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Abstract

Universal displacements are those displacements that can be maintained, in the absence of body
forces, by applying only boundary tractions for any material in a given class of materials. Therefore,
equilibrium equations must be satisfied for arbitrary elastic moduli for a given anisotropy class. These
conditions can be expressed as a set of partial differential equations for the displacement field that we
call universality constraints. The classification of universal displacements in homogeneous linear elasticity
has been completed for all the eight anisotropy classes. Here, we extend our previous work by studying
universal displacements in inhomogeneous anisotropic linear elasticity assuming that the directions of
anisotropy are known. We show that universality constraints of inhomogeneous linear elasticity include
those of homogeneous linear elasticity. For each class and for its known universal displacements we find
the most general inhomogeneous elastic moduli that are consistent with the universality constrains. It is
known that the larger the symmetry group, the larger the space of universal displacements. We show that
the larger the symmetry group, the more severe the universality constraints are on the inhomogeneities
of the elastic moduli. In particular, we show that inhomogeneous isotropic and inhomogeneous cubic
linear elastic solids do not admit universal displacements and we completely characterize the universal
inhomogeneities for the other six anisotropy classes.

Keywords: Universal deformation, universal displacement, linear elasticity, anisotropic solids, inhomo-
geneities.
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4 Conclusion 18

1 Introduction

In nonlinear elasticity universal deformations are those deformations that are possible for a body made of any
material in a given class of materials in the absence of body forces and by applying only boundary tractions
[Saccomandi, 2001]. Motivated by the works of Rivlin [Rivlin, 1948, 1949a,b], Ericksen presented the first
systematic analysis of universal deformations in homogeneous compressible isotropic solids [Ericksen, 1955],
and incompressible isotropic solids [Ericksen, 1954]. In the case of compressible isotropic solids, Ericksen
[1955] proved that universal deformations must be homogeneous. Characterizing universal deformations in
the incompressible case turned out to be much more complicated. Ericksen [1954] found four families of
universal deformations (in addition to homogeneous deformations that define Family 0). In his analysis,
Ericksen conjectured that a deformation with constant principal invariants must be homogeneous, which
turned out to be incorrect [Fosdick, 1966]. This motivated the discovery of a fifth family of inhomogeneous
universal deformations with constant principal invariants [Singh and Pipkin, 1965, Klingbeil and Shield,
1966]. The known five families of universal deformations other than homogeneous deformations are (see
Truesdell and Noll [2004], [Tadmor et al., 2012, p.265], and [Goriely, 2017, p. 305] for a visualization and
discussion): (i) Family 1: Bending, stretching, and shearing of a rectangular block; (ii) Family 2: Straight-
ening, stretching, and shearing of a sector of a cylindrical shell; (iii) Family 3: Inflation, bending, torsion,
extension, and shearing of a sector of an annular wedge; (iv) Family 4: Inflation/inversion of a sector of a
spherical shell; (v) Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge.
The case of constant principal invariants is still an open problem. However, the conjecture is that there are
no solutions other than Family 5 deformations.

The study of universal deformations has been extended to anelasticity by Yavari and Goriely [2016] in
the compressible case, and by Goodbrake et al. [2020] in the incompressible case. In the literature the
study of universal deformations has been restricted to homogeneous solids. Recently, Yavari [2021] extended
Ericksen’s analysis to inhomogeneous isotropic solids. It was observed that the universality constraints of
inhomogeneous solids include those of the corresponding homogeneous solids. It was shown that inhomoge-
neous compressible isotropic solids do not admit universal deformations. For incompressible isotropic solids,
the universal inhomogeneities were characterized for each of the six known families of universal deformations.1

Until recently, there were only some limited studies of universal deformations in anisotropic nonlinear solids
[Ericksen and Rivlin, 1954]. In [Yavari and Goriely, 2021], we systematically studied universal deformations
and universal material preferred directions in homogeneous compressible and incompressible transversely
isotropic, orthotropic, and monoclinic solids.2. In the case of inhomogeneous anisotropic solids we recently
studied the universal inhomogeneities [Yavari and Goriely, 2022]. This systematic analysis completed what
we referred to as the universal program of nonlinear hyperelasticity.

The analogue of universal deformations in linear elasticity are universal displacements [Truesdell, 1966,
Gurtin., 1972, Yavari et al., 2020] and our goal here is to complete the the universal program of linear
elasticity. In [Yavari et al., 2020], universal displacements in homogeneous anisotropic linear elasticity were
studied. Universal displacements were fully characterized for all the eight symmetry classes assuming that
the directions of anisotropy are known. In this paper, we extend the analysis of universal displacements to
inhomogeneous anisotropic linear elasticity.

This paper is organized as follows. In §2 we study universal displacements and inhomogeneities in
isotropic linear elasticity. In §3, the same problem is studied for the remaining seven symmetry classes
(triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic, and cubic). Conclusions are
given in §4.

