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Abstract 

 

As the most rigid cytoskeletal filaments, microtubules bear compressive forces in living cells, 

balancing the tensile forces within the cytoskeleton to maintain the cell shape.  It is often 

observed that, in living cells, microtubules under compression severely buckle into short 

wavelengths.  By contrast, when compressed, isolated microtubules in vitro buckle into single 

long-wavelength arcs.  The critical buckling force of the microtubules in vitro is two orders of 

magnitude lower than that of the microtubules in living cells. To explain this discrepancy, we 

describe a mechanics model of microtubule buckling in living cells.  The model investigates the 

effect of the surrounding filament network and the cytosol on the microtubule buckling.  The 

results show that, while the buckling wavelength is set by the interplay between the microtubules 

and the elastic surrounding filament network, the buckling growth rate is set by the viscous 

cytosol.  By considering the nonlinear deformation of the buckled microtubule, the buckling 

amplitude can be determined at the kinetically constrained equilibrium.  The model 

quantitatively correlates the microtubule bending rigidity, the surrounding filament network 

elasticity, and the cytosol viscosity with the buckling wavelength, the buckling growth rate, and 

the buckling amplitude of the microtubules.  Such results shed light on designing a unified 

experimental protocol to measure various critical mechanical properties of subcellular structures 

in living cells. 
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1. Introduction 

The mechanical properties of a cell are largely determined by its cytoskeleton (e.g., Hesketh 

and Prym, 1995; Howard, 2001; Boal, 2002), a self-organizing network of three primary protein 

filaments: microtubules, intermediate filaments, and actin filaments. Among the three types of 

cytoskeletal filaments, microtubules are the most rigid. The bending rigidity of microtubules is 

about 100 times that of intermediate and actin filaments (Gittes et al., 1993; Howard, 2001).
  
 

Microtubules are hollow cylindrical tubes that are made of α-β tubulin heterodimers assembled 

into protofilaments (e.g., Hesketh and Prym, 1995). The rigid microtubules in living cells bear 

compressive forces, balancing tensile forces carried by the compliant actin and intermediate 

filaments  forming a synergic “skeleton” to stabilize the cell shape (Wang et al., 1993; Ingber, 

1997; Maniotis et al., 1997; Stamenovic et al., 2002).   Such a concept is referred to as the 

“tensegrity” model, first introduced by Ingber in 1997.
 

A microtubule buckles when subjected to a sufficiently large axial compressive force.  The 

microtubule buckling has been observed in various types of living cells (Odde et al., 1999; 

Heidemann et al., 1999; Wang et al. 2001; Brangwynne et al., 2006), resulting from stimulated 

or spontaneous cell contraction, or constrained microtubule polymerization at the cell periphery.  

In some in vitro studies, the buckling has also been observed in microtubules encapsulated in 

vesicles (Elbaum et al., 1996;  Fygenson et al., 1997), or in isolated microtubules under axial 

compressive forces generated by the kinesin motors (Gittes et al., 1996) or by the external optical 

tweezers  (Kurachi et al., 1995; Kikumoto et al., 2006).    

The microtubule buckling behaviors in living cells and in vitro are substantially different.  

Although the persistence length of microtubules (1~6 mm) is tens of times larger than the typical 

size of a cell (Pampaloni et al., 2006), the microtubule buckling in living cells often occurs at 
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short wavelengths (e.g., several µm), suggesting that these microtubules bear large compressive 

forces (~100s pN) (Wang et al., 2001; Brangwynne et al., 2006). However, in vitro studies 

suggest that isolated microtubules buckle into single long arcs (analogous to the buckling of a 

straw in the air when both its ends are compressed). These microtubules in vitro are shown to 

bear exceedingly small compressive forces (~1 pN) (Volokh et al., 2000; Dogterom et al., 2005).  

The critical buckling force characterizes the capability of microtubules to stabilize the cell shape.  

The huge difference in the buckling wavelength as well as the critical buckling forces of the 

microtubules in living cells and those in vitro leaves the structural role of microtubules elusive.  

