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  Vibration   
 
 Reference.  J.P. Den Hartog, Mechanical Vibrations, Dover Publications, New York.  
This exceptional book, written by a Timoshenko Medalist, is available on amazon.com at $6. 
 When a bar is pulled, the stress field in the bar is uniform.  When the bar is bent, the 
stress field is a function of position.  When the bar vibrates, the stress is a function of position 
and time – that is, the stress in the bar is a time-dependent field.  We will see how the three 
elements of solid mechanics play together in this new context.  Before considering structures, 
we’ll first recall a familiar problem:  system of one degree of freedom. 
 
  A system of one degree of freedom 
 Mass, spring, dashpot.  Model a system by a mass, connected to a spring and the 
dashpot in parallel.  The mass is on a frictionless ground. The input to the system is an external 
force on the mass as a function of time, ( )tF .  The output of the system is the displacement of 

the mass as a function of time, .  ( )tx
 Free-body diagram.  Let m be the mass.  Choose the origin such that the spring exerts 
no force when x = 0.  Measure the displacement from this position.  The sign convention:  pick 
one direction as the positive direction for the displacement.  When the displacement is ( )tx , the 

velocity is , and the acceleration is ( )tx& ( )tx&& .  The spring exerts a force , and the dashpot 

exerts a force .  The spring constant k and the damping constant c are measured 
experimentally.   

kx−
xc &−

 Newton’s second law, Force = (Mass)× (Acceleration), gives the equation of motion 
   Fkxxcxm =++ &&&  .  
This is an ordinary differential equation (ODE) for the function ( )tx .  In writing the ODE, we 

put all the terms containing the unknown function ( )tx  on the left-hand side, and all the other 
terms on the right-hand side. 
 
 Free vibration ( 0=F ), and no damping ( 0=c ).  After vibration is initiated, no 
external force is applied. With no damping, the mass will vibrate forever.  The equation of 
motion is 
    0=+ kxxm && .  
This is a homogeneous ODE.  The general solution to this equation has the form 
  ( ) tBtAtx ωω cossin += , 
where A, B and ω  are constants to be determined.  Inserting the solution to the ODE, we find 
that 

  mk /=ω . 

The displacement repeats itself after a period of time equal to ωπ /2 .  Per unit time the mass 
vibrates this many cycles: 

  
m
k

f
ππ

ω
2
1

2
== . 

We call ω  the circular frequency, and f the frequency.  Both are also called the natural frequency.  
This frequency is “natural” in that it is set by parameters of the system (i.e., the mass and the 
spring constant), rather than the external force. 
 Determine the constants A and B by the initial displacement and velocity.  For example, 
suppose at time zero the mass has a known displacement ( )0x  and is released at zero velocity, 
the subsequent displacement is  
  ( ) ( ) txtx ωcos0= .    
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 Daily experience suggests that to sustain a vibration, one needs to apply a periodic force.  
The above free vibration lasts forever because our model is idealized:  the model has no damping.  
In practice, we can make damping very small by a careful design.  So the model is an idealization 
of a system when the damping is very small. 
 Forced vibration, no damping.  Now consider the external force as a function of 
time, .  According to Fourier, any periodic function is a sum of many sine and cosine 
functions.  Consequently, we will only consider an external force of form 

( )tF

   ( ) tFtF Ω= sin0 .  
The frequency of the force, Ω , being determined by an external source, is unrelated to the 
natural frequency ω .   
 The equation of motion now becomes 
  tFkxxm Ω=+ sin0

&& . 

This is an inhomogeneous ODE.  It governs displacement as a function of time, . To find one 

particular solution, try the form 

( )tx

( ) tCtx Ω= sin , which gives 

  ( ) ( ) t
kF

tx Ω
Ω−

= sin
/1

/
2

0

ω
. 

