
Mechanical Response of Multicrystalline Thin Films in Mesoscale 

Field Dislocation Mechanics 
Saurabh Puria, Amit Dasb, Amit Acharyab,* 

 
a Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. 

b Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA. 

 

Abstract: A continuum model of plasticity, Phenomenological Mesoscopic Field Dislocation 

Mechanics (PMFDM), is used to study the effect of surface passivation, grain orientation, grain 

boundary constraints and film thickness on the mechanical response of multicrystalline thin 

films. The numerical experiments presented in this paper show that a surface passivation layer on 

thin films introduces thickness dependence of the mechanical response. However, the effect of 

passivation decreases in films with impenetrable grain boundaries. The orientation of individual 

grains of the multicrystal also has a significant effect on the mechanical response. Our results are 

in qualitative agreement with experimental observations. A primary contribution of this work is 

the implementation of a jump condition that enables the modeling of important limits of grain 

boundary constraints to plastic flow, independent of ad-hoc constitutive assumptions and 

interface conditions. 
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1. Introduction 

Experiments on metallic thin films have been done in the recent past to study their mechanical 

behavior (Espinosa et al., 2004; Xiang and Vlassak, 2006). It is found that for the thin films with 

passivation on one or more surfaces, the stress-strain response gets harder on decreasing the 

thickness. In the unpassivated films, mechanical response seems to be comparatively 

independent of the film thickness. For thin films undergoing subsequent cycles of loading and 

unloading, a very strong Bauschinger effect is also observed in the passivated films in 

comparison to the unpassivated films. The Bauschinger effect is also size dependent, with 
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thinner films having a high reverse plastic strain as compared to thick films (Xiang and Vlassak, 

2006). This problem was analyzed by Xiang and Vlassak (2006) using the ‘isotropic’ strain 

gradient plasticity theory of Fleck and Hutchinson (2001). They were able to model the 

experimentally observed size effects successfully but not the Bauschinger effect. Subsequently, 

Nicola et al. (2006), Shishvan et al. (2010), and Shishvan and Van der Giessen (2010) used the 

Discrete Dislocation (DD) technique to model the deformation of thin films and successfully 

predicted many of the experimentally observed features. However, DD simulations are 

performed at very high strain rates with grain boundaries being impenetrable to dislocations.  

 

This paper involves the analysis of the mechanical behavior of multicrystalline thin films 

undergoing cycles of plane strain tension and compression using PMFDM (Acharya and Roy, 

2006). The effects of film thickness, grain orientation, and the presence/absence of surface 

passivation on the response during both loading and unloading are studied. A novel feature of 

this work, independent of constitutive assumptions, is to consider the effect of different classes of 

grain boundary constraints to plastic flow. Our theoretical structure enables such considerations, 

and to our knowledge this is the first instance of such a study in the modeling of thin films. Mach 

et al. (2010) studied texture evolution by explicitly accounting for the partial continuity in plastic 

flow that arises from the unconstrained grain boundary assumption, while ignoring the effects of 

mesoscopic dislocation transport and elastic strain. This feature of PMFDM is in contrast with 

the so-called strain-gradient crystal plasticity theories (Gurtin, 2002; Kuroda and Tvergaard, 

2008; Erturk et al., 2009) where the conditions that may be imposed on boundaries are purely a 

constitutive proposition without any constraints from the field equations or fundamental 

kinematics. We discuss this issue further at the end of this section. 

 

PMFDM provides a framework to efficiently perform such numerical experiments at physically 

relevant strain rates. Weaknesses of the modeling lie in the phenomenological specification of 

the magnitude of the plastic strain rate and a back stress model based on the polar dislocation 

density tensor (the Nye tensor). We consider the latter feature as a temporary weakness in our 

modeling as encouraging theoretical results on the explicit form of a back stress tensor have been 

obtained by consideration of finite deformation mesoscale Field Dislocation Mechanics that 

contains a dependence of the specific entropy on the mesoscale Nye tensor based on statistical 
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mechanical grounds (Acharya, 2011). We note that the back stress phenomenology utilized by 

the strain gradient crystal plasticity theories (see Erturk et al. (2009), Svendsen and Bargmann 

(2010), and Bargmann et al. (2010) for a comprehensive review) involve two spatial derivatives 

of the plastic distortion while the one we employ here involves only one. While the performance 

of the strain-gradient type of crystal plasticity theories in modeling the experimental 

observations of Xiang and Vlassak (2006) have not been reported as yet, the use of these various 

choices (including ours) for the back-stress tensor underscores the need for more fundamental 

theory. 

 

Results presented in this paper are in good qualitative agreement with corresponding 

experimental observations (Xiang and Vlassak, 2006) and an effort is made to provide a simple 

physical interpretation for most of them. However, there are certain interesting observations for 

which we are unable to provide a simple explanation.  

 

Returning to the discussion of some critical aspects of the gradient crystal plasticity models vis-

à-vis interface conditions arising in our theoretical structure, we note that the strain-gradient 

crystal plasticity models work with dislocation density/slip-rate fields related to crystal 

orientations in particular slip systems. In the case of multi/poly-crystal modeling such density 

field can have meaning only within a grain, as the physical meaning of a polar dislocation 

density field linked to grain orientation is necessarily different in differently oriented grains. This 

appears to be a serious theoretical and practical impediment. Theoretically, one has a PDE for a 

polar dislocation density/slip-rate type within a grain and one is now faced with the enormous 

task of prescribing boundary conditions for each of these types at the boundary of each grain. 

More fundamentally, while ad-hoc boundary conditions with dubious physical interpretation† 

have been suggested, it is not clear that there is an underlying physical principle guiding such 

prescription and more importantly, whether important conditions of balance (e.g. Nye tensor 

conservation at interfaces translating to conditions on the total plastic distortion rate) are violated 

or not. Practically, the number of PDEs for the model increases linearly with the number of 

                                                 
†  For instance a surface condition allowing free-flow of dislocations has been suggested to be modeled by setting 
such polar dislocation densities to vanish at the free boundary. Simple consideration of steady flow of water in a 
pipe across any cross section of the pipe (including a free end) makes it clear that free flow through an 
interface/boundary does not  require the density to vanish at such an interface/boundary. 
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grains in the multi/poly crystal assembly and accounting for their couplings, granted an ad-hoc 

choice of coupling conditions, and spatial domain identities can be an onerous task. 

