ11

AT

AR

(

uN1
1

− uM1
1

)

= 0,

ρ33
ρ11

=
Σ33

Σ11

= const ⇒
(

uN3
3

− uM1
3

)

− ρ33
ρ11

AB

AR

(

uN1
1

− uM1
1

)

= 0, (19)

where all the remaining quantities are as given in Section 2.1.

Fig. 1(a) plots the equivalent stress, Σeq, versus the equivalent strain, Eeq, for the calculations introduced

in Table 1. The cross signs on the stress-strain curves show the onset of a uniaxial straining mode (with

strain rates Ė22 6= 0; Ė11 = Ė33 = 0, see Figs. 1(b) and 1(c)), after which the plastic flow localizes into the

ligaments connecting radially adjacent voids, and the regions off the ligaments unload elastically. The onset
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of the uniaxial straining mode is a well defined indicator for the onset of void coalescence, and has been

widely used in the literature. For L = −1, T = 0.35 no void coalescence is observed (see also Pardoen and

Hutchinson (2000)), and for L = −1, 1, T = −1, 1, no uniaxial straining mode is observed.

Figs. 2(a) and 2(b) show, respectively, the variation of the percent error in ρ11 and ρ33 with Eeq. The error

is calculated by comparing the prescribed ρ11 and ρ33 ratios with the corresponding values obtained by the

FE calculations: 100× (ρii − ρFE
ii )/ρii, i = 1, 3, no summation on i. For all the cases the error is less than

0.04%, and the maximum error occurs for L = −1, T = 0.35. In Fig. 2 each strain increment is denoted by

a cross sign for L = −1, T = 0.35. Note that it is possible to obtain more accurate results by decreasing

the strain increment size, at the expense of the computation time; see Section 4.

Fig. 3 shows the deformed meshes for the void cells at the onset of the uniaxial straining mode, or, for those

cases where a uniaxial straining mode is not observed (L = −1, 1, T = −1, 1), at the final increment of the

calculation. Although a uniaxial straining mode is not observed for L = −1, 1, T = −1, 1, void sizes and

shapes in Figs. 3(c) and 3(d) indicate that void coalescence has already initiated for both cases. That is, if

it takes place, the onset of the uniaxial straining mode coincides with the onset of void coalescence. How-

ever, depending on T , L, and S values, void coalescence can start with no indication of a uniaxial straining

mode. For cases with no uniaxial straining mode, other methods should be used to detect the onset of void

coalescence (see e.g. Barsoum and Faleskog (2011)), which is out of scope of the present study.
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Figure 2: Variation of the percent error in the stress ratios (a) ρ11, and (b) ρ33 with the equivalent strain Eeq, for the FE

calculations introduced in Table 1. The cross signs on the curve for L = −1, T = 0.35 indicate the strain increments.
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Figure 3: Distribution of the equivalent plastic strain, PEEQ, at the onset of void coalescence for (a) L = 0, T = 1, (b)

L = −1, T = 1, and at the final increment of the calculation for (c) L = 1, T = 1, and (d) L = −1, T = −1. For all the

calculations, S = 0. Note that only 1/8 of the void cell is meshed for the calculations; the contour plots shown here are obtained

by taking the mirror images of the original meshes with respect to the symmetry planes.

3.2. CASE II and CASE III

L T S ρ11 ρ33 ρ12 CPU Time (s)

-0.99 1 0.1225 0.4027 0.4027 0.0426 1586.3

-0.50 1 0.8321 0.5951 0.5951 0.3507 9825.6

0.00 1 1.0000 1.0000 1.0000 0.5774 1792.6

0.50 1 0.8321 1.8802 1.8802 0.7623 4918.5

0.99 1 0.1225 3.9333 3.9333 0.2090 6963.0

-0.447 1 0.8660 1.6000 1.0000 0.6000 2974.5

Table 2: Values of the non-dimensional parameters used for CASE II (the first two rows) and Case III. The last column entitled

”CPU Time” presents the total CPU time in seconds measured by ABAQUS. For the last calculation (the last row), all three

stress ratios, ρij , are different, while for the other calculations ρ11 = ρ33.
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Figure 4: Evolution of the (a) equivalent stress, Σeq , and the percent error in the stress ratios (b) ρ11, (c) ρ33, and (d) ρ12 with

the equivalent strain, Eeq , for the FE calculations introduced in Table 2. The maximum error occurs for L = 0.50, S = 0.8321,

in ρ11, with an absolute value less than 1%.