The full solution to the inhomogeneous, linear ODE is the sum of all homogeneous solution and 
one particular solution: 

   ( ) ( ) t
kF

BtAtx Ω
Ω−

++= sin
/1

/
cossin 2

0

ω
ωω  

In general, the driving frequency Ω  and the natural frequency ω  are unrelated.  Consequently, 
this motion is not periodic.  With damping, the homogenous solution will die out, but the 
particular solution will persist.  Consequently, the particular solution is the steady response of 
the system to the periodic force.  The steady response has the same frequency as the external 
force, .  Ω
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 Three behaviors of forced vibration.  Let us focus on the steady solution: 

  ( ) ( ) t
kF

tx Ω
Ω−

= sin
/1

/
2

0

ω
 

Plot the amplitude of the displacement as a function of the driving frequency.  Depending on the 
ratio of the driving frequency to the natural frequency, ω/Ω , we classify three behaviors as 
follows. 

11/1/08 Vibration -2  



ES 240  Solid Mechanics Z. Suo 
 

 A . ω/Ω  « 1.   The frequency of the external force is low compared to the natural 
frequency.  The mass oscillates in phase with the external force.  The behavior is similar to the 
mass under a static load, . kFx /00 ≈
 B. ω/Ω  ~ 1.  The frequency of the external force is comparable to the natural frequency.  
The system is said to resonate with the external force.  For this reason, the natural frequency, 
ω , is also called the resonant frequency.  At resonance, the mass oscillates with a large 
amplitude. (The amplitude is finite when damping is included.)  The load pushes at right time in 
the right direction. 
 C. ω/Ω » 1. The frequency of the external force is high compared to the natural 
frequency.  The mass oscillates anti-phase with the external force.  As the frequency of the 
external force increases, the displacement amplitude diminishes:  the system is too slow to 
respond to the external force.  This phenomenon is the basis for vibration isolation. 
 Push the swing at the right time.  Here is an example of resonance.  The length of 
the string is l.  The acceleration of gravity is g.  The natural frequency of the swing is 

  lg/=ω . 

When l = 2 m, g = 9.8 m/s2, the period is 8.2/2 == ωπT  s.  In formulating the equation of 
motion, we normally neglect damping, so that the mathematical solution says that an undamped 
swing will persist forever.  In reality, the swing loses energy by motion of air, by the friction at 
various joints, etc.  To sustain the swing, one needs to push from time to time.  If you push at a 
frequency  close to the natural frequency Ω ω  of the swing, in the right direction, the swing 
amplitude can even increase. 
 Vibration isolation.  A vibrating machine is modeled by a mass m and a harmonic 
force, .  For example, if the machine contains a rotating part, such as a fan, the 
harmonic force is due to mass imbalance. When the machine is placed directly on the ground, 
the force  is transmitted to the ground.  Of course, if you can, you should balance the 
fan to reduce the harmonic force itself.   

tF Ωsin0

tF Ωsin0

 Now suppose that you cannot balance the fan, and has to accept the harmonic force as 
given, what can you do to reduce the vibration transmitted to the ground? The solution is to put 
the machine on a compliant spring, and then on the ground. In this case, the force transmitted to 
the ground is the same as the force in the spring, kx.  Thus, the ratio of the force transmitted to 
the ground to the force generated by the machine is 

  
( )20

0

/1

1
machine  theby generated Force

ground  the toed transmittForce

ωΩ−
==

F
kx

. 

To make this ratio small, we need to make ∞→Ω ω/ .  Recall that the natural frequency is 

mk /=ω .  Use a complaint spring to reduce the natural frequency.  To isolate the ground from 

vibration, you don’t need damping. 
 