There have been numerous theoretical and experimental studies on the mechanics of 

microtubules recently, e.g., elastic buckling (Brodland and Gordon, 1990; Kurachi et al., 1995; 

Elbaum et al., 1996; Coughlin and Stamenovic, 1997; Wang et al., 2001; Wang et al., 2006; 

Brangwynne et al., 2006), morphological instability (Janson et al., 2003; Molodtsov et al., 2005; 

Grishchuk et al., 2005;), and free vibration (Sirenko et al., 1996; Portet et al., 2005).  While 

models at atomistic and molecular scales have shed important light on understanding the 

mechanical properties of detail microtubule nanostructure (Molodtsov et al. 2005; Tuszynski et 

al., 2005), continuum elastic beam models have been often used to study the deformation 

behavior of whole microtubules (Kurachi et al., 1995; Fygenson et al., 1997; Wang et al., 2006; 

Brangwynne et al., 2006). For example, Euler beam theory has been used to determine the 

microtubule critical buckling force.  Insights from the atomistic and molecular scale studies of 

microtubules have also been embedded into continuum models to reflect the nanostructure-

related mechanical properties, e.g., the elastic anisotropy (Tuszynski et al., 2005; Pampaloni et 

al., 2006). Some mechanics models on microtubule buckling consider free microtubules (e.g., 

Elbaum et al., 1996; Fygenson et al., 1997), without taking into account of the effect of the 
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surrounding cytoplasm.  As a result, such a free microtubule always buckles into a single long 

arc and the predicted critical buckling force is exceedingly small (~1 pN), suggesting an 

insignificant structural role of microtubules in living cells.  Brodland and Gordon (1990) first 

proposed a model of microtubule buckling constrained by the elastic intermediate filaments and 

showed that the reinforcing filaments prevent the long-wavelength buckling of microtubules.  

Their model was then extended using the post-buckling equilibrium theory to study the 

microtubule buckling in cultured smooth muscle cells (Stamenovic et al., 2002). This extended 

model predicted an average critical buckling force of microtubules of ~27 pN in those cells. A 

more recent study (Brangwynne et al., 2006) showed that the microtubules in living cells do bear 

large compressive forces (~100 pN) by buckling into short-wavelengths.  It is suggested that the 

short-wavelength buckling results from the mechanical coupling between the microtubules and 

the surrounding elastic filament network.  Such a model was further adopted to explain the short-

wavelength buckling of microtubule bundles driven by polymerization forces (Guo et al., 2007).   

In living cells, the rigid microtubules are surrounded not only by the soft elastic filament 

network, but also by the viscous cytosol.  The microtubule buckling causes not only the elastic 

deformation of the filament network, but also the viscous flow of the cytosol.  In turn, these two 

processes result in an external stress field that influences the microtubule buckling mode and 

kinetics.  For example, the microtubule buckling at long wavelength requires viscous mass 

transportation of the cytosol over long distance, which is unlikely to occur incipiently.  Above 

said, to understand the microtubule buckling behavior in living cells, it is essential to investigate 

the coupled effect of the elastic filament network and the viscous cytosol.   

To address the abovementioned controversy in the structural role of microtubules in living 

cells, this paper describes a mechanics model of microtubule buckling, considering the coupled 
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effect of the viscoelastic surrounding cytoplasm. The model quantitatively correlates the 

microtubule bending rigidity, the surrounding filament network elasticity, and the cytosol 

viscosity with the buckling wavelength, the buckling growth rate, and the buckling amplitude of 

the microtubules. Such quantitative results can be potentially used to design a unified 

experimental protocol to measure various critical subcellular mechanical properties in living 

cells. 