1There was a mistake in the case of Family 0 deformations that was corrected in [Yavari and Goriely, 2022].
2There was a mistake in the case of Family 5 deformations that was corrected in [Yavari and Goriely, 2022].
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2 Universal displacements in inhomogeneous isotropic linear elas-
ticity

We first extend the work of [Yavari et al., 2020] to characterize universal displacements in inhomogeneous
isotropic linear elasticity. In a Cartesian coordinate system {xa}, the elasticity tensor has components
Cabcd(x) = λ(x)δabδcd + µ(x)(δacδbd + δadδbc), where δab denote Kronecker’s delta, and λ, µ are the Lamé
constants that explicitly depend on position x. The equilibrium equations in the absence of body forces read

σab,b = (λ+ µ)ub,ba + µua,bb + λ,aub,b + µ,b(ua,b + ub,a) = 0 , a = 1, 2, 3 , (2.1)

where σab and ua are the Cauchy stress and displacement components, respectively, σab,b denotes the partial
derivatives of σab with respect to xb, and summation over repeated indices is assumed. Eq.(2.1) must hold
for arbitrary elastic moduli. In particular, it must hold for uniform elastic moduli. This implies that

ub,ba = ua,bb = 0 , or grad ◦ divu = 0, ∆u = 0 , (2.2)

which are the universality constraints of homogeneous isotropic linear elasticity that we derived previously
[Yavari et al., 2020]. Therefore, for inhomogeneous isotropic linear elasticity, universal displacements must be
constant-divergence harmonic vector fields. We define the universal inhomogeneities to be those nonuniform
elastic moduli that satisfy (2.1) for constant-divergence harmonic vector fields. In other words, the extra
universality constraints of inhomogeneous isotropic linear elasticity are

λ,aub,b + µ,b(ua,b + ub,a) = 0 , a = 1, 2, 3 . (2.3)

On R3 constant-divergence vector fields have the following representation [McLachlan and Quispel, 2002]

ua(x) = Sab,b(x) +
c

3
xa + ka, (2.4)

where Sab(x) = −Sba(x), and c and ka are constants. More specifically, in Cartesian coordinates x =
(x1, x2, x3), S has the following representation

S(x) =


0 α(x) β(x)

−α(x) 0 γ(x)

−β(x) −γ(x) 0

 , (2.5)

where α, β, and γ are arbitrary functions that must satisfy the following system of PDEs [Yavari et al., 2020]
∆α,2 + ∆β,3 = 0,

∆γ,3 −∆α,1 = 0,

∆β,1 + ∆γ,2 = 0.

(2.6)

Substituting (2.4) into (2.3) leads to

c

3
[3λ,a(x) + 2µ,a(x)] + [Sam,bm(x) + Sbm,am(x)]µ,b(x) = 0 , (2.7)

which must hold for arbitrary c, and hence 3λ,a(x) + 2µ,a(x) = 0, i.e., 3λ(x) + 2µ(x) must be uniform.
Therefore, the universality constraints are simplified to read

(Sa1,11 + Sa2,12 + Sa3,13 + S12,a2 + S13,a3)µ,1 = 0 ,

(Sa1,12 + Sa2,22 + Sa3,23 + S21,a1 + S23,a3)µ,2 = 0 ,

(Sa1,13 + Sa2,23 + Sa3,33 + S31,a1 + S32,a2)µ,3 = 0 .

(2.8)
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For a = 1, (2.8) reads
2 (S12,12 + S13,13)µ,1 = 0 ,

(−S12,11 + S12,22 + S13,23 + S23,13)µ,2 = 0 ,

(S12,23 + S13,33 − S13,11 + S32,12)µ,3 = 0 .

(2.9)

Since these conditions must be satisfied for all α, β and γ that satisfy (2.6), we can choose, α(x) = a0x
2,

β = γ = 0 and the above constraints are simplified to read −2a0 µ,2 = 0, which implies that µ,2 = 0. For
β(x) = b0x

2
3, α = γ = 0, which also satisfy (2.6), (2.9) is simplified to read 2b0 µ,3 = 0, which implies that

µ,3 = 0. Now the constraint (2.8) for a = 2 reads (−S12,11 + S23,13 − S12,22 + S13,23)µ,1 = 0. For the choice
α(x) = c0x

2
2, β = γ = 0, which satisfy (2.6), this constraint is simplified to read 2c0 µ,1 = 0, which implies

that µ,1 = 0. Therefore, µ(x) is constant. Knowing that 3λ(x) + 2µ(x) is also constant one concludes that
both Lamé constants must be uniform, and hence, we have proved the following result.

Proposition 2.1. Inhomogeneous compressible isotropic linear elastic solids do not admit universal dis-
placements.

3 Universal displacements and inhomogeneities in anisotropic lin-
ear elasticity

Yavari et al. [2020] characterized the universal displacements for all the eight anisotropy classes. Here, we
extend that work to inhomogeneous anisotropic linear elasticity. Consider an inhomogeneous body made of
a linear elastic solid at point x. The elasticity tensor Cabcd(x) has major symmetries, Cabcd(x) = Ccdab(x),
and minor symmetries, Cabcd(x) = Cbacd(x) = Cabdc(x). The constitutive equations are written as σab =
Cabcd uc,d, and the equilibrium equations in the absence of body forces in Cartesian coordinates read

σab
∂xb

= Cabcd
∂2uc
∂xd∂xb

+
∂Cabcd
∂xb

∂uc
∂xd

= 0, a = 1, 2, 3 . (3.1)

For homogeneous solids this is reduced to Cabcd uc,db = 0. For a given class of linear elastic solids, equilibrium
equations must be satisfied for arbitrary elastic moduli in the given class. Using this idea, for each of the
anisotropy classes—triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic, and cubic
[Cowin and Mehrabadi, 1995, Chadwick et al., 2001, Ting, 2003, Cowin and Doty, 2007]—Yavari et al.
[2020] characterized the corresponding universal displacements. From (3.1) one observes that the universality
constraints of inhomogeneous linear elastic solids include those of homogeneous isotropic solids as a particular
case.3 Therefore, for a given anisotropy class and its known universal displacements, the problem is to find
the forms of the inhomogeneities of the elastic moduli that are consistent with the following extra universality
constraints:

∂Cabcd
∂xb

∂uc
∂xd

= 0 , a = 1, 2, 3 . (3.2)