 

This paper is organized as follows: governing equations of the PMFDM model are briefly 

explained in Section 2. A jump condition at an interface for polar dislocation density in the 

context of PMFDM is developed in Acharya (2007). This jump condition allows the modeling of 

a variety of transmission conditions at grain boundaries and its implementation is discussed in 

Section 3. Setup of the thin film problem is explained in Section 4 followed by a discussion of 

results in Section 5. The paper ends with some concluding remarks in Section 6.  

 

A note regarding terminology: henceforth, given a scale of resolution l , we refer to the spatial 

average of Nye’s (1953) dislocation-density tensor over a volume 3l  around a point as the Polar 

Dislocation density tensor at that point. Nye’s tensor being a tensorial quantity, the dislocations 

that are averaged out in this process due to cancellation in sign form a density that we refer to as 

the Statistically Distributed Dislocation (SD) density. Thus, the difference of local value of 

Nye’s tensor field and its spatial average is referred to as SD. 

 

2. Theory 

A theory of fine-scale dislocation mechanics, Field Dislocation Mechanics (FDM), has been 

proposed in Acharya (2001, 2003), building on the pioneering works of Kroner (1981), Mura 

(1963), and Willis (1967). The Phenomenological Mesoscopic Field Dislocation Mechanics 

(PMFDM) model (Acharya and Roy, 2006) is obtained by an elementary space-time averaging 

of the equations of FDM using a standard procedure utilized in the study of multiphase flows 

(e.g. Babic, 1997). The governing equations of PMFDM are summarized in this section. The 

(symmetric) stress tensor T  satisfies 

 
 

T = C :U e

divT = 0
 (1) 

along with standard traction/displacement boundary conditions. C  is the possibly anisotropic 

fourth order tensor of linear elastic moduli and eU  is the elastic distortion tensor defined as 
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  U
e = grad u −U p .  (2) 

In the above equation, u  is the total displacement field and pU  is the plastic distortion tensor 

which is decomposed uniquely into compatible and incompatible parts as 

  U
p = grad z − χ , (3) 

where z  is the plastic displacement and χ  is the incompatible part of the elastic distortion. 

Thus, the elastic distortion tensor may be rewritten as, 

 ( ) ,e grad χU u z= − +  (4) 

where the field χ  cannot be written as a non-trivial gradient. The incompatible part, χ , is given 

by 

 
 

curlχ = α
div χ = 0

 (5) 

where α  is space-time averaged polar dislocation density tensor field. The vector field z  whose 

gradient represents the compatible part of pU obeys the relation 

 
    
div grad �z( )= div α ×V + Lp( ) (6) 

where V  is the averaged polar dislocation velocity vector, and pL  represents that part of the total 

slip strain rate which is not represented by the slipping produced by the polar dislocation density. 

Finally the temporal evolution of the polar dislocation density tensor field is prescribed as 

 
: ,p

curlα

α

S s
S V L

= − +

= × +

�
 (7) 

where S  is the averaged slipping distortion (slip rate), and s  is the nucleation rate field. Since α  

is a solenoidal field, i.e. divergence free, s  can be written as a curl of a second order tensor 

valued nucleation rate potential field, Ω : 

 s = curl Ω . (8) 

 

2.1 Boundary Conditions  

The following boundary conditions are admitted: 

a. =χn 0  on the boundary   ∂B of the body with outward unit normal n .  

b. ( ) ( )pgrad on B= × + ∂αz n V L n � .   
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c. Standard displacement/traction boundary conditions on  ∂B . 

d. Equation (7)1 admits boundary conditions on the dislocation flow (Acharya and Roy, 

2006). In general, a natural boundary condition of the form 

 × =ΦS n  (9) 
 

where Φ  is a (second-order tensor-valued) specified function of time and position 

along the boundary satisfying the constraint =Φn 0  is appropriate to model controlled 

flow at the boundary. A rigid boundary with respect to slipping may be represented 

with a zero flow boundary condition 

 × =S n 0  (10) 
 

on the entire boundary. Imposing such a boundary condition can lead to the 

development of shocks or discontinuities. A less restrictive boundary condition is the 

imposition of the dislocation flux,
 
α V ⋅ n( ), on inflow points of the boundary (where 

   V ⋅ n < 0 ) along with a specification of  Lp ×n  on the entire boundary. This condition 

allows free exit of polar dislocations without any added specification.  

 

2.2 Initial Conditions  

The initial conditions on the fields ,u  α  and grad z  are as follows. For the u  field we assume 

    
u

t=0
≡ 0 , which is a physically natural initial condition on the displacement field. Unless 

otherwise mentioned, we assume that the body is initially polar dislocation free which translates 

to 
    
α

t=0
= 0. The initial condition on the grad z  field is obtained from solving (5) and (1), with 

    
u

t=0
= 0 . 

 

2.3 Auxiliary Condition 

The value of z�  is prescribed at an arbitrarily chosen point of the body and in our case is assumed 

to vanish without loss of generality. 
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2.4 Constitutive Specifications 

Physically reasonable choices for V  and pL  are made based on the requirement of non-

negativity of plastic working, pressure-independence of plastic flow and ingredients of 

conventional crystal plasticity theory. They are mentioned below. 