2. Mechanics model    

Consider an initially straight, elastic microtubule, subject to an axial compression f0, in a 

viscoelastic surrounding of elastic modulus of 
C

E  and viscosity of µ  (the combined effect of 

surrounding filament network and cytosol).  The microtubule is modeled as an infinitely long 

cylinder of radius
0

R , with a bending rigidity EI equivalent to that of the actual hollow 

microtubule.  The incipient microtubule buckling under the compression 
0

f  is introduced as a 

sinusoidal perturbation of the center line of the microtubule, of wavelength k/π2 and 

amplitude )sin()(),( kztwtzw =  (Fig. 1a).  We next determine the further growth of the incipient 

buckling by solving the elastic deformation of the microtubule and the surrounding filament 

network, as well as the resulting viscous flow of the cytosol.   The elastic deformation and the 

viscous flow are then coupled through the interface between the microtubule and the surrounding 

cytoplasm, where the displacements and the tractions are assumed to be continuous. 

2.1. Elastic deformation of the microtubule and the surrounding filament network 

Upon incipient buckling of the microtubule, the surrounding filament network is deformed.  

In turn, the elastic filament network exerts a distributed surface traction on the microtubule in the 

opposite direction of the incipient buckling.  The total resultant lateral surface traction on the 

microtubule can be determined by the Euler beam theory 
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where 
C

E7.2≈ζ  (Landau and Lifshitz, 1986; Bazant and Cedolin, 1991).  The three terms in Eq. 

(1) represent the contributions from the microtubule bending, the axial compression, and the 

elastic constraint from the surrounding filament network, respectively. Given 

that )sin()(),( kztwtzw = , we have 

 ).sin()()( 2

0

4
kztwkfEIkF

e
ζ+−−=  (2) 

Note that the surface traction 
e

F  on the microtubule is linearly proportional to the incipient 

buckling amplitude )(tw . 

2.2. Viscous flow of the cytosol 

The incipient buckling of the microtubule also results in the viscous flow of the cytosol.  The 

motion equation of such a viscous flow is 

 0, =jijσ , (3) 

where ijσ is the stress tensor of the cytosol.  The inertia term is neglected in Eq. (3) since the 

induced cytosol flow is assumed to be slow.  We assume a Newtonian deformation law of the 

viscous cytosol. Thus the stress components relates to the velocities by 

 
ijijjiij

pvv δµσ −+= )(
,,

,  (4) 

where vi are the velocity components,
ij

δ  is the Kronecker delta, and 
kk

p σ
3

1
−= .   

The continuity equation of the incompressible viscous flow is  

 0, =iiv .  (5)   

Assuming a no-slip condition at the interface between the microtubule and the cytoplasm, the 

velocities of the cytosol at the interface is given by  
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where 
0

v  is the velocity of the microtubule in the incipient buckling direction, and θ  is the 

azimuthal angle relative to the plane in which the incipient buckling occurs (Fig. 1b).  The 

induced viscous flow of the cytosol decays spatially away from the microtubule and vanishes at a 

certain distance 
1

R  from the center line of the microtubule (e.g., about the half spacing between 

adjacent microtubules), that is,  

 .0),(),(
11

== θθ θ RvRv
r

 (7) 

The above boundary value problem (i.e., Eqs. (3)-(7)) can be solved analytically to determine 

the stress field of the induced viscous flow in the cytosol (see Appendix for details).  By 

integrating the stress field along the microtubule/cytoplasm interface, the surface traction of the 

cytosol along the interface can be given by 

 )sin(
0

kzvF
v

πµχ= , (8) 

where
12ln)1(

10212ln)1(
424

424

−−+−

++−−
=

qqqq

qqqq
χ  and 

10
/ RRq = . 

Note the surface traction 
v

F  of the cytosol is linearly proportional to the velocity of the 

microtubule 
0

v in the incipient buckling direction. 

2.3. Coupled elastic deformation and viscous flow 

To couple the elastic deformation of the microtubule and the filament network with the 

viscous flow of the cytosol, we assume that the tractions and the displacements are continuous 

across the interface, that is, 
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Substituting Eqs. (2) and (8) into Eq. (9), we have 

 )(
)(

tw
dt

tdw
α= ,  (10) 

where  

 
πµχ

ζ
α

+−
−=

2

0

4 kfEIk
. (11)   

The solution of Eq. (10) takes the form  

 )exp()(
0

twtw α= , (12) 

where
0

w is the initial buckling amplitude.  Such a solution indicates that the amplitude of the 

incipient microtubule buckling will grow (or decay) exponentially at a rate of α .  