 Free vibration with damping.  After vibration is initiated, no external force is 
applied. The vibration decays over time.  The effect of damping is modeled by a dashpot.  The 
equation of motion is 
  0=++ kxxcxm &&& .   
This is a homogeneous ODE with constant coefficients.   
 Q is for quality factor.  The three parameters of the system, m, c and k, form a 
dimensionless group:  

  
c
mk

Q = .   
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The three coefficients, m, c and k, are all positive, so that 0 < Q < +∞ .  This dimensionless ratio 
is known as the quality factor.  It quantifies the importance of the damping relative to that of 
inertia and stiffness.  The system is over-damped when Q , and undamped when Q→ 0 = ∞ .  
We will be mainly interested in system where damping is slight, so that the quality factor far 
exceeds 1, e.g. in the range Q .  =10 −109

 Solution to the ODE.  Recall that the natural frequency for the undamped spring-mass 

system is mk /=ω .  The above ODE can be rewritten as 

  02 =++ xx
Q

x ωω
&&&  

For any homogeneous ODE with constant coefficients, the solution is of the form  
  ( ) ( )ttx ρexp= .   
where ρ , known as the characteristic number, is to be determined.  Substituting this solution 
into the ODE, we obtain that 

  022 =++ ωρωρ
Q

. 

This is a quadratic algebraic equation for ρ .  The two roots are 

  1
4

1

2 2
−±−=

QQ
ωωρ . 

We are interested in the situation where the damping is small, so that the mass vibrates back 
and forward many times.  That is, we assume that the quality factor is a large number.  Denote 

  
24

1
1

Q
q −=ω . 

This is a real, positive quantity.  The two characteristic roots are 

  iq
Q
±−=

2

ωρ  

where 1−=i .  Recall the Euler equation: 
  ( ) qiqiq sincosexp += .    
The general solution to the ODE is 
 

  ( ) ( )qtBqtA
Q
t

tx cossin
2

exp +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=
ω

. 

 

  
c
mk

Q = ,   
m

k
=ω ,  

24

1
1

Q
q −=ω  

 
This solution gives the displacement as a function of time.  The constants A and B are to be 
determined by the initial conditions, namely the displacement and the velocity at time zero. 
 Significant features of damped free vibration.  We now examine features of this 
solution that are important in application. 

• The above solution represents a damped wave, with frequency q.  For slight damping, 
, the frequency of the damped system is close to that of the undamped system, 1>>Q

mkq /=≈ω .   
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• The vibration amplitude decays with time.  In one cycle, the time goes from t to qt /2π+ , 

the amplitude of the vibration diminishes from ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− t

Q2
exp

ω
 to  ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

q
t

Q
πω 2

2
exp .  

Thus,  

 the ratio of two consecutive amplitudes ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈

Q
π

exp .   

This ratio is the same for any two consecutive maxima, independent of the amplitude of 
vibration at the time.  One can measure the ratio of the consecutive amplitudes, and thereby 
determines the quality factor. 
• For the damped system to vibrate Q cycles, the time needed is  
 ωππ /2/2 QqQt ≈=∆ .   

Consequently, the amplitude of the vibration diminishes by a factor ( )π−exp .  Roughly 
speaking, Q is the number of cycles for the vibration to die out. 
 

 Forced vibration, with damping.  The equation of motion is 
  tFkxxcxm Ω=++ sin0

&&&  
We have discussed the homogeneous solution.  We now need to find one particular solution.  To 
keep algebra clean, recall the definitions  

  
m

k
=ω  and 

c
mk

Q = .   

The equation of motion becomes   

  t
k
F

x
Q

xx
Ω=++ sin0

2 ωω
&&&

 

 Now we use a standard trick to simplify the algebra. Write 
  ( ) ( )tiFtF Ω= exp0   
Of course we known the external force is just the real part of this function.  Write 
  ( ) ( )tixtx Ω= exp0 .  
Plug into the equation of motion, and we have 

  

ωω Q
i

kF
x

Ω
+⎟

⎠
⎞

⎜
⎝
⎛ Ω−

= 2
0

0

1

/
 

Note that x0  is a complex number.  The displacement of the mass should be ( )[ ]tixx Ω= expRe 0 . 
 A useful interpretation of the solution.  Write 
  ( )φixx −= exp00 , 

where the amplitude of the displacement is 
 

  
222

0
0

1

/

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ω
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Ω−

