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Abstract Highly entangled hydrogels exhibit excellent mechanical properties, includ-

ing high toughness, high stretchability, and low hysteresis. By considering the evolu-

tion of randomly distributed entanglements within the polymer network upon mechanical

stretches, we develop a constitutive theory to describe the large stretch behaviors of these

hydrogels. In the theory, we utilize a representative volume element (RVE) in the shape

of a cube, within which there exists an averaged chain segment along each edge and

a mobile entanglement at each corner. By employing an explicit method, we decouple

the elasticity of the hydrogels from the sliding motion of their entanglements, and de-

rive the stress-stretch relations for these hydrogels. The present theoretical analysis is in

agreement with experiment, and highlights the significant influence of the entanglement

distribution within the hydrogels on their elasticity. We also implement the present de-

veloped constitutive theory into a commercial finite element software, and the subsequent

simulations demonstrate that the exact distribution of entanglements strongly affects the

mechanical behaviors of the structures of these hydrogels. Overall, the present theory

provides valuable insights into the deformation mechanism of highly entangled hydrogels,

and can aid in the design of these hydrogels with enhanced performance.
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1 Introduction

Conventional hydrogels typically exhibit weak and fragile mechanical properties[1]. To over-
come these limitations, various strategies and methods were implemented to synthesize hy-
drogels with high mechanical performance[2–6]. By carefully designing their microstructures,
hydrogels can be fabricated with both high toughness and large stretchability at a high water
content[7]. With the combination of two polymer networks, double-network hydrogels partially
addressed the trade-off between stiffness and toughness and exhibited exceptional mechanical
strength[8–9], although they often displayed pronounced hysteresis[8,10]. Recently, highly entan-
gled hydrogels containing dense entanglements within their polymer networks have emerged as
a promising solution to the stiffness-toughness confliction while also displaying low hysteresis,
friction, and wear resistance[10]. The superb mechanical properties of highly entangled hydro-
gels have spurred significant research efforts exploring their applications in advanced hydrogel
adsorbents, fatigue-resistant adhesives, low-friction coatings and so on[11–15].

Though the roles of physical entanglements, as well as chemical crosslinks, within poly-
mer networks were investigated through experimental and phenomenological approaches[16–18],
there have been limited efforts to study the physical mechanisms of entanglements from a mi-
cromechanical perspective[19]. Additionally, the development of theoretical models for hydrogels
incorporating the effects of entanglements remains inadequate[20], despite the existence of var-
ious constitutive theories proposed to study different behaviors of hydrogels[21–27]. It is crucial
and enticing to model the mechanical behaviors of highly entangled hydrogels by considering
mobile entanglements from the molecular level up.

There appears to exist significant similarity between highly entangled hydrogels and syn-
thetic slide-ring hydrogels[3], both of which contain sliding crosslinks. The slide-ring hydrogels
also display excellent mechanical properties, including high extensibility, low viscosity, and high
toughness[3]. By considering molecular frictions induced by sliding of rings on polymer chains,
a nonaffine constitutive theory for large stretch behaviors of these hydrogels was developed[28].
The analysis based on the theory clearly indicated that sliding of rings was critical for their high
fracture energy, which helped provide insights into understanding high mechanical performance
of slide-ring hydrogels. However, in modeling the large stretch behaviors of slide-ring gels[28],
all polymer chains within the slide-ring gel networks were assumed to have the same contour
length. Such an idealized assumption may not accurately capture the real mechanical response
of the gel networks of highly entangled hydrogels[10].

Entanglements within highly entangled hydrogels can be randomly distributed, which would
result in randomly distributed contour lengths of chain segments separated by entanglements.
It is known that the distribution of chain contour lengths within polymer networks, occur-
ring naturally during polymerization, significantly influences the mechanical behavior of soft
materials[29–30], which is crucial for constitutive models to account for[30]. Various assump-
tions regarding the distribution of polymer chain contour lengths were proposed in model-
ing the mechanical behavior of polymer materials. These included the classical Gaussian
pattern[31–32], the uniform distribution[30,33–35], the log-normal distribution[30,35–37], the expo-
nential distribution[30,38–39], the Dirac delta distribution[30,35], the Weibull distribution[30,35],
and the normal distribution[30,35]. Exploring how randomly distributed entanglements within
highly entangled hydrogels affect their mechanical behaviors is an intriguing issue.