Table 2 shows the values of the non-dimensional parameters used in the calculations and the corresponding

computation time for each case: for the longest calculation, with L = −0.5, T = 1, S = 0.8321, the total

CPU time (for 4 CPU’s) is approximately 2 hours and 45 minutes.

For the first 5 calculations introduced in Table 2, where ρ11 = ρ33, T , L, and S reduce to

T =

(

1 + 2ρ11

)

signum

(

Σ22

)

3

√

(

1− ρ11

)2

+ 3ρ2
12

,

L = −

(

1− ρ11) signum
(

Σ22

)

√

(

1− ρ11

)2

+ 4 ρ2
12

,

13



S =

√
3 | ρ12 |

√

(

1− ρ11

)2

+ 3 ρ2
12

. (20)

The inverse relations for Eqs. (20) give the stress ratios as

ρ11 = ρ33 =
3T

√
3 + L2 + 2L

3T
√
3 + L2 − 4L

,

ρ12 =
3
√
1− L2

3T
√
3 + L2 − 4L

, (21)

which are valid for | L |≤ 1, Σ22 6= 0 and T 6= 4L/(3
√
3 + L2), see also Barsoum and Faleskog (2011). The

values of ρ11, ρ33, and ρ12 shown in Table 2 are chosen to cover a wide range of different possibilities, and

the stress triaxiality is taken to be equal to 1 for all the calculations. For the last calculation (the last row

of Table 2), all three stress ratios, ρij , are different, while for the other calculations ρ11 = ρ33.

Fig. 4(a) plots the equivalent stress, Σeq, versus the equivalent strain, Eeq, for the calculations introduced

in Table 2. Except for L = −0.99, S = 0.1225, and L = −0.50, S = 0.8321, no uniaxial straining mode is

observed. However, as can be seen from the deformed meshes of the void cells — at the final increment of the

calculation — shown in Fig. 5, all the calculations are continued well beyond the onset of void coalescence.

Figs. 4(b) to 4(d) show, respectively, the variation of the percent error in ρ11, ρ33, and ρ12 with Eeq. The

maximum error occurs for L = 0.50, S = 0.8321, in ρ11, with an absolute value less than 1%.

4. Discussion

In the proposed method, the loading imposed on the void cell is completely controlled by the displacements

of the dummy nodes M1 and M2; T , L, and S are only internal constraints that define the relative sizes of the

components uM1i and uM2i . The key idea in this method is that, as the displacements uM1i and uM2i are coupled to

(i.e. forced to have the same values as) the corresponding displacements of the surface nodes of the void cell,

the forces applied to M1 and M2 via spring elements (see Figs. A-1 and B-1) are balanced by the stresses that

develop in the void cell. Therefore, the stress ratios ρ11, ρ33, and ρ12 can be expressed in terms of the forces

applied to the unit cell, and in the end, these expressions reduce to equations in terms of displacements of

the dummy nodes, see Eqs. (8), (12), and (15). It is worth noting that the spring constant, k, disappears

from these final equations, i.e. the results are independent of the value of k. The increment size and the

convergence rate of the FE calculations, however, are affected by the value k for the reasons discussed below.

ABAQUS solves nonlinear equilibrium equations by using Newton’s method. The entire loading ”step”

is divided into a series of ”increments”, and equilibrium is iteratively satisfied within each increment,

see ABAQUS (2012). Although it is possible to define the increment size directly, the easiest and safest
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Figure 5: Distribution of the equivalent plastic strain, PEEQ, at the final increment of the calculation for (a) L = −0.99, S =

0.1225, (b) L = −0.50, S = 0.8321, (c) L = 0.00, S = 1.0000, (d) L = 0.50, S = 0.8321, (e) L = 0.99, S = 0.1225, (f)

L = −0.447, S = 0.886. For all the calculations T = 1; see Table 2 for the other parameters. Note that only 1/4 of the void cell

is meshed for the calculations; the contour plots shown here are obtained by taking the mirror images of the original meshes

with respect to the symmetry planes.

way is to use automatic incrementation, especially for highly non-linear calculations as discussed in this

paper. In automatic incrementation, the user defines 5 parameters: i-) the initial increment size, ii-) the

total step size, iii-) the minimum increment size allowed, iv-) the maximum increment size allowed, and

v-) the maximum number of increments allowed for the step. The calculation starts with the predefined

initial increment size, and if it does not lead to a converged result, it is replaced with a new value within
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the limits defined by the user. In the consecutive increments, the increment size is automatically altered by