Figure 2 schematically plots the buckling growth rate α as a function of incipient buckling 

wave number k.  Two critical wave numbers  

 
EI

EIff
k

cr
2

4
2

00
ζ−±

=±   (13) 

can be determined at which 0=α .  If the wavelength of the incipient buckling is too long (i.e., 

−<
cr

kk ) or too short (i.e., +>
cr

kk ), 0<α , that is, the incipient buckling of the microtubule 

decays, thus eventually the microtubule straightens up. For an incipient buckling at an 

intermediate wavelength (i.e., +− <<
crcr

kkk ), 0>α , that is, the incipient buckling grows, leading 

to the microtubule buckling of large amplitude.   

The above results can be explained by an energetic consideration. Buckling of the 

microtubule results in the increase in the contour length, thus mitigates the compressive stress in 

the microtubule, leading to a decrease in the microtubule elastic energy 
e

U∆ , thus driving the 

buckling to grow. On the other hand, buckling also results in an increase in the microtubule 



2/29/2008 10 

bending energy
b

U∆ , and an increase of the elastic energy of the surrounding filament network 

f
U∆ .  For an incipient buckling at a sufficiently short wavelength (e.g., +>

cr
kk ), 

b
U∆  outweighs 

e
U∆ , causing the decay of the incipient buckling.  Similarly, for an incipient buckling at a 

sufficiently long wavelength (e.g., −<
cr

kk ), 
f

U∆  overbalances 
e

U∆ , also leading to the decay of 

the incipient buckling. For an intermediate wavelength +− <<
crcr

kkk , 
e

U∆  surpasses 
b

U∆ +
f

U∆ , 

thus the incipient buckling grows exponentially.     

The values of ±

cr
k are real only for a compressive force that exceeds a threshold value 

of ζEIf
c

2= , the critical Euler buckling force of the microtubule. At such a threshold 

compressive force, the two critical wave numbers are identical 4/1)/( EIk
cr

ζ= . The wave 

number corresponding to the fastest buckling growth rate
max

α  is determined by 0/ =dkdα .  

From Eq. (11), such a fastest growing wave number is given by 

 
EI

f
k

fastest
2

0= .   (14) 

The predicted microtubule buckling wave number in (Brangwynne et al., 2006) corresponds to 

the special case of 
c

ff =
0

. 

2.4. Wavelength and growth rate of the microtubule buckling 

Figures 3a and 3b plot the normalized buckling growth rate EIR /4

0
απµχ as a function of 

normalized buckling wave number kR
0

 for various axial compression
0

f and surrounding filament 

network elasticity
C

E , respectively. For a given 
C

E (Fig. 3a), the buckling growth rate α and the 

range of possible buckling wave number ( −+ −
crcr

kk ) increase as 
0

f  increases.  The dotted curve 

corresponds to the case of
c

ff =
0

.  For a given
0

f  (Fig. 3b), α and −+ −
crcr

kk  increase as
C

E  
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decreases.  In the limiting case of 0=
C

E , the incipient perturbation of any wave number +<
cr

kk  

can grow, but the growth rate becomes negligible as k tends to zero.   Here we use the reported 

microtubule bending rigidity 224105 NmEI
−×=  (Felgner et al, 1996), elastic modulus E = 

2GPa, nmR 5.12
0

=  (Howard, 2001). 

Figure 4 plots the normalized fastest buckling growth rate EIR /4

0max
πµχα  as a function of the 

normalized axial compression EIRf /2

00
 for various surrounding filament network elasticity

C
E .  

For a given
C

E , 
max

α  increases as 
0

f  increases. For a given
0

f , 
max

α  increases as 
C

E  decreases. 