To address this issue, we develop a cross-scale constitutive theory for highly entangled hy-
drogels by considering the random distribution of contour lengths of polymer chain segments
separated by randomly distributed entanglements. In our theory, we account for the sliding
motion of randomly distributed mobile entanglements within the polymer chain network. We
characterize the distribution evolution of contour lengths of chain segments within the network
using a specific statistical distribution, namely the gamma distribution, which allows us to cap-
ture the nonuniform nature of contour length of polymer chain segment within the hydrogel.
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We use our theory to predict the stress response of highly entangled hydrogels under uniaxial
tension and compare the results with experimental data. Further, we implement the theory
into the ABAQUS/explicit finite element program using a vectorized user-material (VUMAT)
subroutine. This enables us to study the mechanical behaviors of structures made of highly
entanglement hydrogels under complex loading conditions. Our analysis demonstrates that
the presence of a high density of randomly distributed entanglements can effectively alleviate
stress through sliding mechanisms, and the exact distribution of entanglements significantly
affects the mechanical behaviors of structures of these hydrogels. We anticipate that our theory
provides insights into understanding the excellent mechanical performance of highly entangled
hydrogels.

2 Theory

Entanglements greatly outnumber crosslinks within the polymer network of a highly en-
tangled hydrogel[10]. As schematically illustrated in Fig. 1(a), there exist a significant number
of mobile entanglements along each polymer chain within the gel, which would separate the
polymer chain into multiple chain segments with varied contour lengths. The presence of these
mobile entanglements would allow for sliding of chain segments subject to mechanical loads or
swelling due to water absorption, as illustrated in Fig. 1(a).

In the theory, the gel at the dry state is represented with a representative volume element
(RVE) of a cube, as illustrated in Fig. 1(b). Within the RVE, there exists one chain segment
along each edge of the cube and a mobile entanglement at each corner of the cube. Each chain
segment within the cube represents the averaged behavior of numerous chain segments within
the gel. Within the RVE, the edges of the cube always coincide with the principal directions of
stretches.

(a) (b)

2

3

1

Fig. 1 (a) The schematic of a highly entangled hydrogel with dense entanglements, where entangle-
ments within hydrogels function as mobile crosslinks, which can slide along polymer chains
when hydrogels are subject to mechanical loading or water swelling; (b) the RVE of the hy-
drogel with dense entanglements, where there exists a chain segment along each edge of the
cube and a mobile entanglement (red ring) at each corner of the cube (color online)

The initial dimension of the cube is l0, corresponding to the initial length of a chain segment
within the RVE at the dry state, which can be related to the contour length of the chain segment
at the dry state, denoted as LC0, through[40]

l0 =
√

2ξLC0, (1)

where ξ is the persistence length. Note that the contour lengths of three chain segments within
the RVE at the dry state are exactly the same. When the RVE is deformed due to water
absorption or mechanical loads, its current dimensions along three principal directions would
change, denoted as l1, l2, and l3, respectively. With the consideration of volume conservation,
we have[41]

l1l2l3 = l30 + ΩM, (2)
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where Ω is the volume per water molecule, and M is the number of absorbed water molecules.
At the current time, the principal stretches of the RVE, denoted as λi, are given by λi = li/l0.

With Eq. (2), we have

λ1λ2λ3 = 1 + ΩC, (3)

where C = M/l30 is the nominal concentration of water.
The force-stretch relationship of a chain segment within the RVE is described by the worm-

like chain theory[42],

F =
kBT

ξ

(1
4

(
1− x

LC

)−2

− 1
4

+
x

LC

)
, (4)

where kB denotes the Boltzmann constant, T is the absolute temperature, x is its displacement
of one end with respect to the other end, and LC is its contour length.

When chain segments in the RVE are unequal in forces, they would slide relatively to
entanglements so that their respective contour length changes. This sliding may also affect the
effective number density of chain segments within gels, as will be considered later. With an
explicit method[28], we decouple the elasticity of the gel from chain segment sliding within the
gel. At the current time t, contour lengths of three chain segments in the RVE are assumed to
be fixed, which are only updated in the duration between neighboring steps ∆t.

We solve the elastic field of the gel by employing the principle of virtual work[43–44]. Let the
RVE at the current time change its dimensions by infinitesimal small amounts δl1, δl2, and δl3.
Simultaneously, the number of absorbed water molecules within the RVE changes, which leads
to the change in the virtual work done by the chemical potential of water, denoted as µ, being
µδM . Hence, the change in the internal energy within the RVE, denoted as δu, should fulfil

δu = σ1l2l3δl1 + σ2l3l1δl2 + σ3l1l2δl3 + µδM, (5)

where σ1, σ2, and σ3 denote the three principal stresses, respectively. With Eqs. (2) and (5),
we have

δu =
(
σ1 +

µ

Ω

)
l30λ2λ3δλ1 +

(
σ2 +

µ

Ω

)
l30λ3λ1δλ2 +

(
σ3 +

µ

Ω

)
l30λ1λ2δλ3. (6)