ABAQUS several times by considering both computational efficiency and convergence. If, in an increment,

the convergence criteria cannot be satisfied after a number of trials, or if the maximum number of increments

allowed for the step is reached, ABAQUS stops the calculation. Both the convergence criteria and the num-

ber of trials before a calculation is stopped can be defined by the user, although the default values provided

by ABAQUS produce accurate results for a large range of problems (in this paper, the default values are

used). The only non-zero degree of freedom prescribed as a boundary condition in the proposed method

is uN2
2

= uN2−max
2

(or, uN1
1

= uN1−max
1

, or, uN4
1

= uN4−max
1

, depending on whether uN2
2

is a monotonically

increasing quantity, see Appendices A and B). For ABAQUS to be able to complete a calculation, i.e. for

reaching the condition uN2
2

= uN2−max
2

, the total step size — which scales with uN2−max
2

— divided by the

average increment size should be less than or equal to the maximum number of increments allowed for the

step. Now, if uN2−max
1

is taken to be a large value, the average increment size should also be large enough

to complete the calculation within the limit set for the maximum number of increments. Therefore, for the

same limit of the maximum number of increments allowed for a step, a larger uN2−max
2

value leads to a larger

increment size, which may lead to convergence problems. Similarly, employing larger k values leads to larger

increment sizes, and therefore to convergence problems: for a large k value, even a small increment in uN2
2

give rise to a large spring force, which, in turn, leads to large displacements imposed on the void cell in a

single increment. For all the calculations presented in this paper, k = 10−1 × EL0 is used, where E is the

Young’s modulus of the matrix material, and L0 the half of the initial edge length of the cubic void cell.

In order to obtain accurate results while keeping high computational efficiency, an optimum combination

of the 5 user defined parameters, convergence criteria, uN2−max
2

, and k values should be employed. Table 3

shows the parameters used for 3 of the calculations presented in Section 3.

ρ11 ρ33 ρ12
u
Nj−max

i

L0

CPU Time (s) IIS TSS MNIS MXIS MNI

0.2500 1 0 5 1045.7 10−1 1 10−15 1 100

0.5951 0.5951 0.3507 5 9825.6 10−1 1 10−15 1 300

3.9333 3.9333 0.2090 5 6963.0 10−4 1 10−15 10−4 650

Table 3: Values of the parameters used for 3 of the calculations presented in Section 3. CPU Time is the total CPU time in

seconds measured by ABAQUS, IIS the initial increment size, TSS the total step size, MNIS the minimum increment size

allowed, MXIS the maximum increment size allowed, and MNI the maximum number of increments allowed for the step. The

first, second, and third rows, respectively, correspond to longest calculation for CASE I, II and III. For the first and second

rows u
Nj−max

i ≡ u
N2−max
2

, and for the third row u
Nj−max

i ≡ u
N4−max
1

.
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The application of the proposed method on 2D axisymmetric void cells to keep the stress triaxiality T

constant for L = −1 and S = 0 is demonstrated by Lecarme et al. (2011). The proposed method can also be

used for different RVE’s, such as unit cells containing particles or both particles and voids, which are often

employed for modeling composite materials. If the unit cell contains only particles but no voids, an easier

and computationally more efficient method is to directly apply traction boundary conditions (see Section

3.3 in (Lin et al., 2006)). Note, however, that traction boundary conditions cannot be used in softening

regimes.

5. Conclusions

A method is proposed for performing RVE calculations under constant stress triaxiality, T , Lode parameter,

L, and shear ratio, S, which corresponds to keeping the stress ratios Σ11/Σ22 = ρ11, Σ33/Σ22 = ρ33, and

Σ12/Σ22 = ρ12 constant. Through FE calculations on void cells, it is shown that:

• The proposed method is able to produce accurate results while providing high computational efficiency.

For all different cases tested in this paper, the maximum error in the stress ratios is less than 1%, and

the total CPU time for the longest calculation is approximately 2 hours and 45 minutes (calculations

are performed on an ”HP Z420” workstation, on 4 central processing units in parallel).

• Depending on the requirements for the problem at hand, the accuracy and computation time can be

adjusted by changing the related parameters as explained in Section 4; more accuracy means more

computation time.

Acknowledgements

C. Tekog̃lu gratefully acknowledges the financial support provided by The Scientific and Technological

Research Council of Turkey, TÜBİTAK (Project No: 111M664).

APPENDIX A - Boundary Conditions for CASE I

Fig. A-1 shows the nomenclature used to define different surfaces of the void cell on which the boundary

conditions are applied.