 
0 0

1

  ;  0

slipn
p sym

v v

κ κ κ

κ

γ
=

⎛ ⎞⎟⎜ ⎟⎜= ⊗ ⎟⎜ ⎟⎟⎜⎝ ⎠

= ≥

∑L m n

dV
d

�
 (11) 

where ( )sym i  implies the symmetric part of ( )i ,  slipn  is the total number of slip systems, 0
κm  

and 0
κn  are the unstretched unit slip direction and normal, respectively, d is the direction of the 

polar dislocation velocity, κγ� represents the magnitudes of SD slipping rate on the slip system κ  

and v  is the averaged velocity of polar dislocations. A power law is used for κγ�  

 

    

�γ κ = �γ 0
κ sgn(τκ −Ωκ )

τκ −Ωκ

g

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

1
m

 (12) 

where κτ is the resolved shear stress on slip system κ , κΩ (scalar for each  κ ) is the back stress 

corresponding to the individual slip system κ , m  is the rate-sensitivity of the material, g  is the 

strength of the material, and 0
κγ� is a reference strain rate on the slip system κ . The expression of 

back stress evolution is based on the Armstrong–Frederick (1966) form as in Harder (1999) but 

is a function of polar dislocation density (cf. Taupin et al., 2007):  

 
     
�Ωκ = αm0

κ + α p0
κ( )Lµ �γ κ − cΩκ �γ κ ; p0

κ = m0
κ ×n0

κ  (13) 

where L  is the hardening coefficient and c  is the recovery coefficient. The back stress evolves 

only if there is a non-zero polar dislocation content in the body. The space-time averaged polar 

dislocation density tensor is not capable of transmitting information on the spatial concentrations 

of microscopic dislocation density to the calculation of stress in PMFDM. For the structural thin 

film length scales involved, these concentrations can be important and thus have to be modeled. 

The form of such a model fundamentally rests on the accurate spatio-temporal coarse graining of 

the very nonlinear underlying set of equations representing the motion of individual dislocations, 
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represented either discretely or by PDE – an as yet unsolved, formidable theoretical challenge. 

Here, we make incremental progress relying on simple, established back-stress phenomenology 

adapted to our case through the dependence on the polar dislocation density. 

The resolved shear stress κτ  is calculated as follows: 

  τ
κ = m0

κ ⋅Tn0
κ  (14) 

The direction of polar dislocation velocity d  is 

( ) ( )( )

: ,

1:   ;     ;    :   ;  .
3i ijk jr rk i mm ijk jkf e T tr a T eα α

⎛ ⎞⎟⎜ ⎟= −⎜ ⋅ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞⎟⎜′ ′= = = = ⎟⎜ ⎟⎜⎝ ⎠

Χ α Χ α

a ad f f
a a

f T a T

 (15) 

The definition of the direction d  can be approached from two points of view. In the situation 

when the polar dislocation density may not be expressed as an elementary dyad formed from a 

Burgers vector direction and a line direction, the definition arises as a sufficient condition for 

pressure independence of the polar dislocation plastic strain rate and ensuring positive 

dissipation. The dissipation in the model can be written as 

 ( )( ): p

B
dvΧ αT V T L= ⋅ +∫D . (16) 

Focusing on the dissipation due to polar dislocation motion, ( )Χ αT V⋅ , and writing 

 ( )= +Χ αT f a  (17) 

where f  is a pressure-independent term, it makes physical sense to require V  to be in the 

direction of f . However, this does not guarantee that the dissipation due to polar dislocation 

motion is independent of pressure and neither that ( )⋅ ≥Χ αT f 0 ; however subtracting the 

component of f  in the direction of a  ensures the latter fact: 

 ( ) ( )
22

2- - - - 0
⎛ ⎞⎛ ⎞ ⎛ ⎞⋅

+ ⋅ ⋅ = ⋅ + ⋅ ⋅ = ⋅ ⋅ ≥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

f aa a af a f f f f a f f a f f f
a a aa

 (18) 

by Pythagoras’ theorem. 

Alternatively, a compelling mechanistic interpretation arises when α  may be interpreted as an 

elementary dyad formed from a Burgers vector direction and a line direction, say ⊗b l . Then the 
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direction of a  represents the direction of climb whenever α  represents a dislocation segment of 

pure edge or mixed character (and it is degenerate when α  is of pure screw character); thus d  

represents the fact that mixed or edge dislocations cannot climb whereas screw dislocations are 

unrestricted in their motion. 

The expression for v  is assumed to be 

 ( )
22

1

 
slipn

slip

bv state
n g

κ

κ

η µ γ
=

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ �  (19) 

where µ  is the shear modulus, b  the Burgers vector magnitude and 1 3η =  a material 

parameter. The strength of the material is assumed to evolve according to 

 

 
( )

2 2

0 0 0
10 02

slipn
s

s

g gbg k
g g g g

κ κ

κ

η µ θ γ
=

⎧ ⎫⎡ ⎤⎛ ⎞ ⎪ ⎪− ⎟ ⎪ ⎪⎜⎢ ⎥⎟= + × +⎜ ⎨ ⎬⎟⎢ ⎥⎜ ⎟⎜ ⎪ ⎪− −⎝ ⎠⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭
∑α αn V ��  (20) 

 

where sg  is the saturation stress, 0g  is the yield stress, and 0θ  is the Stage II hardening rate. 0k is 

an extra parameter in the PMFDM model that needs to be fitted experimentally. The details of 

the numerical implementation of the equations using the Finite Element Method is described in 

Roy and Acharya (2005), Roy and Acharya (2006), Puri et al. (2010) and Puri (2009).  

 

3. Jump Condition for Polar Dislocation Density 

The jump condition for polar dislocation density along a material interface in PMFDM 

(Acharya, 2007) is summarized in this section. At a material interface it reduces to 

 a b a b× ×ηS n+ n = 0 . (21) 

where ( )c fie h  represents a jump in ( )i  across the interface. The value of η  can be set in accord 

with the nature of the grain boundary; in this paper the grain boundary is assumed not to be a 

source/sink. This corresponds to a b=η 0 . Thus, (21) reduces to 

 a b×S n = 0 . (22) 



 10

Physically, (22) embodies the simple fact that in the absence of sources and sinks on any surface 

in the body, the plastic distortion rate arising due to the motion of all dislocations (both polar 

dislocations and SD) on a given side of the surface has to match the same quantity on the other 

side. The condition (22), with a restricted definition of S  than used here, was proposed in Gurtin 

and Needleman (2005). However, there it is an extraneous assumption, whereas in our model this 

is a fundamental statement of balance at an interface, independent of constitutive specification. 