There is no obvious compact way to solve this problem and we resort to explicit computation by using
the bijection (11, 22, 33, 23, 31, 12)↔ (1, 2, 3, 4, 5, 6) and writing the constitutive equations in Voigt notation
as σα = cαβεβ , where Greek indices run from 1 to 6. The advantage of this classic notation is that the
tensorial problem is replaced by a linear algebra problem since the elasticity tensor is now represented by a

3This is the case in nonlinear elasticity as well [Yavari, 2021, Yavari and Goriely, 2022].
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symmetric 6× 6 stiffness matrix as

C(x) =



c11(x) c12(x) c13(x) c14(x) c15(x) c16(x)

c12(x) c22(x) c23(x) c24(x) c25(x) c26(x)

c13(x) c23(x) c33(x) c34(x) c35(x) c36(x)

c14(x) c24(x) c34(x) c44(x) c45(x) c46(x)

c15(x) c25(x) c35(x) c45(x) c55(x) c56(x)

c16(x) c26(x) c36(x) c46(x) c56(x) c66(x)



. (3.3)

In this notation, the equilibrium equations read


∂
∂x1

0 0 0 ∂
∂x3

∂
∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0





c11(x) c12(x) c13(x) c14(x) c15(x) c16(x)

c12(x) c22(x) c23(x) c24(x) c25(x) c26(x)

c13(x) c23(x) c33(x) c34(x) c35(x) c36(x)

c14(x) c24(x) c34(x) c44(x) c45(x) c46(x)

c15(x) c25(x) c35(x) c45(x) c55(x) c56(x)

c16(x) c26(x) c36(x) c46(x) c56(x) c66(x)





∂u1

∂x1

∂u2

∂x2

∂u3

∂x3

∂u2

∂x3
+ ∂u3

∂x2

∂u1

∂x3
+ ∂u3

∂x1

∂u1

∂x2
+ ∂u2

∂x1



=


0

0

0

 .

(3.4)

3.1 Triclinic linear elastic solids

Triclinic solids are the least symmetric in the sense that the identity and minus identity are the only symmetry
transformations. Other than positive definiteness, there are no constraints on the elastic moduli. In other
words, triclinic linear elastic solids have 21 independent elastic moduli. Yavari et al. [2020] showed that for
triclinic linear elastic solids homogeneous displacements are the only universal displacements.

For the universal displacements (with 9 free parameters) we would like to determine the most general
inhomogeneous form of the elastic moduli that are consistent with (3.2). The universality constraints (3.2)
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(for a = 1) give us the following six independent PDEs:4

∂c11
∂x1

+
∂c16
∂x2

+
∂c15
∂x3

= 0 ,

∂c12
∂x1

+
∂c26
∂x2

+
∂c25
∂x3

= 0 ,

∂c13
∂x1

+
∂c36
∂x2

+
∂c35
∂x3

= 0 ,

∂c14
∂x1

+
∂c46
∂x2

+
∂c45
∂x3

= 0 ,

∂c15
∂x1

+
∂c56
∂x2

+
∂c55
∂x3

= 0 ,

∂c16
∂x1

+
∂c66
∂x2

+
∂c56
∂x3

= 0 .

(3.5)

Eq.(3.2) (for a = 2) gives the following six independent PDEs:

∂c16
∂x1

+
∂c12
∂x2

+
∂c14
∂x3

= 0 ,

∂c26
∂x1

+
∂c22
∂x2

+
∂c24
∂x3

= 0 ,

∂c36
∂x1

+
∂c23
∂x2

+
∂c34
∂x3

= 0 ,

∂c46
∂x1

+
∂c24
∂x2

+
∂c44
∂x3

= 0 ,

∂c56
∂x1

+
∂c25
∂x2

+
∂c45
∂x3

= 0 ,

∂c66
∂x1

+
∂c26
∂x2

+
∂c46
∂x3

= 0 ,

(3.6)

and for a = 3 gives the following six independent PDEs:

∂c15
∂x1

+
∂c14
∂x2

+
∂c13
∂x3

= 0 ,

∂c25
∂x1

+
∂c24
∂x2

+
∂c23
∂x3

= 0 ,

∂c35
∂x1

+
∂c34
∂x2

+
∂c33
∂x3

= 0 ,

∂c45
∂x1

+
∂c44
∂x2

+
∂c34
∂x3

= 0 ,

∂c55
∂x1

+
∂c45
∂x2

+
∂c35
∂x3

= 0 ,

∂c56
∂x1

+
∂c46
∂x2

+
∂c36
∂x3

= 0 .

(3.7)

4All the symbolic computations in this paper were performed using Mathematica Version 13.0.0.0, Wolfram Research,
Champaign, IL.

6



We first notice that c11, c22, c33 each appears only once in the above PDEs, and hence

∂c11
∂x1

= −∂c15
∂x3

− ∂c16
∂x2

,

∂c22
∂x2

= −∂c24
∂x3

− ∂c26
∂x1

,

∂c33
∂x3

= −∂c34
∂x2

− ∂c35
∂x1

,

(3.8)

and thus

c11(x1, x2, x3) = −
∫

(c15,3 + c16,2) dx1 + ĉ11(x2, x3) ,

c22(x1, x2, x3) = −
∫

(c24,3 + c26,1) dx2 + ĉ22(x1, x3) ,

c33(x1, x2, x3) = −
∫

(c34,2 + c35,1) dx3 + ĉ33(x1, x2) ,

(3.9)

where ĉ11(x2, x3), ĉ22(x1, x3), and ĉ33(x1, x2) are arbitrary functions.
The elastic moduli c12, c13, c23 each appears twice:

∂c12
∂x1

= −∂c26
∂x2

− ∂c25
∂x3

,

∂c12
∂x2

= −∂c16
∂x1

− ∂c14
∂x3

,

∂c13
∂x1

= −∂c36
∂x2

− ∂c35
∂x3

,

∂c13
∂x3

= −∂c15
∂x1

− ∂c14
∂x2

,

∂c23
∂x2

= −∂c36
∂x1

− ∂c34
∂x3

,

∂c23
∂x3

= −∂c25
∂x1

− ∂c24
∂x2

.