Surface-Right

u1(L1, x2, x3) = uM1
1

Surface-Top

u2(x1, L2, x3) = uM1
2

17



Figure A-1: Finite element mesh for the 1/8 of the void cell with the nomenclature denoting different surfaces on which the

boundary conditions are applied. Although the coordinate axes are shown in front of the void cell for visibility, the origin of

the reference coordinate system actually corresponds to the point where Surface-Back, Surface-Middle, and Surface-Bottom

intersect. For the unit cell shown, the initial porosity is f0 = 0.01. Note that M1 is a dummy node; the displacements of the

nodes located at the right, top and front surfaces of the void cell are coupled to the corresponding displacements of node M1 so

that the concentrated (point) forces applied to node M1 by the springs are fully transmitted to the unit cell, see Section 2.1

Surface-Front

u3(x1, x2, L3) = uM1
3

Surface-Middle

u1(0, x2, x3) = 0

Surface-Bottom

u2(x1, 0, x3) = 0

Surface-Back

u3(x1, x2, 0) = 0

In addition to the above equations, if uN2
2

is a monotonically increasing quantity, uN2
2

= uN2−max
2

should

be prescribed as a boundary condition (see Eqs. (8)), otherwise uN1
1

= uN1−max
1

should be prescribed (see

Eqs. (19)).
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APPENDIX B - Boundary Conditions for CASES II and III

Figure B-1: Finite element mesh for the 1/4 of the void cell with the nomenclature denoting different surfaces and edges on

which the boundary conditions are applied. Although the coordinate axes are shown in front of the void cell for visibility, the

origin of the reference coordinate system actually corresponds to the point where Edge-Bottom-Middle intersects Surface-Back.

For the unit cell shown, the initial porosity is f0 = 0.01. Note that M1 and M2 are dummy nodes; the displacements of the nodes

located at the left, right, top and front surfaces of the void cell are coupled to the corresponding displacements of node M1 and

M2 so that the concentrated (point) forces applied to these dummy nodes by the springs are fully transmitted to the unit cell,

see Sections 2.2 and 2.3.

Fig. B-1 shows the nomenclature used to define different surfaces and edges of the void cell on which the

boundary conditions are applied.

Edge-Top-Middle

u1(0, L2, x3) = uM2
1

u2(0, L2, x3) = uM1
2

Surface-Top-Left/Surface-Top-Right

u1(−x1, L2, x3) + u1(x1, L2, x3) = 2uM2
1

u2(−x1, L2, x3) + u2(x1, L2, x3) = 2uM1
2
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u3(−x1, L2, x3)− u3(x1, L2, x3) = 0

Edge-Top-Left/Edge-Top-Right

u1(±L1, L2, x3) = uM2
1

± uM1
1

u2(±L1, L2, x3) = uM1
2

u3(−L1, L2, x3)− u3(L1, L2, x3) = 0

Surface-Left/Surface-Right

u1(−L1, x2, x3)− u1(L1, x2, x3) = −2uM1
1

u2(−L1, x2, x3)− u2(L1, x2, x3) = 0

u3(−L1, x2, x3)− u3(L1, x2, x3) = 0

Edge-Bottom-Left/Edge-Bottom-Right

u1(±L1, 0, x3) = ±uM1
1

u2(±L1, 0, x3) = 0

u3(−L1, 0, x3)− u3(L1, 0, x3) = 0

Edge-Bottom-Middle

u1(0, 0, x3) = 0

u2(0, 0, x3) = 0

Surface-Bottom-Left/Surface-Bottom-Right

u1(−x1, 0, x3) + u1(x1, 0, x3) = 0

u2(−x1, 0, x3) + u2(x1, 0, x3) = 0

u3(−x1, 0, x3)− u3(x1, 0, x3) = 0

Surface-Back

u3(x1, x2, 0) = 0

Surface-Front

u3(x1, x2, L3) = uM1
3

In addition to the above equations, if uN2
2

is a monotonically increasing quantity, uN2
2

= uN2−max
2

should be

prescribed as a boundary condition (see Eqs. (12), CASE II), otherwise uN4
1

= uN4−max
1

should be prescribed

(see Eqs. (15), CASE III).
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Figure captions and Tables

List of Figures

1 Evolution of: (a) the equivalent stress, Σeq, with the equivalent strain, Eeq , (b) the mesoscopic

strain E11 with E22, and (c) E33 with E22, for the FE calculations introduced in Table 1.