The horizontal secant of a given curve in Fig. 4 corresponds to the threshold compression
c

f .   

2.5. Amplitude of the microtubule buckling at kinetically constrained equilibrium 

Given the highly dynamic environment inside living cells, the buckled microtubules may not 

have enough time to reach their thermodynamic equilibrium. For example, a microtubule that 

buckles at a short wavelength can have an elastic energy higher than that at the thermodynamic 

equilibrium.  But such a microtubule may stay at that buckled shape with certain amplitude for a 

long time due to the kinetic constrain of the viscous cytoplasm. We next determine the amplitude 

of the microtubule buckling at such a kinetically constrained equilibrium 
eq

A .   

At such an equilibrium, the viscous flow of the cytosol stops, therefore the interface tractions 

vanish. Euler beam theory gives  

 0)(
)()(

2

2

4

4

=++ zw
dz

zwd
f

dz

zwd
EI ζ .  (15) 

where f is the total axial compression in the microtubule at the kinetically constrained 

equilibrium. By assuming )sin()( kzAzw
eq

= , Eq. (15) gives 

 
2

2

k
EIkf

ζ
+= .  (16) 
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The total axial compression f  can be decomposed into two parts 

 
extra

fff +=
0

, (17) 

where
extra

f  is the extra compression due to the nonlinear axial strain in the microtubule under 

large amplitude buckling. The axial component of the nonlinear Green strain
 
(Landau and 

Lifshitz, 1986; Timoshenko and Woinowsky-Krieger, 1987) is defined by 
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where zu  is the axial deformation of the microtubule.  An elasticity consideration of the 

microtubule then gives 
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where ν and S are the Poisson’s ratio and the cross-section area of the microtubule, respectively.  

Since the tractions along the microtubule/cytoplasm interface vanish at the kinetically 

constrained equilibrium, the axial force f in the microtubule should be independent of z. From 

Eqs. (17) and (19), we have 

 )2sin(
8

1 2
kzkAu

eqz
−= . (20) 

Equation (19) then becomes 

 
)1)(21(4

)1(22
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ν
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−
= eq

extra

AESk
f . (21) 

Substituting Eqs. (16) and (21) into Eq. (17), we have 
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2

0

22

)1(

/)1)(21(4

ESk
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A
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ν
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−

−++−
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Figures 5a and 5b plot the normalized microtubule buckling amplitude at the kinetically 

constrained equilibrium
0

/ RA
eq

 as a function of the normalized buckling wave number kR
0

for 

various 
0

f  and 
C

E , respectively.  For a given 
C

E (Fig. 5a), 
eq

A  increases as 
0

f  increases.  The 

intersections of each curve with the horizontal axis correspond to ±

cr
k . For a given

0
f (Fig. 5b), 

eq
A  

increases as 
C

E  decreases. In the limiting case of 0=
C

E , the buckling amplitude of the 

microtubule may grow without boundary. For 0>
C

E , the maximum buckling amplitude at the 

kinetically constrained equilibrium occurs at a wavelength longer than that corresponding to
max

α .  

Here we use the reported Poisson’s ratio for macromolecules 3.0=ν (Sirenko et al., 1996). 

3. Discussion 

The microtubule buckling in living cells is constrained by both the elastic surrounding 

filament network and the viscous cytosol.  While the elastic properties of the microtubule and the 

surrounding filament network define the critical buckling force, the viscosity of the cytosol sets 

how fast the buckling develops. The interplay between the buckled microtubule and the 

viscoelastic surrounding parallels that between a wrinkled elastic film and the underlying 

viscoelastic substrate (Huang and Suo, 2002; Huang, 2005). Under an axial compressive force 

larger than the critical buckling force, a microtubule may buckle into a wide range of 

wavelengths, and the buckling amplitude in any wavelength in this range can be determined at 

the kinetically constrained equilibrium.  While the microtubule buckling may occur at a wide 

range of wavelengths, it is likely that the wavelength corresponding to the fastest growth rate sets 

the final buckled shape of the microtubule.  For example, in Figure 3a, such a wavelength is 

predicted to be 2.6µm, 2.2µm and 1.8µm for a microtubule subject to an axial compression of 

232 pN, 350 pN and 500 pN, respectively.  These predicted microtubule buckling wavelengths 
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are in good agreement with the observed buckling wavelengths (2.8 ± 0.6 µm) of the 

microtubules in Cos7 epithelial cells and bovine capillary endothelial cells under exogenous 

compressive forces (Brangwynne et al., 2006).   