We note here that (22) is a special case of a jump condition at a non-material interface (Acharya, 

2007) that, in general, moves with respect to the material. 

Consider a sample consisting of two grains, 1B  and 2B , with c  being the interface between 

them; n  is a unit normal to the interface (as shown in Figure 1(a)). For this idealized problem, 

(22) can be written as 

 ( )− ×1 2S S n = 0 , (23) 

where 1S and 2S  correspond to grains 1B  and 2B , respectively. This jump condition can be 

satisfied in two ways: 

a. Imposing ( )− ×1 2S S n = 0  on the interface, c . 

b. Imposing  S1 × n = 0 and  S2 × n = 0 on the interface, c . 

Case (a) allows free flow of dislocations across a grain boundary. Case (b) allows the modeling 

of completely constrained (blocked) plastic flow on either side of the grain boundary. This 

corresponds to the idealized situation of the grain boundary being impenetrable to dislocations.  

 

3.1 Numerical Implementation of the Jump Condition 

Now we discuss the imposition of conditions (a) and (b) mentioned in Section 3 in the finite 

element framework for the sample with grains 1B  and 2B  (Figure 1(a)). The weak formulation of 

(7)1 for the two grains can be written as 

 
( ) ( )

( ) ( )

     

     ,

dv curl dv curl dv

dv curl dv curl dv

δ δ δ

δ δ δ

= − +∫ ∫ ∫

= − +∫ ∫ ∫

α α α η α

α α α η α
1 1 1

2 2 2

B B B

B B B

S  

S   

�

�

: : :

: : :
 (24) 

 

where the symbol δα  represents a test function.  
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Integrating (24) by parts and choosing a sufficiently piece-wise smooth δα  such that its value is 

non-zero along a thin (3-d) sliver along the grain boundary and is zero everywhere else, (24) 

reduces to 

 
( ) ( )

( ) ( )
1 1 2 2

1 1 2 2

   

                     ,
c c

gbc c

da da

da da E

δ δ

δ δ

× + × =∫ ∫

× + × +∫ ∫

α α

η α  η α
B B1 2

B B1 2

S n  S n  

n   n   

: :

: :
 (25) 

 

where gbE  is a term that can be made arbitrarily small by choosing the width of the sliver and 

, 1,2i iδ =α  are the values of the piecewise smooth test function on the grain boundary. Since 

= =η η1 2 0  and    n1 = −n2 = n , when the test function is assumed to be continuous on the bi-

crystal, (25) implies   

  ( )( ) ( )0    on  .c da cδ− × ⇒ − ×∫ α1 2 1 2S S n  = S S n = 0: . (26) 

This corresponds to the implementation of case (a) mentioned in Section 3. The plastic flow at 

the grain boundary cannot be stopped by imposing this condition. However, the formulation also 

allows the use of discontinuous, piece-wise smooth test functions. In such a case,(25)  implies 

 ( ) ( )1 1 2 2   0c cda daδ δ× − × =∫ ∫α αS n  S n  : : , (27) 

and since  1δα  and 2δα  can be chosen arbitrarily and independently of each other, (27) allows us 

to impose the conditions, 1S n = 0× and 2S n = 0× on c  in the respective grains. This 

corresponds to the implementation of case (b) mentioned in Section 3.  

 

In order to model (27) in the finite element framework, two node numbers are assigned to each 

node of the grain boundary as shown in Figure 1(b). All the nodes of the grain boundary are 

characterized as surface nodes. The following fields are set to be equal on the two nodes using  

linear multipoint constraints: 

 
2 3 6 7

2 3 6 7

2 3 6 7

                                    

                                     

                                 .

= =

= =

= =χ χ χ χ

u u u u

z z z z  (28) 
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where ( )
i

i  represents the value of the field ( )i  at node i . The conditions (28) with 

 S1 × n = 0 and  S2 × n = 0 on the interface c  correspond to the constrained plastic flow case. In 

the finite element setting, the constraints (28) imply that test functions corresponding to these 

fields are continuous on the grain boundary. Thus, if in addition 
2 3

 =α α  is also considered, 

the unconstrained plastic flow situation corresponding to the ‘single-noded’ grain boundary case 

is recovered. This provides an independent check for the ‘double-noded’ grain boundary 

simulations. 

 

4. Problem Setup 

For all the simulations mentioned in this chapter, a multicrystal consisting of four grains as 

shown in Figure 2 is used. Samples are unstressed and polar dislocations free initially. The 

dimensions of thin films used in the computations presented in this paper are motivated from the 

experiments done by Xiang and Vlassak (2006). Each grain has a thickness h  and width w . Two 

different values of h are used, 0.35  and 1.4h m h mµ µ= = and w is set to be equal to 0.33 mµ . 

sc  shown in Figure 2 is equal to 0.5 mµ . Two cases, (a) with passivation layer on both surfaces, 

and (b) with no surface passivation, are considered. Furthermore, three different sets of 

orientation of grains in the multicrystal are considered: 

 

1. Misorientation between adjacent grains is 3-5 degrees about the 3x -axis. The Bunge Euler 

angles (in degrees) for the four grains on going from left to right in Figure 2 are (2,0,0), 

(0,0,0), (5,0,0), (3,0,0).   

2. Misorientation between adjacent grains is 20-30 degrees about the 3x -axis. The Bunge Euler 

angles (in degrees) for the four grains on going from left to right in Figure 2 are (25,0,0), 

(0,0,0), (45,0,0), (30,0,0).  