(3.10)

From the above PDEs c12, c13, c23 are determined as long as the following three integrability conditions are
satisfied.

∂2c26
∂x22

+
∂2c25
∂x2∂x3

=
∂2c16
∂x21

+
∂2c14
∂x1∂x3

,

∂2c36
∂x2∂x3

+
∂2c35
∂x23

=
∂2c15
∂x21

+
∂2c14
∂x1∂x2

,

∂2c36
∂x1∂x3

+
∂2c34
∂x23

=
∂2c25
∂x1∂x2

+
∂2c24
∂x22

.

(3.11)

Thus

c12(x1, x2, x3) = −
∫

(c26,2 + c25,3) dx1 + ĉ12(x2, x3) ,

c13(x1, x2, x3) = −
∫

(c15,1 + c14,2) dx3 + ĉ13(x1, x2) ,

c23(x1, x2, x3) = −
∫

(c36,1 + c34,3) dx2 + ĉ23(x1, x3) ,

(3.12)

where ĉ12(x2, x3), ĉ13(x1, x2), and ĉ23(x1, x3) are arbitrary functions.
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The remaining PDEs can be rearranged as

∂c44
∂x2

= −∂c45
∂x1

− ∂c34
∂x3

,

∂c44
∂x3

= −∂c46
∂x1

− ∂c24
∂x2

,

∂c55
∂x1

= −∂c45
∂x2

− ∂c35
∂x3

,

∂c55
∂x3

= −∂c15
∂x1

− ∂c56
∂x2

,

∂c66
∂x1

= −∂c26
∂x2

− ∂c46
∂x3

,

∂c66
∂x2

= −∂c16
∂x1

− ∂c56
∂x3

,

(3.13)

and
∂c14
∂x1

+
∂c46
∂x2

+
∂c45
∂x3

= 0 ,

∂c56
∂x1

+
∂c25
∂x2

+
∂c45
∂x3

= 0 ,

∂c56
∂x1

+
∂c46
∂x2

+
∂c36
∂x3

= 0 .

(3.14)

The elastic moduli c44, c55, c66 are determined from (3.13) as long as the following integrability conditions
are satisfied

∂2c45
∂x1∂x3

+
∂2c34
∂x23

=
∂2c46
∂x1∂x2

+
∂2c24
∂x22

,

∂2c45
∂x2∂x3

+
∂2c35
∂x23

=
∂2c15
∂x21

+
∂2c56
∂x1∂x2

,

∂2c26
∂x22

+
∂2c46
∂x2∂x3

=
∂2c16
∂x21

+
∂2c56
∂x1∂x3

.

(3.15)

Thus

c44(x1, x2, x3) = −
∫

(c46,1 + c24,2) dx3 + ĉ44(x1, x2) ,

c55(x1, x2, x3) = −
∫

(c45,2 + c35,3) dx1 + ĉ55(x1, x2) ,

c66(x1, x2, x3) = −
∫

(c16,1 + c56,3) dx2 + ĉ66(x1, x3) ,

(3.16)

where ĉ44(x1, x2), ĉ55(x1, x2), and ĉ66(x1, x3) are arbitrary functions.
From (3.14) one obtains

∂c46
∂x2

=
1

2

(
−∂c14
∂x1

+
∂c25
∂x2

− ∂c36
∂x3

)
,

∂c45
∂x3

=
1

2

(
−∂c14
∂x1

− ∂c25
∂x2

+
∂c36
∂x3

)
,

∂c56
∂x1

=
1

2

(
∂c14
∂x1

− ∂c25
∂x2

− ∂c36
∂x3

)
,

(3.17)
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and hence

c46(x1, x2, x3) =
1

2

∫
(−c14,1 + c25,2 − c36,3) dx2 + ĉ46(x1, x3) ,

c45(x1, x2, x3) =
1

2

∫
(−c14,1 − c25,2 + c36,3) dx3 + ĉ45(x1, x2) ,

c56(x1, x2, x3) =
1

2

∫
(c14,1 − c25,2 − c36,3) dx1 + ĉ56(x2, x3) ,

(3.18)

where ĉ46(x1, x2), ĉ45(x1, x2), and ĉ56(x1, x3) are arbitrary functions. Substituting (3.17) into (3.15), one
can show that the integrability conditions (3.15) are identical to (3.11). To make sense of the results in a
compact form, we partition the elasticity matrix into four 3× 3 submatrices:

C(x) =

 A(x) B(x)

B(x) D(x)

 =



c11(x) c12(x) c13(x) c14(x) c15(x) c16(x)

c12(x) c22(x) c23(x) c24(x) c25(x) c26(x)

c13(x) c23(x) c33(x) c34(x) c35(x) c36(x)

c14(x) c24(x) c34(x) c44(x) c45(x) c46(x)

c15(x) c25(x) c35(x) c45(x) c55(x) c56(x)

c16(x) c26(x) c36(x) c46(x) c56(x) c66(x)



. (3.19)

We have shown that the submatrices A and D depend on B. The nine elastic moduli in the submatrix B are
constrained by the three integrability conditions (3.11). More specifically, one has

∂2c26
∂x22

= − ∂2c25
∂x2∂x3

+
∂2c16
∂x21

+
∂2c14
∂x1∂x3

,

∂2c35
∂x23

= − ∂2c36
∂x2∂x3

+
∂2c15
∂x21

+
∂2c14
∂x1∂x2

,

∂2c24
∂x22

= − ∂2c25
∂x1∂x2

+
∂2c36
∂x1∂x3

+
∂2c34
∂x23

.