At the current time, we also have

δu =
∂u

∂λ1
δλ1 +

∂u

∂λ2
δλ2 +

∂u

∂λ3
δλ3. (7)

With Eqs. (6) and (7), also considering that δλ1, δλ2, and δλ3 are arbitrary and independent
variables, we have





σ1 =
1

λ2λ3

∂U

∂λ1
− µ

Ω
,

σ2 =
1

λ3λ1

∂U

∂λ2
− µ

Ω
,

σ3 =
1

λ1λ2

∂U

∂λ3
− µ

Ω
,

(8)

where δU(= δu/l30) denotes the change in the internal energy density within the RVE.
The change in the internal energy density within the RVE due to the change in the principal

stretches is the sum of the change in the elastic energy density of polymer chains, denoted as
U1, and that in the energy density of mixing water with polymers, denoted as U2. Thus, we
have

δU = δU1 + δU2. (9)
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In Eq. (9),

δU1 = N1δε1 + N2δε2 + N3δε3, (10)

where Ni (i = 1, 2, 3) denotes the effective number density of chain segments along the ith
principal direction, and εi (i = 1, 2, 3) denotes the elastic energy stored within the chain segment
along the ith principal direction. The elastic energy stored within one chain segment is given
by ε =

∫
Fdx. The energy density of mixing water with polymers is given by[41]

U2 = kBT
(
Cln

ΩC

1 + ΩC
+

χC

1 + ΩC

)
, (11)

where χ is a measure of the interactions between polymer chains and water. Note that the
effect of the presence of crosslinks between chains is not accounted for in Eq. (11).

With Eqs. (8)–(11), we have
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(12)

with the detailed derivation given in Appendix A.
With the explicit method, we only consider sliding of chain segments in the duration between

neighboring time steps. The sliding velocity of chain segments within the RVE is given by

Vij =
Fi − Fj

η
, (13)

where i 6= j, Vij denotes the sliding velocity of the jth chain segment towards the ith chain
segment, Fi corresponds to the force of the ith chain segment, and η is a linear frictional
coefficient between polymer chains and entanglements, which is set to be a very small value so
as not to induce any vincible viscosity in the analysis. As shown in Appendix A, the choice of
Eq. (13) would make our constitutive theory consistent with the 2nd law of thermodynamics.

With Eq. (13), the changes in the contour lengths of three chain segments within the RVE
during ∆t, denoted as ∆LC1, ∆LC2, and ∆LC3, respectively, are given by





∆LC1 = (V12 + V13)∆t,

∆LC2 = (V21 + V23)∆t,

∆LC3 = (V31 + V32)∆t.

(14)

Note that each chain segment within the RVE represents the averaged behavior of numerous
chain segments within the gel. The contour lengths of these chain segments within the gel
are generally non-uniform with a random distribution depending on the fabrication procedure.
Upon sliding, the contour lengths of chain segments within the gel would change. When a
chain segment becomes too short, i.e., neighboring entanglements on its two sides become too
close, entanglements would merge so that the chain segment would vanish. On the other hand,
merged entanglements could re-emerge due to chain sliding so that a new chain segment would
be born. Such a phenomenon would affect the effective number density of chain segments within
the gel.

To calculate the effective number density of chain segments within the gel at t + ∆t, we
consider that the initial contour lengths of chain segments separated by entanglements along
each principal direction at the dry state, denoted as y, are randomly distributed. Without
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losing its generality, y is assumed to follow the gamma distribution, given by

f(y) =
1

βαΓ(α)
yα−1exp

(
− y

β

)
, (15)

where f is the probability density function of y, α is the shape parameter of the gamma
distribution, and β is the scale parameter of the gamma distribution. Since y is always positive,
we would have

∫ +∞

0

1
βαΓ(α)

yα−1exp
(
− y

β

)
dy = 1. (16)

With the probability density function described by Eq. (15), the averaged contour length of
these chain segments would be αβ, which is taken as the contour length of chain segment
within the RVE at the dry state. It is further assumed that chain sliding does not affect the
shape parameter of α but affects the scale parameter of β in Eq. (15) for the random distribution
of contour lengths of chain segments along each principal direction at t + ∆t. This assumption
might be justified with the consideration of Eq. (4), where the stretch and the force of the
chain segment are one-to-one match. When regarding that chain segments along one principal
direction within the gel have the same stretch and the same force at t, the same scaling of their
contour lengths during ∆t would still yield the same chain forces at t+∆t. In this way, we will
have





βt+∆t
1 = L

t+∆t

C1 /α,

βt+∆t
2 = L

t+∆t

C2 /α,

βt+∆t
3 = L

t+∆t

C3 /α,

(17)

where L
t+∆t

C1 , L
t+∆t

C2 , and L
t+∆t

C3 correspond to the respective contour lengths of three chain
segments within the RVE at t+∆t, and βt+∆t

1 , βt+∆t
2 , and βt+∆t

3 correspond to respective scale
parameters of the gamma distribution for chain segments within the gel along the principal
directions at t + ∆t.