3. In the third case, orientation of the 12 slip systems of a cubic crystal is changed such that a 

(111) plane is parallel to the 1 3x x−  plane. Now, the grains are rotated about the 2x -axis such 

that misorientation between adjacent grains is 3-5 degrees. Specifically, grain 1 is rotated 
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anticlockwise by 3 degrees, grain 2 by 0 degrees, grain 3 by 5 degrees and grain 4 by 2 

degrees. 

 

Material parameters representative of Copper are used for all the computational experiments 

presented in this chapter;    b = 2.5×10−4 µm,  0.03,m =  210 MPa,sg =  0 50 MPa,g =  

0 205 MPaθ = , 0 20.0k = , 12slipn = , 100L = , and 100c = . The physical meaning of these 

parameters is described in Section 2. The reference strain rate is -1
0 1 sec .γ =�  Isotropic elastic 

constants of the representative material are 110 GPa,E =  0.34,υ =  where E  is the Young’s 

modulus and υ  is the Poisson’s ratio. The passivation layer(s) is considered as elastic with 

elastic constants representing Silica with 70GPa,E =  and 0.17υ = . The thickness of the 

passivation layer is set to 0.02 mµ  in all computations. 

 

The imposed initial conditions are mentioned in Section 2. The displacement boundary 

conditions corresponding to plain strain tension are applied in the following way (Figure 2):  

1 10 at 0u x= =  

2 20 at 0u x= =  

3 30 at su x c= =  

( )1 14  at 4u w t x wε= =�  

where ε�  is an applied tensile strain rate of -11 sec , and t  is time. The left and the right faces are 

traction free in the 2 3,x x  directions. The bottom face is traction free in the 1 3,x x  directions and 

the top face is traction free in the 1 2 3, ,x x x directions. The front face is traction free in the 

1 2,x x directions. In order to do a two dimensional problem in the current setup, all degrees of 

freedom on the back face are set to be equal to the value of corresponding degrees of freedom on 

the front face. The boundary conditions for imposing constrained/unconstrained plastic flow 

through the grain boundaries are mentioned in Section 3. All components of the polar dislocation 

density (α ) on the left external face are set to be equal to the components of corresponding 

nodes on the right face. This implies that the dislocation flow on the right face is equal and 

opposite to that on the left face. 
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α

L
= α

R
 (29) 

In the interpretation of results, the contribution of passivation layers is removed from the flow 

stress by plotting the volume average of 11 component of stress T over the elastic-plastic 

elements only against the applied strain ε  . 11T  is denoted by σ  in the plots and rest of the 

text. 

 

A mesh refinement study is done in order to choose an optimum mesh for computations. A film 

of thickness 0.35 mµ  with a surface passivation layer on both sides is considered for this 

purpose. The grain boundaries are assumed to be impenetrable to plastic flow. The average 

stress-strain response for meshes of different sizes is shown in Figure 3(a). Mesh dimension in 

the legend of Figure 3(a) represents the discretization of the film in 1 2, ,x x and 3x direction (eg. 

16 x 14 x 1 implies 16 elements in 1x  direction, 14 elements in 2x  direction and 1 element in 3x  

direction). Average stress seems to increase with mesh refinement. An upper bound to the stress 

at 1% applied strain is estimated using extrapolation as shown in Figure 3(b). Figure 3(c) 

indicates refinement of the spatial pattern of α  on decreasing the element size (however, the 

magnitude of α  appears to be increasing with mesh refinement). The element size 

corresponding to the mesh with dimensions 16 x 14 x 1 seems to be a conservative choice 

although the average stress at 1% applied strain for this mesh size is lesser than the linearly 

extrapolated stress for zero element size by 4%. All the simulations presented in this paper 

(regardless of physical size of the simulated films) are done using the element size corresponding 

to the mesh with dimensions 16 x 14 x 1 for this 0.35 mµ  thick film. This is a conservative 

choice as our experience indicates that gradients are largest in the thinnest case with most 

obstruction to plastic flow.  

 

Next, we study the effect of number of grains on the stress-strain response of a passivated film 

with a thickness of 0.35 mµ . The grain boundaries are considered to be impenetrable to plastic 

flow. The grains are oriented such that the misorientation between adjacent grains is 3-5 degrees 

about the 3x -axis (corresponding to orientation set 1). The response seems to be converging as 
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shown in Figure 4. Based on this observation, a film with 4 grains is used in all the simulations 

presented in this paper. 

 

5. Results and Discussions 

The effect of surface passivation, thickness and grain boundary constraints on the loading and 

unloading response of thin films is discussed in the following sub-sections.  

5.1 Effect of Passivation 

5.1.1 Loading: It is observed experimentally that the presence of a passivation layer makes the 

stress-strain response harder in comparison to unpassivated films (Xiang and Vlassak, 

2006). In order to model this behavior, we begin with numerical experiments using  

conventional plasticity theory and orientation set 1 (mentioned in Section 4). 

Conventional plasticity may be recovered from PMFDM by setting =α 0  for all times 

and replacing  (4) with            

     U
e = grad u −U p ; �U p = Lp  .                                             (30) 

It is found that in conventional plasticity the stress-strain response is independent of the 

presence/absence of passivation layers (Figure 5). This is due to the absence of an 

explicit characterization of dislocations in the conventional plasticity framework. The 

same numerical experiment is now performed using PMFDM. Initially, grain boundaries 

are considered to be penetrable to dislocations. Figure 6(a) shows a significant difference 

in the stress-strain response between the passivated and the unpassivated films, with 

passivated films showing a harder response. This is due to the accumulation of polar 

dislocations along the passivation layer as shown in Figure 7(b). A thick layer of polar 

dislocations formed along the passivation layer acts as an obstruction to plastic flow. No 

such layer is formed in the case of unpassivated films as observed in Figure 7(d). The 

theory allows for greater hardening at material points with higher value of polar 

dislocation density and hence results in a harder response in the passivated films. An 

increase in hardening of the stress-strain response due to a passivation layer is also 

observed in numerical experiments that are performed using strain gradient plasticity 
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model (Xiang and Vlassak (2006)) and DD model (Nicola et al. (2006), Shishvan et al. 