Existing methods to measure subcellular mechanical properties vary for different subcellular 

structures. For example, the microtubule bending rigidity EI has been measured via thermal 

fluctuation (Gittes et al., 1993; Mickey and Howard, 1995; Janson and Dogterom, 2004), atomic 

force microscopy (de Pablo et al., 2003; Kis et al., 2002; Schaap et al., 2004), and optical 

tweezers (Kurachi et al., 1995; Felgner et al., 1996; Kikumoto et al., 2006).  The viscoelastic 

properties of the cytoplasm can be measured by the microrheology techniques (e.g., Deng et al., 

2006).  The mechanical interactions among different subcellular structures are often not 

considered in measuring individual components. The present model quantitatively correlates 

critical subcellular mechanical properties, such as 
C

E , µ and EI  with easy-to-measure 

microtubule buckling characteristics (e.g., 
max

α ,
eq

A  and
fastest

k ).  Therefore, this model sheds light 

on designing a unified experimental protocol to measure various mechanical properties of 

subcellular structures. For example, Fig. 5 can be used to measure 
C

E  if 
0

f  is given (e.g., by 

manipulating a microtubule through an optical trapping force). With 
C

E  measured, Figs. 3 and 4 

can then be used to determine µ and EI .  

The mechanical properties of real microtubules are orthotropic, while the present model 

assumes the microtubule isotropic.  A recent study showed that the isotropic elastic column 

model of the microtubules agrees well with the orthotropic shell model for axial buckling of very 

long microtubules (Wang et al., 2006).  The present model assumes the linear response of the 

elastic surrounding filament network and the Newtonian viscosity of the cytosol.  Under large 

amplitude microtubule buckling, the elastic constraint of the filament network may become 
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nonlinear with the buckling amplitude, and the velocity gradients of the cytosol flow are large 

near the highly buckled microtubule.  Given these consideration, the microtubule buckling 

amplitudes at the kinetically constrained equilibrium predicted in Section 2.5 may underestimate 

the actual microtubule buckling amplitude. The nonuniform surrounding filament network can 

cause the localized microtubule bending (Brangwynne et al., 2006). These factors will also 

influence the microtubule buckling (e.g., resulting in larger buckling amplitudes).  A three-

dimensional model considering nonlinear elastic filament network and nonlinear viscous cytosol 

will be necessary to accurately capture the deformation characteristics of severe microtubule 

buckling in living cells. We will report further studies on such aspects elsewhere. 

In conclusion, a mechanics model is developed to study the microtubule buckling in living 

cells modulated by the surrounding viscoelastic cytoplasm.  The short wavelength buckling 

behavior predicted by the present model is in good agreement with recent experimental data.  We 

call for further experiments based on this quantitative model to explore a unified protocol to 

measure various subcellular mechanical properties in living cells. 
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Appendix 

The incipient viscous flow of the cytosol can be assumed to be in the plane strain 

deformation state in the r-θ plane (Fig. 1b).  The 2-D motion equations in the r-θ plane reduce to 
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whereas the continuity equation takes the form 
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By introducing a stream function ψ , that is, 
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Eqs. (23) and (24) lead to  
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Assuming the stream function in the form )sin(sin)( kzrg θψ = , Eq. (28) reduces to 
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whose solution takes the form 

 rDr
r

CBrArrg ln
1

)( 3 +++= ,  (30) 

where A, B, C and D are coefficients to be determined. 