When a chain segment within the gel becomes too short, for example, ∼1 nm, neighboring
entanglements would strongly interact with each other. The complex formed by this very
short chain segment and neighboring entanglements can have a relatively high stiffness. In our
opinion, the force on chain segments is more or less equal within the highly entangled hydrogels
so that a relatively small amount of elastic energy would be stored within such a complex. For
this reason, we have not included this tiny amount of elastic energy in the model. However,
these chains are not moved away from the model system. If they become long again due to chain
sliding, their elastic energy would be re-counted in the model. Specifically, a chain segment
within the gel is counted in calculating the effective number density of chain segment only when
its current contour length is above a critical small value, denoted as Lcr. The effective number
densities of chain segments along the three principal directions at t + ∆t, denoted as N t+∆t

1 ,
N t+∆t

2 , and N t+∆t
3 , are given by





N t+∆t
1 =

N0

3

(
1−

∫ Lcr

0

1
β1

αΓ(α)
xα−1exp

(
− x

β1

)
dx

)
,

N t+∆t
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N0

3

(
1−

∫ Lcr

0

1
β2

αΓ(α)
xα−1exp

(
− x

β2

)
dx

)
,

N t+∆t
3 =

N0

3

(
1−

∫ Lcr

0

1
β3

αΓ(α)
xα−1exp

(
− x

β3

)
dx

)
,

(18)

respectively, where N0 is the number density of chain segments within the gel.
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There exist fixed crosslinks with a relatively low density within highly entangled hydrogels,
which would provide constraints on the total contour length of chain segments within the gel
network and help prevent the gel from collapsing. We have enforced that the total contour
lengths of polymer chain segments within the RVE are conserved upon loading in the theory.
Thus, with Eq. (18), to keep total contour lengths of polymer chains along each principal direc-
tion within the gel conserved, the effective contour lengths of three chain segments within the
RVE at t + ∆t, denoted as L̃t+∆t

C1 , L̃t+∆t
C2 , and L̃t+∆t

C3 , which would be used in the calculation of
Eq. (12), are given by





L̃t+∆t
C1 =

N0L
t+∆t

C1

3N t+∆t
1

,

L̃t+∆t
C2 =

N0L
t+∆t

C2

3N t+∆t
2

,

L̃t+∆t
C3 =

N0L
t+∆t

C3

3N t+∆t
3

.

(19)

Due to entanglement sliding, the contour length between neighboring entanglements would
change so that the corresponding end-to-end distance for the chain segment between neighboring
entanglements without force would also change, given by





∆l01 =
√

2ξL̃C1 −
√

2ξLC0,

∆l02 =
√

2ξL̃C2 −
√

2ξLC0,

∆l03 =
√

2ξL̃C3 −
√

2ξLC0,

(20)

respectively, where ∆l01, ∆l02, and ∆l03 denote the changes in the corresponding end-to-end
distance for the chain segment between neighboring entanglements without force within the
RVE. The displacements of each chain segment within the RVE, denoted as x1, x2, and x3,
would then be 




x1 = (λ1 − 1)l0 −∆l01,

x2 = (λ2 − 1)l0 −∆l02,

x3 = (λ3 − 1)l0 −∆l03.

(21)

We will use the constitutive theory developed above to predict large stretch behaviors of
highly entangled hydrogels in the following. In all analyses, σ1 = σ2 = σ3 = 0 at the free
swelling state with λ1 = λ2 = λ3 = λs. The stretches in the analyses are then normalized by
λs. The strain rate, denoted as γ, is given by γ = ∆λ1

λs∆t , with ∆λ1 being the change in λ1 within
a time step of ∆t. Default values of parameters used in the analysis are listed in Table 1.