(2010), Shishvan and Van der Giessen (2010)). 

 

Next we consider the grain boundaries to be impenetrable to plastic flow. The stress-

strain response still seems to get harder with passivation (Figure 6(b)). However, the 

difference in σ  between the passivated and the unpassivated films is less in comparison 

to the unconstrained grain boundary case. The reason for this behavior is that constraints 

on plastic flow through grain boundaries result in the accumulation of polar dislocations 

along them as observed in Figure 7 (a), (c) and consequently decreases the relative effect 

of passivation layer on the stress-strain behavior.  

 

All the results mentioned so far correspond to films with 3-5 degrees of misorientation 

between adjacent grains. In order to investigate the dependence of these results on grain 

orientation, similar computations as mentioned above are done for orientation set 2 and 3 

(described in Section 4). Figure 8 shows the plot of σ at 1% applied strain for different 

cases. It is observed that the passivated films show a harder response than the 

unpassivated films for different sets of grain orientations. However, the value of σ  at 1% 

applied strain changes significantly with the orientation, as expected.  

 

5.1.2 Unloading/Bauschinger Effect: The main interest here is to analyze the Bauschinger 

effect during subsequent cycles of loading and unloading of multicrystalline thin films 

undergoing plane strain tension. It is observed experimentally that the passivated films 

show an unusual Bauschinger effect as compared to the films with no surface passivation 

(Xiang and Vlassak, 2006). The effect is not observed in the framework of conventional 

plasticity as shown in Figure 5. In PMFDM, the passivated films show a stronger 

Bauschinger effect than the unpassivated films due to the back stress associated with the 

accumulation of polar dislocations along the surface passivation layer (Figure 6(a), (b)).  

 

The reverse plastic strain at the end of each unloading cycle is plotted against the pre-

strain (at which unloading starts in every cycle) in Figure 9. Orientation set 1 with 

0.35h mµ=  is considered first. For the passivated film with penetrable grain boundaries, 
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the reverse plastic strain increases significantly on increasing the prestrain as observed in 

Figure 9(a). In the case of film with no passivation, zero reverse plastic strain is observed 

in the first cycle and relatively little in subsequent cycles. Similar trends are observed for 

impenetrable grain boundaries also. However, the difference in reverse plastic strain 

between the passivated and the unpassivated films is less in comparison to the 

unconstrained grain boundaries case (due to the reasons mentioned in Section 5.1.1).  

 

On increasing the misorientation between adjacent grains from 3-5 degrees in orientation 

set 1 to 20-30 degrees (orientation set 2), the unpassivated films with penetrable grain 

boundaries show a non-zero reverse plastic strain (less in comparison to the passivated 

films) even in the first cycle (Figure 9(b)). This relatively little Bauschinger effect 

observed in the unpassivated films with unconstrained grain boundaries could be the 

result of dislocation accumulation along the grain boundaries (due to the misorientation 

between adjacent grains). Although the grain boundaries are penetrable, the 

misorientation between grains may cause some obstruction to the plastic flow. For the 

unpassivated film, a non-zero Bauschinger effect is observed in the case of orientation set 

2 even in the context of classical plasticity, as shown in Figure 10. All other qualitative 

trends seem to be similar for different sets of grain orientation (Figure 9(b), (c)). 

 

To better analyze the unloading behavior, two special cases are considered for orientation 

set 1 and 0.35h mµ= . The mechanical response of films with (a) surface passivation and 

impenetrable grain boundaries, and (b) no passivation layer and penetrable grain 

boundaries, is compared on unloading at different strain levels instead of doing cycles of 

loading and unloading. It is evident from Figure 11(a) that the passivated film shows a 

very strong Bauschinger effect at all strain levels. Also, the plot of reverse plastic strain 

versus pre-strain is a straight line with zero slope in the beginning in the unpassivated 

film (Figure 11(b)).  
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5.2 Effect of Thickness (Size Effect) 

5.2.1 Loading: In the plane strain bulge tests done by Xiang and Vlassak (2006), the passivated 

films show a very strong dependence of mechanical response on the thickness of films 

with thinner being stronger, whereas behavior of the unpassivated films is observed to be 

independent of the thickness. In order to model this behavior, two films with thicknesses 

of 0.35  and 1.4h m h mµ µ= = are considered. This behavior cannot be modeled using 

conventional plasticity due to the absence of a length scale in the model (Figure 5).  

 

Next, numerical experiments are performed using PMFDM to study the size effects in 

thin films. First, the grain boundaries are considered to be penetrable to dislocations. The 

passivated film with 0.35h mµ=  shows a significantly harder response than the film 

with 1.4h mµ= (Figure 6(a)). In order to understand this behavior, the field plot of  α  at 

0.6% applied strain for the passivated films is shown in Figure 12 (a), (b). In this plot, the 

2x co-ordinate is scaled by the film thickness. It is evident from this figure that the 

thickness of dislocation layer along the surface passivation is more than double for the 

thin film in comparison to the thick film. The thickness of the dislocation layer (in scaled 

co-ordinates) decreases with an increase in the film thickness (the dependence of the 

scaled polar density layer width on the thickness of films is explained through 

dimensional analysis in Roy and Acharya (2006)). Clearly, the greater relative volume 

covered by this layer in the case of the thin film provides more work hardening as well as 

back stress representing microscopic internal stress effects not encapsulated in the 

internal stress field of α . In the case of unpassivated films, the response seems to be 

relatively independent of the thickness (Figure 6(a)), as observed in experiments. 