Substituting Eq. (30) into Eq. (26), we have 
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By substituting Eqs. (31) and (32) into the boundary conditions (i.e., Eqs. (6) and (7)), the 

coefficients A, B, C and D can be solved as 
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where 
10

/ RRq = . 

The stress components of the cytosol at the microtubule/cytoplasm interface can be then 

obtained by substituting Eqs. (31)-(36) into Eq. (4), 
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The surface traction of the cytosol along the interface can be obtained by integrating the 

stress field, 
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Figure Captions 

 

Fig. 1.  (a)  Schematic of an initially straight microtubule in the viscoelastic surrounding 

cytoplasm.  Under an axial compression
0

f , the microtubule incipiently buckles into a sinusoidal 

shape of amplitude )sin()( kztw .  (b) The cross-section view of the microtubule in the cytoplasm.  

The solid and dotted circles at the center represent the microtubule’s original position and its 

position at the incipient buckling, respectively. 
0

v  is the velocity of the microtubule in the 

incipient buckling direction.  
r

v  and θv  are the velocity components of the buckling-induced 

viscous flow of the cytosol. 

Fig. 2. Schematic of the growth rate of the microtubule incipient buckling amplitude α  as a 

function of the buckling wave number k.  The microtubule buckling may occur at a range of 

wave number +− <<
crcr

kkk , from which the wave number 
fastest

k  corresponding to the fastest 

growth rate 
max

α  can be determined. 

Fig. 3. The normalized buckling growth rate as a function of the normalized buckling wave 

number for various (a) axial compression
0

f and (b) filament network elastic modulus
C

E .  

Here 224105 NmEI
−×= , E = 2 GPa, nmR 5.12

0
= . 

Fig. 4. The normalized fastest buckling growth rate as a function of the normalized axial 

compression in the microtubule for various filament network elastic modulus
C

E . 

Here 224105 NmEI
−×= , E = 2 GPa, nmR 5.12

0
= . 

Fig. 5. The normalized buckling amplitude at the kinetically constrained equilibrium as a 

function of the normalized buckling wave number for various (a) axial compression
0

f and (b) 

filament network elastic modulus
C

E .  Here 224105 NmEI
−×= , E = 2 GPa, nmR 5.12

0
= . 
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Fig. 1.  (a)  Schematic of an initially straight microtubule in the viscoelastic surrounding 

cytoplasm.  Under an axial compression
0

f , the microtubule incipiently buckles into a sinusoidal 

shape of amplitude )sin()( kztw .  (b) The cross-section view of the microtubule in the cytoplasm.  

The solid and dotted circles at the center represent the microtubule’s original position and its 

position at the incipient buckling, respectively. 
0

v  is the velocity of the microtubule in the 

incipient buckling direction.  
r

v  and θv  are the velocity components of the buckling-induced 

viscous flow of the cytosol. 
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Fig. 2. Schematic of the growth rate of the microtubule incipient buckling amplitude α  as a 

function of the buckling wave number k.  The microtubule buckling may occur at a range of 

wave number +− <<
crcr

kkk , from which the wave number 
fastest

k  corresponding to the fastest 

growth rate 
max

α  can be determined. 
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Fig. 3. The normalized buckling growth rate as a function of the normalized buckling wave 

number for various (a) axial compression
0

f and (b) filament network elastic modulus
C

E .  

Here 224105 NmEI
−×= , E = 2 GPa, nmR 5.12

0
= . 
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Fig. 4. The normalized fastest buckling growth rate as a function of the normalized axial 

compression in the microtubule for various filament network elastic modulus
C

E . 

Here 224105 NmEI
−×= , E = 2 GPa, nmR 5.12

0
= . 
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Fig. 5. The normalized buckling amplitude at the kinetically constrained equilibrium as a 

function of the normalized buckling wave number for various (a) axial compression
0

f and (b) 

filament network elastic modulus
C

E .  Here 224105 NmEI
−×= , E = 2 GPa, nmR 5.12

0
= . 