Table 1 Default parameters in the simulations

Item Parameter Item Parameter

N0 0.204 nm−3 kBT 4.01 pN · nm

Lcr 1.3 nm Ω 0.03 nm3[41]

η 0.000 1 pN · s · nm−1[28] µ 0[41]

χ 0.01[28] ξ 0.35 nm[28]

3 Effects of entanglement distribution on the stress-stretch curves of highly
entangled gels

With Eq. (15), the effects of α or β for the initial distribution of contour lengths of chain
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segments within the gel are displayed in Fig. 2. In Figs. 2(a) and 2(b), when α = 0.5 or α = 1,
the probability density function monotonically decreases as the contour length gets larger.
Note that, when α = 1, the gamma distribution will be exactly the exponential distribution.
In Fig. 2(c), when α = 5, the probability density function becomes unimodal, which increases
and then decreases as the contour length gets larger. Since the mean value of the gamma
distribution is given by αβ, and its variance is given by αβ2, both the mean value and the
variance become greater as β gets larger with fixed α in Figs. 2(a)–2(c).
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Fig. 2 (a)–(c) The effects of α or β in gamma distribution on the probability density of initial
contour lengths of polymer chain segments within the gel; (d)–(f) theoretical predictions of
stress-stretch curves of the corresponding gel. Predictions for the cases with uniform initial
contour lengths are also plotted for comparison (color online)

With varied initial distributions of contour lengths of chain segments within the gel displayed
in Figs. 2(a)–2(c), we use the developed constitutive theory to predict stress-stretch curves of
the corresponding gel. In the analysis, the gel is under uniaxial tension. The predictions are
displayed in Figs. 2(d)–2(f), where the stress generally increases with the stretch. In Figs. 2(d)–
2(f), the stress is lower as β gets larger at the same stretch with fixed α. This result is reasonable,
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since, with fixed α, the larger β is, the larger the initial contour lengths of chain segments would
be, and thus the gel becomes softer. For comparison, the predicted stress-stretch curves for
the gel with uniform initial contour lengths of chain segments are also plotted in Figs. 2(d)–
2(f), with its stress being generally larger than that of the gamma distribution. The predicted
stress-stretch curve for the gel with uniform initial contour lengths of chain segments almost
coincides with that with the gamma distribution when α = 5. As β gets larger, the predicted
stress-stretch curve for the gel with uniform initial contour lengths of chain segments will also
get closer to that with the gamma distribution. These results can be understood. With the
gamma distribution, there will be a portion of chain segments with the contour length, which
is smaller than Lcr, leading to a lower effective chain number. In this way, the predicted stress-
stretch curve for the gel with uniform initial contour lengths of chain segments should be harder
than that with the gamma distribution. As seen in Fig. 2(c), when α = 5, there exist only a
very small portion of chain segments with the contour length smaller than Lcr, and thus the
predicted stress-stretch curve for the gel with uniform initial contour lengths of chain segments
is almost the same as that with the gamma distribution.

We also investigate the case when the mean value of αβ is fixed, with results displayed in
Fig. 3. With fixed αβ, when α becomes larger, β would become smaller, and the variance of
αβ2 would also become smaller. As inferred from Figs. 3(a)–3(c), the portion of chain segments
with initial contour lengths, which are smaller than Lcr, decreases as α gets larger. Under this
condition, the effective number of chain segments within the corresponding gel would be higher.
Therefore, as displayed in Figs. 3(d)–3(f), the stress-stretch curves get higher as α gets larger.
For comparison, the predicted stress-stretch curves for the gel with uniform initial contour
lengths of chain segments are also plotted in Figs. 3(d)–3(f), with its stress being generally
larger than that of the gamma distribution.

4 Predictions of the stress-stretch curves of synthesized highly entangled
gels

With our developed theory, we then make predictions of the stress-stretch curves of synthe-
sized highly entangled gels[10], as displayed in Fig. 4. Parametrical values are carefully chosen
to be physically sound in our analysis. For example, the chain density in the analysis is calcu-
lated based on the initial elastic modulus reported in the experiment[10]. The average of the
initial contour length of chain segments in the experiments was estimated to be about 50 nm[10],
while that used in our analysis is 39 nm. The gamma distribution employed in the prediction
is displayed in Fig. 4(a). As seen in Fig. 4(b), when α = 1 and β = 39nm, our prediction of
the stress-stretch curve of the synthesized gels upon uniaxial tension agrees quite well with the
experiment[10]. Such good agreement may also suggest the validity of our choice of gamma
distribution in developing the constitutive theory in this work.

In Fig. 4(c), the evolution of effective number density of chain segments with the stretch
within the gel is presented. As clearly seen in Fig. 4(c), the effective number density of chain
segments along the stretch direction gradually gets larger upon uniaxial tension, because merged
entanglements re-emerge due to chain sliding, and new chain segments are re-born. Meanwhile,
the effective number density of chain segments perpendicular to the stretch direction gradually
gets smaller, because entanglements would merge, and chain segments would temporarily disap-
pear when a chain segment becomes too short due to chain sliding. In Fig. 4(d), the evolution of
the contour length of chain segment within the RVE with the stretch is presented, which clearly
shows that the contour length of chain segment along the stretch direction within the RVE gets
longer, which appears to saturate at relatively large stretches, while that perpendicular to the
stretch direction gets shorter, which almost approaches 0.