The cross signs on curves show the onset of a uniaxial straining mode (with strain rates

Ė22 6= 0; Ė11 = Ė33 = 0), after which the plastic flow localizes into the ligaments connecting

radially adjacent voids, while the regions off the ligaments unload elastically. . . . . . . . . . 10

2 Variation of the percent error in the stress ratios (a) ρ11, and (b) ρ33 with the equivalent

strain Eeq, for the FE calculations introduced in Table 1. The cross signs on the curve for

L = −1, T = 0.35 indicate the strain increments. . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Distribution of the equivalent plastic strain, PEEQ, at the onset of void coalescence for (a)

L = 0, T = 1, (b) L = −1, T = 1, and at the final increment of the calculation for (c)

L = 1, T = 1, and (d) L = −1, T = −1. For all the calculations, S = 0. Note that only 1/8

of the void cell is meshed for the calculations; the contour plots shown here are obtained by

taking the mirror images of the original meshes with respect to the symmetry planes. . . . . . 12

4 Evolution of the (a) equivalent stress, Σeq, and the percent error in the stress ratios (b) ρ11,

(c) ρ33, and (d) ρ12 with the equivalent strain, Eeq , for the FE calculations introduced in

Table 2. The maximum error occurs for L = 0.50, S = 0.8321, in ρ11, with an absolute value

less than 1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Distribution of the equivalent plastic strain, PEEQ, at the final increment of the calculation

for (a) L = −0.99, S = 0.1225, (b) L = −0.50, S = 0.8321, (c) L = 0.00, S = 1.0000, (d)

L = 0.50, S = 0.8321, (e) L = 0.99, S = 0.1225, (f) L = −0.447, S = 0.886. For all the

calculations T = 1; see Table 2 for the other parameters. Note that only 1/4 of the void cell is

meshed for the calculations; the contour plots shown here are obtained by taking the mirror

images of the original meshes with respect to the symmetry planes. . . . . . . . . . . . . . . . 15

A-1 Finite element mesh for the 1/8 of the void cell with the nomenclature denoting different

surfaces on which the boundary conditions are applied. Although the coordinate axes are

shown in front of the void cell for visibility, the origin of the reference coordinate system

actually corresponds to the point where Surface-Back, Surface-Middle, and Surface-Bottom

intersect. For the unit cell shown, the initial porosity is f0 = 0.01. Note that M1 is a dummy

node; the displacements of the nodes located at the right, top and front surfaces of the void cell

are coupled to the corresponding displacements of node M1 so that the concentrated (point)

forces applied to node M1 by the springs are fully transmitted to the unit cell, see Section 2.1 18
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B-1 Finite element mesh for the 1/4 of the void cell with the nomenclature denoting different

surfaces and edges on which the boundary conditions are applied. Although the coordinate

axes are shown in front of the void cell for visibility, the origin of the reference coordinate

system actually corresponds to the point where Edge-Bottom-Middle intersects Surface-Back.

For the unit cell shown, the initial porosity is f0 = 0.01. Note that M1 and M2 are dummy

nodes; the displacements of the nodes located at the left, right, top and front surfaces of

the void cell are coupled to the corresponding displacements of node M1 and M2 so that the

concentrated (point) forces applied to these dummy nodes by the springs are fully transmitted

to the unit cell, see Sections 2.2 and 2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

List of Tables

1 Values of the non-dimensional parameters used for CASE I (ρ12 = 0). The first line for each

different L value shows the remaining parameters in a general form, while the following lines

show the corresponding values used in the calculations. The last column entitled ”CPU Time”

presents the total CPU time in seconds measured by ABAQUS. . . . . . . . . . . . . . . . . . 9

2 Values of the non-dimensional parameters used for CASE II (the first two rows) and Case

III. The last column entitled ”CPU Time” presents the total CPU time in seconds measured

by ABAQUS. For the last calculation (the last row), all three stress ratios, ρij , are different,

while for the other calculations ρ11 = ρ33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Values of the parameters used for 3 of the calculations presented in Section 3. CPU Time is

the total CPU time in seconds measured by ABAQUS, IIS the initial increment size, TSS the

total step size, MNIS the minimum increment size allowed, MXIS the maximum increment

size allowed, and MNI the maximum number of increments allowed for the step. The first,

second, and third rows, respectively, correspond to longest calculation for CASE I, II and III.

For the first and second rows u
Nj−max

i ≡ uN2−max
2

, and for the third row u
Nj−max

i ≡ uN4−max
1

. 16
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