(3.20)

Therefore, c26, c35, and c24 are functions of the other six elastic consents in B. We see that homogeneous
displacements are universal for a large class of inhomogeneous triclinic solids. In summary, we have proved
the following result.

Proposition 3.1. For inhomogeneous triclinic linear elastic solids all homogeneous displacements are uni-
versal as long as the elastic moduli have the universal inhomogeneities. Out of the twenty one elastic moduli
six of them (c14, c15, c16, c25, c34, and c36) are arbitrary functions of (x1, x2, x3). The remaining fifteen
elastic moduli are determined using these six functions and certain linear PDEs.

3.2 Monoclinic linear elastic solids

A monoclinic solid has one plane of material symmetry, which without loss of generality, is assumed to
be parallel to the x1x2-plane. A monoclinic linear elastic solid has 13 independent elastic moduli and its
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elasticity matrix has the following representation:

C(x) =



c11(x) c12(x) c13(x) 0 0 c16(x)

c12(x) c22(x) c23(x) 0 0 c26(x)

c13(x) c23(x) c33(x) 0 0 c36(x)

0 0 0 c44(x) c45(x) 0

0 0 0 c45(x) c55(x) 0

c16(x) c26(x) c36(x) 0 0 c66(x)



. (3.21)

Yavari et al. [2020] showed that for a monoclinic linear elastic solid with planes of symmetry parallel to the
x1x2-plane, universal displacements are the superposition of homogeneous displacements F·x (F is a constant
matrix) and the one-parameter inhomogeneous displacement field (cx2x3,−cx1x3, 0). Now for these universal
displacements (with 10 free parameters) we would like to determine the most general inhomogeneous form
of the elastic moduli that are consistent with (3.2). For a = 1, (3.2) gives us the following six independent
PDEs:

∂c11
∂x1

+
∂c16
∂x2

= 0 ,

∂c12
∂x1

+
∂c26
∂x2

= 0 ,

∂c13
∂x1

+
∂c36
∂x2

= 0 ,

∂c16
∂x1

+
∂c66
∂x2

= 0 ,

∂c45
∂x3

=
∂c55
∂x3

= 0 .

(3.22)

For a = 2, (3.2) gives us the following five independent PDEs:

∂c16
∂x1

+
∂c12
∂x2

= 0 ,

∂c26
∂x1

+
∂c22
∂x2

= 0 ,

∂c36
∂x1

+
∂c23
∂x2

= 0 ,

∂c66
∂x1

+
∂c26
∂x2

= 0 ,

∂c44
∂x3

= 0 .

(3.23)

For a = 3, (3.2) gives us the following six independent PDEs:

∂c13
∂x3

=
∂c23
∂x3

=
∂c33
∂x3

=
∂c36
∂x3

= 0 ,

∂c45
∂x1

+
∂c44
∂x2

= 0 ,

∂c55
∂x1

+
∂c45
∂x2

= 0 .

(3.24)
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Thus, from (3.22)5, (3.23)5, and (3.24)1, one concludes that

c13 = c13(x1, x2) , c23 = c23(x1, x2) , c33 = c33(x1, x2) , c36 = c36(x1, x2) ,

c44 = c44(x1, x2) , c45 = c45(x1, x2) , c55 = c55(x1, x2) .
(3.25)

From the last two PDEs in (3.24), and for an arbitrary c45(x1, x2), one has

c44(x1, x2) = −
∫
c45,1(x1, x2) dx2 + ĉ44(x1) ,

c55(x1, x2) = −
∫
c45,2(x1, x2) dx1 + ĉ55(x2) ,

(3.26)

where ĉ44(x1) and ĉ55(x2) are arbitrary functions. Similarly, from (3.22)3 and (3.23)3, and for an arbitrary
c36(x1, x2) one obtains

c13(x1, x2) = −
∫
c36,2(x1, x2) dx1 + ĉ13(x2) ,

c23(x1, x2) = −
∫
c36,1(x1, x2) dx2 + ĉ23(x1) ,

(3.27)

where ĉ13(x2) and ĉ23(x1) are arbitrary functions.
The remaining PDEs are:

∂c11
∂x1

+
∂c16
∂x2

= 0 ,

∂c12
∂x2

+
∂c16
∂x1

= 0 ,

∂c66
∂x2

+
∂c16
∂x1

= 0 ,

∂c12
∂x1

+
∂c26
∂x2

= 0 ,

∂c22
∂x2

+
∂c26
∂x1

= 0 ,

∂c66
∂x1

+
∂c26
∂x2

= 0 .

(3.28)

The form of the above PDEs suggests that c11, c12, c22, and c66 are functions of c16 and c26. First, note that
from (3.28)2 and (3.28)4 one concludes that

∂2c26
∂x22

=
∂2c16
∂x21

, (3.29)

and hence

c26(x1, x2, x3) =

∫∫
c16,11(x1, x2) dx2 dx2 + x2ĉ26(x1, x3) + c̃26(x1, x3) , (3.30)

for arbitrary functions ĉ26(x1, x3), and c̃26(x1, x3).
From the first three PDEs in (3.28) and for an arbitrary c16(x1, x2, x3) one obtains

c11(x1, x2, x3) = −
∫
c16,2(x1, x2, x3) dx1 + ĉ11(x2, x3) ,

c12(x1, x2, x3) = −
∫
c16,1(x1, x2, x3) dx2 + ĉ12(x1, x3) ,

c66(x1, x2, x3) = −
∫
c16,1(x1, x2, x3) dx2 + ĉ66(x1, x3) ,

(3.31)

where ĉ11(x2, x3), ĉ12(x1, x3), and ĉ66(x1, x3) are arbitrary functions. Finally, from (3.28)5 one concludes
that

c22(x1, x2, x3) = −
∫
c26,1(x1, x2, x3) dx2 + ĉ22(x1, x3) , (3.32)
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for an arbitrary function ĉ22(x1, x3).