We further validate our model by comparing theoretical predictions with other experimental
data in the literature. In Fig. 5(a), we simulate the stress-stretch curve of a highly entangled
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Fig. 3 (a)–(c) The effects of the product of αβ in gamma distribution on the probability density of
initial contour lengths of polymer chain segments within hydrogels; (d)–(f) theoretical predic-
tions of stress-stretch curves of hydrogels under uniaxial tension with varied distributions of
entanglements within hydrogels. Predictions for the case with uniform initial contour lengths
are also plotted for comparison (color online)

elastomer containing limited amount of water under uniaxial extension[10]. In the analysis, we
have set χ = 0.6 to make the free swelling ratio λs small enough. As illustrated in Fig. 5(a), our
model prediction can capture the stress-stretch response of a highly entangled elastomer[10].
In Figs. 5(b) and 5(c), we also predict the stress-stretch curves under uniaxial loading of other
synthetic highly entangled hydrogels as reported in Refs. [11] and [45], which agree well with
the experiment.

As displayed in Figs. 6(a) and 6(b), our model can also predict rate independence and
the negligible hysteresis of highly entangled hydrogels, which agrees with the experiment[10].
However, the experiment[10] also showed that the as-prepared highly entangled hydrogels with a
low water content can exhibit pronounced hysteresis, which can also be predicted by our model,
as shown in Fig. 6(c). Note that the frictional coefficient is set to be 0.000 1 pN · s · nm−1 for
our analysis displayed in Figs. 6(a) and 6(b), but a relatively large value of 0.12 pN · s · nm−1

for that displayed in Fig. 6(c).
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perimental results[10]; (c) the effective number of chain segments along the loading direction
increases slowly while decreases rapidly along the perpendicular direction of the loading with
stretch; (d) the average contour length along the loading direction increases and that perpen-
dicular to the loading direction decreases with stretch. In the simulation, α = 1, β = 39nm,
the initial effective number of chain segments is 0.108 nm−3, and the stretch rate is 0.025 s−1

(color online)

5 Analysis of structures made of highly entangled gels upon complex load-
ing conditions

To facilitate the prediction of mechanical behaviors of structures made of highly entangled
hydrogels subject to complex loading conditions, we further implement the developed consti-
tutive theory into the ABAQUS through a VUMAT subroutine. In our numerical scheme, a
second-order tensor LC is utilized, defined as

LC =




LC1

LC2

LC3


 (22)

with Ltotal
C = LC1+LC2+LC3 being the first invariant of LC. The tensor components within LC

are initially set in the principal axes of isotropic stretches at the free swelling state. In complex
deformations, we set the off-diagonal components of LC to be 0, and only three diagonal
components of LC will be updated during a time interval of ∆t.

With the programmed VUMAT subroutine, we simulate the stress field of a plate with a
circular hole existing at its center upon uniaxial tensional stretches, as illustrated in Fig. 7(a).
Several types of gel materials are under our investigation, i.e., the contour length of chain
segments within gels follows the gamma distribution with mobile entanglements, the contour
length of chain segments within gels follows the gamma distribution but with fixed crosslinks,
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Fig. 5 Comparison of our model predictions with other experimental data: (a) the stress-stretch

curve of a highly entangled elastomer under uniaxial tension[10], where in the analysis, N0 =
0.249 nm−3, α = 0.7, β = 128.57 nm, η = 0.4 pN · s · nm−1, and χ = 0.6; (b) the stress-
stretch curve of a highly entangled hydrogel under uniaxial tension[11], where in the analysis,
N0 = 0.075 nm−3, α = 0.3, β = 1 667 nm, η = 11 pN · s · nm−1, Lcr = 0.1 nm, and χ = 0.45;
(c) a stress-stretch curve of a highly entangled hydrogel under uniaxial tension[45], where in
the analysis, N0 = 0.008 4 nm−3, α = 1.2, β = 500 nm, η = 0.000 8 pN · s · nm−1, and χ = 0.48
(color online)

and the initial contour length of chain segments within gels is uniform with mobile entangle-
ments. Simulation results are presented in Figs. 7(b) and 7(c). The maximum of the nominal
stress, σ11, which occurs at the top of the hole, increases with the stretch, as displayed in
Fig. 7(b). The case with fixed crosslinks shows the largest value, the case with the uniform
contour length is the second largest, and the case with the gamma distribution is the smallest.
The contours of the von Mises stress at the same stretch for three different gel materials are
also displayed in Fig. 7(c), where we can clearly see that the sliding of entanglements dramat-
ically lowers the stress concentration near the hole. We can also see that the exact random
distribution of entanglements within highly entangled gels significantly affects the mechanical
behaviors of complex structures made of them.