 

In the case of impenetrable grain boundaries, the passivated films show a significant size 

effect with thinner being stronger (Figure 6(b)). However, a reverse size effect is 

observed in the case of unpassivated films (Figure 6(b)). This is due to the larger volume 

fraction of the body that is occupied by polar dislocations in the film with 1.40h mµ=  in 

comparison to 0.35h mµ=  as also discussed in Section 5.3.1.  
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Another observation is that the effect of thickness in the passivated films is more 

pronounced in the case of penetrable grain boundaries as compared to the impenetrable 

grain boundaries. Similar qualitative trends as mentioned above are observed for the 

different sets of grain orientations (Figure 13). 

 

5.2.2 Unloading/Bauschinger Effect: It is observed in experiments that the magnitude of 

reverse plastic strain increases on decreasing the film thickness. This particular 

characteristic is initially analyzed for the orientation set 1. Classical plasticity shows 

similar unloading response for films of different thicknesses as shown in Figure 5. In the 

context of PMFDM, thinner passivated films show higher Bauschinger effect (Figure 

9(a)). This thickness dependent unloading behavior could be due to the higher back 

stresses in thin films in comparison to the thick films. For the unpassivated films with 

penetrable grain boundaries, thickness has a very negligible effect on the unloading 

behavior, whereas in the case of constrained grain boundaries, the thicker films show a 

higher Bauschinger effect. 

 

For the orientation set 2, it is found that the Bauschinger effect decreases with an increase 

in thickness in the passivated films whereas it seems to be independent of thickness for 

the unpassivated films. (Figure 9(b)).  

 

For the orientation set 3, unloading behavior is independent of the film thickness in all 

the cases except for the passivated films with unconstrained grain boundaries. They show 

a reasonable size effect in unloading with thinner films having a higher magnitude of 

reverse plastic strain (Figure 9(c)). Thus, it can be concluded that the unloading behavior 

varies significantly with grain orientations. 

5.3 Effect of Grain Boundary Constraints 

5.3.1 Loading: The effect of constraints on plastic flow through grain boundaries on the 

mechanical behavior is discussed in this sub-section. Conventional crystal plasticity 

cannot be used to model the control of plastic flow through interfaces due to the absence 
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of an explicit characterization of dislocations in the model. Details of modeling in 

PMFDM are explained in Section 3.  

 

First, a film with no surface passivation and 0.35h mµ=  is considered. It is observed 

that the film with constrained grain boundaries shows a harder response as compared to 

the film with unconstrained grain boundaries, as shown in Figure 14(b). When the grain 

boundaries are impenetrable to dislocations, plastic flow is restricted which results in the 

accumulation of polar dislocations along the grain boundaries, as shown in Figure 7(c). 

The net polar dislocation density in the thin film is increased due to this obstruction and 

consequently results in a harder response. Similar behavior is observed in the 

unpassivated film with 1.40h mµ=  as shown in Figure 14(d). It is important to note here 

that because the volume of the region of polar density accumulation is larger in the 

thicker film, the relative hardening between the grain-boundary-constrained and 

unconstrained case is greater than in the thinner unpassivated film. 

 

In the film with surface passivation on both sides, the response is almost independent of 

the grain boundary constraints for 0.35h mµ=  (Figure 14(a)). This is because the 

thickness of the layer of polar dislocations formed along the passivation layer is of the 

range of the film thickness as observed in Figure 7(a), (b). Thus, while constraining the 

grain boundaries does increase the volume of the body containing a higher polar 

dislocation density, as a whole this increase is not substantial. However, in the case of the 

thicker passivated film with 1.4h mµ= , 11=σ T  at 1% applied strain in the constrained 

grain boundary case is 1.1 times that of the film with unconstrained grain boundaries, 

according to  expectation (Figure 14(c)).  

 

Similar trends are observed in the case of orientation set 2 and 3 (Figure 15). However, 

the effect of grain boundary constraints on the stress strain behavior decreases on 

increasing the misorientation between adjacent grains from 3-5 degrees about 3x -axis in 

set 1 to 20-30 degrees in set 2. This is due to the fact that plastic flow through a grain 
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boundary decreases on increasing the misorientation between adjacent grains. Thus, a 

grain boundary with a higher misorientation acts as a naturally constrained boundary to 

the flow of dislocations and consequently not much difference is observed between the 

constrained and the unconstrained cases.  

 

5.3.2 Unloading/Bauschinger Effect: The effect of constraints on plastic flow through grain 

boundaries on the unloading behavior is discussed in this sub-section. For the 

unpassivated films with grain orientations corresponding to set 1, the reverse plastic 

strain is higher in the films with impenetrable grain boundaries in comparison to the films 

with penetrable grain boundaries (Figure 9(a)). The effect is dominant in the films with 

1.4h mµ=  as compared to the films with 0.35h mµ= . Bauschinger effect seems to be 

independent of grain boundary constraints in the case of passivated films.  

 

In the case of orientation set 2, the response seems to be independent of the constraints on 

plastic flow through the grain boundaries irrespective of the film thickness and the 

presence/absence of passivation layer (Figure 9(b)).  

 

In orientation set 3, similar trends as obtained for orientation set 1 are observed except 

that the Bauschinger effect in the passivated films with 1.4h mµ=  seems to be sensitive 

to constraints on the plastic flow (Figure 9(c)). 

 

5.4 Other Observations 

It is observed from the set of numerical experiments performed in this paper that the effect of 

surface passivation layer on the mechanical response decreases with an increase in the thickness 

of films. This is shown more clearly in Figure 6(a) for the penetrable grain boundaries. The 

difference in 11=σ Τ  between the passivated and the unpassivated films is higher for 

0.35h mµ=  as compared to that for 1.40h mµ= . Similar behavior is observed in the case of 

impenetrable grain boundaries (Figure 6(b)). 
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5.5 Supplementary Remarks  

5.5.1 In all the computations presented in this paper, the expression for pL  is used as mentioned 

in (11). However, these simulations were also done for following expression of pL and 

are described in Puri (2009). 