Proposition 3.2. For inhomogeneous monoclinic linear elastic solids with planes of symmetry parallel to
the x1x2-plane the following position-dependence of the elasticity matrix is universal

C(x) =



c11(x1, x2, x3) c12(x1, x2, x3) c13(x1, x2) 0 0 c16(x)

c12(x1, x2, x3) c22(x1, x2, x3) c23(x1, x2) 0 0 c26(x)

c13(x1, x2) c23(x1, x2) c33(x1, x2) 0 0 c36(x1, x2)

0 0 0 c44(x1, x2) c45(x1, x2) 0

0 0 0 c45(x1, x2) c55(x1, x2) 0

c16(x) c26(x) c36(x1, x2) 0 0 c66(x)



, (3.33)

where c33(x1, x2), c36(x1, x2), c45(x1, x2), and c16(x1, x2, x3) are arbitrary functions while c13(x1, x2), c23(x1, x2),
c44(x1, x2), c55(x1, x2), c26(x1, x2, x3), c11(x1, x2, x3), c12(x1, x2, x3), c66(x1, x2, x3), and c44(x1, x2, x3) are
given in (3.27), (3.26), (3.30), (3.31), and (3.32). For such inhomogeneous monoclinic linear elastic solids
universal displacements are the superposition of homogeneous displacement fields and the one-parameter
inhomogeneous displacement field (cx2x3,−cx1x3, 0).

3.3 Tetragonal linear elastic solids

In a tetragonal solid there are five planes of symmetry such that the normals of four of them are coplanar
and the fifth one is normal to the other four. We assume that in the Cartesian coordinate system (x1, x2, x3)
the fifth normal is parallel to the x3 axis. There are two planes of symmetry parallel to the x1x3 and x2x3-
planes. The other two symmetry planes are related to the ones parallel to the x1x3-plane by π/4 and 3π/4
rotations about the x3 axis. Tetragonal solids have 6 independent elastic moduli with elasticity matrices of
the following form:

C(x) =



c11(x) c12(x) c13(x) 0 0 0

c12(x) c11(x) c13(x) 0 0 0

c13(x) c13(x) c33(x) 0 0 0

0 0 0 c44(x) 0 0

0 0 0 0 c44(x) 0

0 0 0 0 0 c66(x)



. (3.34)

Yavari et al. [2020] showed that in a tetragonal linear elastic solid with the tetragonal axes parallel to the
x3-axis in a Cartesian coordinate system (x1, x2, x3), the universal displacements are a superposition of
homogeneous displacements and the following inhomogeneous displacements:5

u1(x1, x2, x3) = F11x1 + F12x2 + F13x3 + c1x2x3 + c2x1x3,

u2(x1, x2, x3) = F21x1 + F22x2 + F23x3 − c2x2x3 + c3x1x3,

u3(x1, x2, x3) = F31x1 + F32x2 + F33x3 + g(x1, x2) ,

(3.35)

5There is a typo in Eq.(3.22)2 in Yavari et al. [2020]: −c2x1x3 should read −c2x2x3.
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where c1 and c2 are constants, and g = g(x1, x2) is a harmonic function.
Now for these universal displacements (with 12 free parameters and an arbitrary harmonic function) we

would like to determine the most general inhomogeneous form of the elastic moduli that are consistent with
(3.2). For a = 1, (3.2) gives us the following five independent PDEs:

∂g

∂x1

∂c44
∂x3

= 0 ,

∂c11
∂x1

=
∂c12
∂x1

=
∂c13
∂x1

= 0 ,

∂c66
∂x2

= 0 .

(3.36)

As g(x1, x2) is an arbitrary harmonic function, from the first equation one concludes that ∂c44
∂x3

= 0. Thus,
c44 = c44(x1, x2), c11 = c11(x2, x3), c12 = c12(x2, x3), c13 = c13(x2, x3), and c66 = c66(x1, x3). For a = 2,
(3.2) gives us the following four independent PDEs:

∂c11
∂x2

=
∂c12
∂x2

=
∂c13
∂x2

=
∂c66
∂x1

= 0 . (3.37)

Thus, c11 = c11(x3), c12 = c12(x3), c13 = c13(x3), c44 = c44(x1, x2), and c66 = c66(x3). For a = 3, (3.2) gives
us the following four independent PDEs:

∂c13
∂x3

=
∂c33
∂x3

=
∂c44
∂x1

=
∂c44
∂x2

= 0 . (3.38)

Hence, c13 and c44 are constant, and c11 = c11(x3), c12 = c12(x3), c66 = c66(x3), and c33 = c33(x1, x2).
Therefore, we have proved the following result.

Proposition 3.3. For a tetragonal linear elastic solid with the tetragonal axis parallel to the x3-axis in a
Cartesian coordinate system (x1, x2, x3), and with the following inhomogeneous elasticity matrix

C(x) =



c11(x3) c12(x3) c13 0 0 0

c12(x3) c11(x3) c13 0 0 0

c13 c13 c33(x1, x2) 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66(x3)



, (3.39)

the universal displacements are the superposition of homogeneous displacement fields and the following inho-
mogeneous displacement field:

uinh1 (x1, x2, x3) = c1x2x3 + c2x1x3,

uinh2 (x1, x2, x3) = −c2x1x3 + c3x1x3,

uinh3 (x1, x2, x3) = g(x1, x2),

(3.40)

where c1 and c2 are constants, and g = g(x1, x2) is an arbitrary harmonic function.