6 Discussion

In the classical theories of rubber elasticity, such as the 3-chain model[46] or the 8-chain
model[47], it is assumed that the edges of the unit cell of the RVE always align with the
directions of principal stretches. Following this tradition, we also assume that the chain segment
orientations within the RVE always align with the principal stretch directions in the theory.
Note that, at each material point, the gel is represented with a unit cell with chain segments
oriented in three orthogonal directions. However, under complex loading conditions, the unit
cell for each material point within the gel structure may have different rotations or deformations
with different cuboidal shapes.
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Fig. 6 (a) The prediction of the rate independence for the fully swollen highly entangled hydrogel,
where in the analysis, η = 0.000 1 pN·s·nm−1; (b) the prediction of the negligible hysteresis for
the fully swollen highly entangled hydrogel, where arrows indicate loading or unloading, and
η = 0.000 1 pN · s · nm−1; (c) the prediction of the pronounced hysteresis for the as-prepared
highly entangled hydrogel, where in the analysis, η = 0.12 pN · s · nm−1 (color online)

The behavior of each chain segment within the RVE represents the average behavior of many
chain segments with the contour length distribution within hydrogels. It is possible to calculate
the average force over the contour length distribution when these chain segments are subject
to the same compatible stretch and then take it as the force acting on a chain segment within
the RVE. However, using this routine approach may result in significant differences in the force
between chain segments with different contour lengths. In our opinion, within highly entangled
hydrogels, the forces within chain segments are more or less equal before reaching the sliding
limit. To address this issue in our theory, we instead average the contour length over the contour
length distribution. Subsequently, we calculate the force for each chain segment within the RVE
based on the force-stretch relationship. It is important to note that conserving the contour
length of chain segments within highly entangled hydrogels is critical in developing our theory.

Within highly entangled hydrogels, entanglements would impose constraints on the avail-
able entropic configurations of chain segment fluctuations, which should be weaker than those
imposed by physical or chemical bonds. In this context, we approximate these entanglements
as sliding constraints. However, we must admit that there may potentially be additional de-
grees of freedom at entanglement sites. For example, two chains wrapped around each other
as a double helix can unwrap under certain load combinations or thermal fluctuations, termed
as the de-twisting mode. If there is a de-twisting mode existing between chain segments, it
could result in a sudden change in the available length for entropic fluctuation, rather than the
gradual change assumed in our current work that focuses solely on the sliding mode.

Such a de-twisting mode may exhibit similarities to folded domains within protein chains,
where the unfolding of folded domains upon loads would also result in a sudden change in the
available length for entropic fluctuation. As seen from the previous studies[48], a sudden change
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Fig. 7 Stresses in a plate with a circular hole existing at its center upon uniaxial tension, where
three types of gel materials are under investigation, and the gel with fixed crosslinks is the
stiffest, followed by the one with the uniform contour length, and then the one with the
gamma distribution: (a) schematic of a square plate with a circular hole at its center subject
to uniaxial tension; (b) the maximum of the nominal stress, σ11, within the plate changes
with stretch; (c) stress contours at a stretch ratio of 2. In the simulations, the initial contour
length of the chain segments within the RVE is 39 nm, the number density of chain segments
is 0.108 nm−3, the stretch rate is 0.1 s−1, the critical value of the contour length for the case
with the uniform contour length is 0, and other parameters are listed in Table 1 by default.
For the case of fixed crosslinks, the frictional coefficient is set to be a very large value, which
is 10 000 pN · s · nm−1 (color online)

in the polymer chain contour length within protein hydrogels upon loading can lead to significant
energy dissipation. However, experimental findings have demonstrated that highly entangled
hydrogels exhibit negligible energy dissipation and fully recoverable stress-stretch curves during
cyclic loading. If de-twisting occurs in highly entangled hydrogels under loading conditions, re-
twisting would be expected to take place. This process would lead to a considerable amount
of energy dissipation, which contradicts the observed experimental results. As a result, we
speculate that the occurrence of the de-twisting mode in highly entangled hydrogels during
loading is relatively low, even if it exists.