 0 0
1

slipn
p κ κ κ

κ

γ
=

= ⊗∑L m n�  (31) 

Both expressions give similar results in terms of the stress-strain response for all cases 

presented in this paper. The motivation behind using (11) in this paper is an instability 

induced by (31) for very special grain orientations at large structural scales and in 

problems where homogeneous deformation is one solution‡. For most orientations we do 

not observe the instability. However, using the symmetric part of (31) as in (11) 

completely eliminates this instability. We believe that the origin of the instability may lie 

in the fact that in this small-deformation theory there is no ‘feedback control,’ through 

the driving force for p
skwL , on the growth of gradients in the skew part of pL . Ongoing 

work related to the finite deformation theory suggests that such control may arise 

naturally from theory. 

 

5.5.2 Due to the use of a primarily explicit solution framework, constraint boundary conditions 

on p× +α V L  (plastic flow) cannot be accounted directly in the discretization of 

equations for z . An auxiliary field P  is introduced to implement the same boundary 

condition for plastic flow in solving for z  
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However, we get almost similar results with and without the incorporation of this 

boundary condition in solving for z  in different cases mentioned in this paper. 

 

                                                 
‡ We are grateful to Justin Mach and Alan Needleman for discovering this instability and for associated discussions. 
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6. Conclusions 

It is shown through numerical experiments that in the context of PMFDM theory, accumulation 

of polar dislocations along surface passivation layers result in a relatively (a) stiffer mechanical 

response, (b) thickness dependence of stress-strain response, and (c) significant Bauschinger 

effect in passivated films as compared to unpassivated films. Also, constraints on plastic flow 

through grain boundaries have a significant influence on size and Bauschinger effect. The results 

appear to be in good qualitative agreement with experimental observations (Xiang and Vlassak, 

2006). However, the curvature of the stress-strain curves from experiments and simulations are 

different. This is a current shortcoming, much like the initial DD modeling for these experiments 

by Nicola et al. (2006), and needs to be rectified in the future. The resolution of this shortcoming 

may very well lie in better modeling of the effects of polar density on initial yield based on 

mechanisms of unambiguous physical origin, and this is a focus of our current research. 
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Figure 1. (a) Schematic of a bicrystal with grains, B1 and B2; (b) Node numbering of elements 
along the grain boundary. 
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Figure 2. Schematic layout of typical model geometry (shaded portion represents the passivation 

layer) 
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Figure 3. Convergence analysis for the film passivated on both sides and grain boundaries being 
impenetrable to dislocations ( 0.35h mµ= ; orientation set 1); (a) stress-strain response for 

different element sizes; (b) σ  at 1% applied strain plotted against the length of the diagonal (H) 
of an element (H is used as a representative measure of element size); (c) field plots of  α  at 

0.6% applied strain for different element sizes. 
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Figure 4. Convergence analysis with respect to number of grains for the film passivated on both 

sides and grain boundaries being impenetrable to dislocations ( 0.35h mµ= ; orientation set 1). 
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Figure 5. Stress-strain behavior of thin films using classical plasticity (orientation set 1). 
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(a) 

 
(b) 

Figure 6. Stress-strain behavior of thin films undergoing cyclic loading using PMFDM 

(orientation set 1); (a) penetrable grain boundaries, (b) impenetrable grain boundaries. 
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Figure 7. Field plot of  α  at 0.6% applied strain for 0.35h mµ= (orientation set 1) ; (a) both 

side passivated and constrained grain boundary, (b) both side passivated and unconstrained grain 

boundary, (c) no side passivated and constrained grain boundary, (d) no side passivated and 

unconstrained grain boundary.  

 

 

 



 34

 

 

 
 

Figure 8. Effect of surface passivation on the stress-strain behavior of thin films for different 

orientation sets (For each line, bottom point represents unpassivated case and top point 

represents both side passivated case; gbc- grain boundary constrained; gbu- grain boundary 

unconstrained) 
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Figure 9. Effect of subsequent cycles of loading and unloading on Bauschinger effect; (a) 

Orientation set 1;  (b) Orientation set 2; (c) Orientation set 3; (d) Schematic for defining reverse 

plastic strain ( rpε ) and pre-strain ( pε ) (after Xiang and Vlassak, 2006) (bsp- both side 

passivated; nsp- no side passivated; gbc- grain boundary constrained; gbu- grain boundary 

unconstrained). 
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Figure 10. Comaprison of stress-strain response of thin films with grain orientations 

corresponding to set 1 and set 2 using classical plasticity. 
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Figure 11. (a) Stress-strain behavior and (b) Bauschinger effect in thin films on unloading at 

different strain levels for 0.35h mµ= ; (c) Schematic for defining reverse plastic strain ( rpε ) and 

pre-strain ( pε ) (after Xiang and Vlassak, 2006) (bsp- both side passivated; nsp- no side 

passivated; gbc- grain boundary constrained; gbu- grain boundary unconstrained). 
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Figure 12. Field plot of  α  at 0.6% applied strain for both side passivated and unconstrained 

grain boundaries case; (a) 0.35h mµ= and (b) 1.40h mµ= . X2-coordinate in both films is 

normalized by their thickness. 
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Figure 13. Effect of film thickness on the stress-strain behavior for different orientation sets (For 

each line, bottom point represents 1.40h mµ=  and top point represents 0.35h mµ= , except in 

no side passivated/grain boundary constrained case; bsp- both side passivated; nsp- no side 

passivated; gbc- grain boundary constrained; gbu- grain boundary unconstrained). 
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Figure 14. Effect of grain boundary constraints on the stress-strain behavior of films undergoing 

cyclic loading; (a) 0.35h mµ= , both side passivated; (b) 0.35h mµ= , no side passivated; (c) 

1.40h mµ= , both side passivated; (d) 1.40h mµ= , no side passivated (gbc- grain boundary 

constrained; gbu- grain boundary unconstrained). 
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Figure 15. Effect of grain boundary constraints on the stress-strain behavior for different 

orientation sets (For each line, bottom point represents grain boundary unconstrained case and 

top point represents constrained case; bsp- both side passivated; nsp- no side passivated) 

 

 

 

 

 