3.4 Trigonal linear elastic solids

In a trigonal solid there are three planes of symmetry whose normals lie in the same plane and are related by
π/3 rotations. We assume that the trigonal axis is parallel to the x3-axis. A trigonal solid has 6 independent
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elastic moduli and its elasticity matrix has the following representation:

C(x) =



c11(x) c12(x) c13(x) 0 c15(x) 0

c12(x) c11(x) c13(x) 0 −c15(x) 0

c13(x) c13(x) c33(x) 0 0 0

0 0 0 c44(x) 0 −c15(x)

c15(x) −c15(x) 0 0 c44(x) 0

0 0 0 −c15(x) 0 1
2 (c11(x)− c12(x))



. (3.41)

Yavari et al. [2020] showed that universal displacements are a superposition of homogeneous displacements
and the following inhomogeneous displacements

uinh1 (x1, x2, x3) = a123x1x2x3 + a12x1x2 + a13x1x3 + a23x2x3,

uinh2 (x1, x2, x3) =
1

2
(a12 + a123x3)(x21 − x22) + b13x1x3 − a13x2x3,

uinh3 (x1, x2, x3) = −a123x21x2 − (a23 + b13)x1x2 +
1

3
a123x

3
2 − a13(x21 − x22).

(3.42)

For the above universal displacements (with 14 free parameters) we would like to find the most general
inhomogeneous form of the elastic moduli that are consistent with (3.2). For a = 1, 2, 3, (3.2) gives us the
following PDEs:

∂c11
∂x2

=
∂c12
∂x2

=
∂c15
∂x2

= 0 ,

∂c13
∂x1

=
∂c13
∂x2

=
∂c33
∂x3

= 0 ,

∂c44
∂x1

=
∂c44
∂x2

= 0 .

(3.43)

Thus, c11 = c11(x1, x3), c12 = c12(x1, x3), c15 = c15(x1, x3), c13 = c13(x3), c33 = c33(x1, x2), and c44 =
c44(x3). Substituting these back into (3.2) one obtains the following PDEs:

∂c15
∂x1

=
∂c15
∂x3

= 0 ,

∂c13
∂x3

=
∂c44
∂x3

= 0 ,

∂c11
∂x1

=
∂c12
∂x1

= 0 .

(3.44)

Thus, c11 = c11(x3), c12 = c12(x3), and c33 = c33(x1, x2), and c13, c15, and c44 are constant. In summary, we
have proved the following result.

Proposition 3.4. For inhomogeneous trigonal linear elastic solids whose trigonal axes are parallel to the x3
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axis and have the following inhomogeneous elastic moduli

C(x) =



c11(x3) c12(x3) c13 0 c15 0

c12(x3) c11(x3) c13 0 −c15 0

c13 c13 c33(x1, x2) 0 0 0

0 0 0 c44 0 −c15

c15 −c15 0 0 c44 0

0 0 0 −c15 0 1
2 (c11(x3)− c12(x3))



, (3.45)

the universal displacements are the superposition of homogeneous displacements and the following inhomo-
geneous displacement fields:

uinh1 (x1, x2, x3) = a123x1x2x3 + a12x1x2 + a13x1x3 + a23x2x3,

uinh2 (x1, x2, x3) =
1

2
(a12 + a123x3)(x21 − x22) + b13x1x3 − a13x2x3,

uinh3 (x1, x2, x3) = −a123x21x2 − (a23 + b13)x1x2 +
1

3
a123x

3
2 − a13(x21 − x22).

(3.46)

3.5 Orthotropic linear elastic solids

In an orthotropic solid there are three mutually orthogonal symmetry planes. We choose Cartesian coordi-
nates (x1, x2, x3) such that the coordinate planes are parallel to the symmetry planes. An orthotropic solid
has 9 independent elastic moduli, and its elasticity matrix has the following representation:

C(x) =



c11(x) c12(x) c13(x) 0 0 0

c12(x) c22(x) c23(x) 0 0 0

c13(x) c23(x) c33(x) 0 0 0

0 0 0 c44(x) 0 0

0 0 0 0 c55(x) 0

0 0 0 0 0 c66(x)



. (3.47)

Yavari et al. [2020] showed that in an orthotropic linear elastic solid whose planes of symmetry are normal
to the coordinate axes in a Cartesian coordinate system (x1, x2, x3), the universal displacements are the
superposition of homogeneous displacement fields and the 3-parameter inhomogeneous displacement field
(a1x2x3, a2x1x3, a3x1x2).

For the above universal displacements (with 12 free parameters) the universality constraints (3.2) force
the elastic moduli to have the following inhomogeneous forms:

c11 = c11(x2, x3) , c22 = c22(x1, x3) , c33 = c33(x1, x2) , (3.48)

c44 = c44(x1) , c55 = c55(x2) , c66 = c66(x3) , (3.49)

c12 = c12(x3) , c13 = c13(x2) , c23 = c23(x1) . (3.50)

Therefore, we have proved the following result.

15



Proposition 3.5. For orthotropic linear elastic solids with planes of symmetry normal to the coordinate
axes in a Cartesian coordinate system (x1, x2, x3), and with the following inhomogeneous elastic moduli

C(x) =



c11(x2, x3) c12(x3) c13(x2) 0 0 0

c12(x3) c22(x1, x3) c23(x1) 0 0 0

c13(x2) c23(x1) c33(x1, x2) 0 0 0

0 0 0 c44(x1) 0 0

0 0 0 0 c55(x2) 0

0 0 0 0 0 c66(x3)



, (3.51)

universal displacements are the superposition of homogeneous displacement fields and the 3-parameter inho-
mogeneous displacement field (a1x2x3, a2x1x3, a3x1x2).