7 Conclusions

In this study, we develop a constitutive theory for highly entangled hydrogels based on the
random distribution of entanglements within them. Our analysis indicates that the developed
model is able to predict mechanical behaviors of highly entangled hydrogels well. We also
implement this theory into the ABAQUS/explicit using a user subroutine of VUMAT. We find
that a high density of mobile entanglements can play a crucial role in transmitting force along
polymer chains and effectively relieving stresses caused by applied loads. Our analysis also
indicates that the exact distribution of entanglements strongly affects the mechanical behaviors
of structures of these hydrogels. We believe that this theory provides a constructive approach
for quantitatively designing highly entangled hydrogels with exceptional properties.
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Appendix A

(I) The detailed derivation of Eq. (12)
With Eq. (10), we will have

δU1 = N1F1l0δλ1 + N2F2l0δλ2 + N3F3l0δλ3. (A1)

With Eq. (11), we will have

δU2 = kBTδ
(
C ln

ΩC

1 + ΩC
+

χC

1 + ΩC

)
. (A2)

With Eq. (A2), we will have

δU2 = kBT
(

ln
ΩC

1 + ΩC
+

1

1 + ΩC
+

χ

(1 + ΩC)2

)
δC. (A3)

With Eqs. (3) and (A3), we will have

δU2 =
kBT

Ω

(
ln

(
1− 1

λ1λ2λ3

)
+

1

λ1λ2λ3
+

χ

λ2
1λ

2
2λ

2
3

)
(λ2λ3δλ1 + λ1λ3δλ2 + λ1λ2δλ3). (A4)

With Eqs. (8), (9), (A1), and (A4), we will obtain Eq. (12).
(II) The constitutive theory is consistent with the second law of the thermodynamics
Based on the first law of thermodynamics,

W = u + Q, (A5)

where W is the work done together by the chemical potential of the water and by the applied force,
and Q is the heat produced by the friction during chain segments sliding. There exist six independent
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variables in the system, including λ1, λ2, λ3, ∆12, ∆13, and ∆23, where ∆12 denotes the change in
the contour length from the chain segment 1 to the chain segment 2 within the RVE, ∆13 denotes the
change in the contour length from the chain segment 1 to the chain segment 3 within the RVE, and
∆23 denotes the change in the contour length from the chain segment 2 to the chain segment 3 within
the RVE.

With Eq. (6), the variation of W is given by

δW =
(
σ1 +

µ

Ω

)
l30λ2λ3δλ1 +

(
σ2 +

µ

Ω

)
l30λ3λ1δλ2 +

(
σ3 +

µ

Ω

)
l30λ1λ2δλ3. (A6)

The variation of u is given by

δu =
∂u

∂λ1
δλ1 +

∂u

∂λ2
δλ2 +

∂u

∂λ3
δλ3 +

( ∂u

∂LC2

− ∂u

∂LC1

)
δ∆12

+
( ∂u

∂LC3

− ∂u

∂LC1

)
δ∆13 +

( ∂u

∂LC3

− ∂u

∂LC2

)
δ∆23. (A7)

The variation of Q is given by

δQ =
∂Q

∂∆12
δ∆12 +

∂Q

∂∆13
δ∆13 +

∂Q

∂∆23
δ∆23. (A8)

Considering that δλ1, δλ2, and δλ3 are arbitrary and independent variables, we will get the exact
form as Eq. (8).

Considering that δ∆12, δ∆13, and δ∆23 are arbitrary and independent variables, we will have




∂u

∂LC1

− ∂u

∂LC2

=
∂Q

∂∆12
,

∂u

∂LC1

− ∂u

∂LC3

=
∂Q

∂∆13
,

∂u

∂LC2

− ∂u

∂LC3

=
∂Q

∂∆23
.

(A9)

With Eqs. (4), (10), and (A9), we will obtain




∂Q

∂∆12
=

N0

3

x2

LC2

F2 − N0

3

x1

LC1

F1,

∂Q

∂∆13
=

N0

3

x3

LC3

F3 − N0

3

x1

LC1

F1,

∂Q

∂∆23
=

N0

3

x3

LC3

F3 − N0

3

x2

LC2

F2,

(A10)

where x1, x2, and x3 are the displacements of one end with respect to the other end of three chain
segments within the RVE.

With the specification of Eq. (13), we will have




∆̇12 =
F2 − F1

η
,

∆̇13 =
F3 − F1

η
,

∆̇23 =
F3 − F2

η
.

(A11)

With Eqs. (A10) and (A11), we have

Q̇ =
∂Q

∂∆12
∆̇12 +

∂Q

∂∆13
∆̇13 +

∂Q

∂∆23
∆̇23

=
N0

3

( x1

LC1

F1 − x2

LC2

F2

)F1 − F2

η
+

N0

3

( x1

LC1

F1 − x3

LC3

F3

)F1 − F3

η

+
N0

3

( x2

LC2

F2 − x3

LC3

F3

)F2 − F3

η
. (A12)

Noting that F monotonously increases with x
LC

in Eq. (4), we can show that Q̇ > 0. With dS = dQ
T

,
where S denotes the entropy of the system, dS > 0, the second law of thermodynamics will be satisfied.