3.6 Transversely isotropic linear elastic solids

For a transversely isotropic solid there is an axis of symmetry such that the isotropy planes are planes normal
to it. We choose Cartesian coordinates (x1, x2, x3) such that the axis of transverse isotropy is parallel to the
x3-axis. A transversely isotropic solid has 5 independent elastic moduli, and its elasticity matrix has the
following representation:

C(x) =



c11(x) c12(x) c13(x) 0 0 0

c12(x) c11(x) c13(x) 0 0 0

c13(x) c13(x) c33(x) 0 0 0

0 0 0 c44(x) 0 0

0 0 0 0 c44(x) 0

0 0 0 0 0 1
2 (c11(x)− c12(x))



. (3.52)

Yavari et al. [2020] showed that universal deformations have the following form:

u1(x1, x2, x3) = c1x1 + c2x2 + cx2x3 + x3h1(x1, x2) + k1(x1, x2),

u2(x1, x2, x3) = −c2x1 + c1x2 − cx1x3 + x3h2(x1, x2) + k2(x1, x2),

u3(x1, x2, x3) = c3x3 + û3(x1, x2),

(3.53)

where ξ(x2 + ix1) = h2(x1, x2) + ih1(x1, x2) and η (x2 + ix1) = k2(x1, x2) + ik1(x1, x2)6 are holomorphic,
and û3(x1, x2) is harmonic. For the above universal displacements (with 4 free parameters and five harmonic
functions) the constraints (3.2) force the elastic moduli to have the following inhomogeneous forms:

c11 = c11(x3) , c12 = c12(x3) , c33 = c33(x1, x2) , c13, c44 are constant . (3.54)

Therefore, we have proved the following result.

6Note that there is a typo in [Yavari et al., 2020, Proposition 3.6].
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Proposition 3.6. In a transversely isotropic linear elastic solid with the isotropy plane parallel to the x1x2-
plane that has the following inhomogeneous elastic moduli

C(x) =



c11(x3) c12(x3) c13 0 0 0

c12(x3) c11(x3) c13 0 0 0

c13 c13 c33(x1, x2) 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 1
2 (c11(x3)− c12(x3))



, (3.55)

the universal displacements have the following form:

u1(x1, x2, x3) = c1x1 + c2x2 + cx2x3 + x3h1(x1, x2) + k1(x1, x2),

u2(x1, x2, x3) = −c2x1 + c1x2 − cx1x3 + x3h2(x1, x2) + k2(x1, x2),

u3(x1, x2, x3) = c3x3 + û3(x1, x2),

(3.56)

where ξ(x2 + ix1) = h2(x1, x2) + ih1(x1, x2) and η (x2 + ix1) = k2(x1, x2) + ik1(x1, x2) are holomorphic, and
û3(x1, x2) is harmonic.

3.7 Cubic linear elastic solids

At every point a cubic solid has nine planes of symmetry whose normals are parallel to the edges and face
diagonals of a cube. We choose a Cartesian coordinate system (x1, x2, x3) whose coordinate lines are parallel
to the edges of the cube. A cubic solid has 3 independent elastic moduli and its matrix of elastic moduli
reads

C(x) =



c11(x) c12(x) c12(x) 0 0 0

c12(x) c11(x) c12(x) 0 0 0

c12(x) c12(x) c11(x) 0 0 0

0 0 0 c44(x) 0 0

0 0 0 0 c44(x) 0

0 0 0 0 0 c44(x)



. (3.57)

Yavari et al. [2020] showed that for cubic solids, universal displacements have the following form

u1(x1, x2, x3) =
a

2
x1(x23 − x22) + c1x1x3 + b1x1x2 + d1x1 + g1(x2, x3),

u2(x1, x2, x3) =
a

2
x2(x21 − x23) + a1x1x2 − c1x2x3 + d2x2 + g2(x1, x3),

u3(x1, x2, x3) =
a

2
x3(x22 − x21)− a1x1x3 − b1x2x3 + d3x3 + g3(x1, x2),

(3.58)

where g1, g2, and g3 are arbitrary harmonic functions. For the above universal displacements (with seven
free parameters and three arbitrary harmonic functions) the universality constraints (3.2) force the three
elastic moduli to be uniform. Therefore, we have proved the following result.
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Proposition 3.7. Inhomogeneous compressible cubic linear elastic solids do not admit universal displace-
ments.

4 Conclusion

We studied universal displacements and inhomogeneities in linear elasticity for the eight symmetry classes
(triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic, cubic, and isotropic) assum-
ing that material preferred directions are known. We showed that equilibrium equations in the absence of
body forces and for arbitrary position-dependent elastic moduli impose restrictions on both the displacement
field and the inhomogeneities of the elastic moduli in the form of a system of PDEs, which we call univer-
sality constraints. We observed that the universality constraints of inhomogeneous solids include those of
homogeneous solids. For each symmetry class and its known universal displacements we characterized the
corresponding universal inhomogeneities. It is known that the larger the symmetry group, the larger the
space of universal displacements [Yavari et al., 2020]. We showed that the larger the symmetry group, the
smaller the space of universal inhomogeneities. In particular, it was shown that inhomogeneous isotropic
and inhomogeneous cubic solids do not admit universal displacements. For the other six symmetry classes
there are enough freedom to allow the existence of universal displacements, and we classified all the universal
inhomogeneities of the other six symmetry classes. This work therefore completes the universal program of
linear elasticity.
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