=

ωω Q

kF
x ,    

and the phase shift of the displacement relative to the external force, φ , is given by     
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  ( )2/1
tan

ω
ωφ

Ω−

Ω

= Q
 

 
 Plot the displacement amplitude as a function of the forcing frequency.  At the resonance, 

1/ ≈Ω ω , we have kQFx /00 = , namely, the vibration amplitude is Q times of the static 

displacement.  This provides another experimental way to determine the quality factor. 
 The quality factor determines the “sharpness” of the resonance.  A large quality factor 
corresponds to a sharp resonance.  This is important to all resonance-based devices. 
 To discuss the phase factor, let’s consider three limiting cases. 

• Very stiff system.  Neglect the mass and the viscous terms in the equation of motion, we 
have .  Consequently, the displacement x is in phase with the external 
force. 

( tFkx Ω= sin0 )

• Very viscous system.  The equation of motion is ( )tFxc Ω= sin0
& .  The displacement is 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −Ω

Ω
=Ω

Ω
−=

2
sincos 00 π

t
c
F

t
c
F

x .  That is, the displacement lags behind the external 

force by a phase factor π / 2 . 
• Very massive system.  The equation of motion is ( )tFxm Ω= sin0

&& . The displacement is 

( ) ( π−Ω
Ω

=Ω
Ω

−= t
m

F
t

m
F

x sinsin
2

0
2

0 ) .  That is, the displacement lags behind the external 

force by a phase factor π . 
 Plot the phase factor as a function of the forcing frequency for several values of the 
quality factor.  The phase factor ranges between 0 and π .  The trend is mainly a competition 
between the three forces: elastic, viscous, and inertial.  When 1«/ωΩ , the elastic force prevails, 
and the displacement is in-phase with the external force.  When  1»/ωΩ , the inertial force 
prevails, and the displacement is π  out-of-phase with the external force.  When 1/ ≈Ω ω , the 
viscous force prevails, and the displacement is π /2 out-of-phase with the external force. 
 
 Vibration isolation with a spring and a dashpot in parallel.  The external force 
is .  The displacement of the mass is ( tiFF Ω= exp0 ) ( )tixx Ω= exp0 , where  is the same as 
above.  The force transmitted to the ground via the spring and the dashpot is 

0x

  ( ) ( )tixcikxckx ΩΩ+=+ exp0
& . 

Consequently, we obtain that  

  
222

2

1

1

machinethebygeneratedForce
groundthetodtransmitteForce

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ω
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Ω−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ω
+

=

ωω

ω

Q

Q
. 

 
 
 Beam as a spring.  Consider a cantilever and a lump of mass at its end, just like a diver 
on a spring board.  For the time being, we assume that the mass of the cantilever is negligible 
compared to the lumped mass.   
 We can obtain the spring constant as follows.  Apply a static force F at the free end of the 
beam, and the beam end deflects by the displacement ∆ .  According to the beam theory, the 
force-deflection relation is  
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  ∆⎟
⎠
⎞

⎜
⎝
⎛=

3

3
L
EI

F .   

Consequently, the spring constant of the cantilever is  

  
3

3
L
EI

k = .   

For beams of other end conditions, the spring constant takes the same form, but with difference 
numerical factors.  Consult standard textbooks.  The beam is stiff when Young’s modulus is high, 
the moment of cross section is high, and the beam is short. 
 If the lumped mass is M, the natural frequency is 

  
ML

EI

M

k
3

3
==ω . 

Frequency meter.  A cantilever provides elasticity.  A lump of mass m provides inertia.  
Two designs:  (1) several beams with different masses, and (2) a single beam with adjustable 
position of the mass.  Place the device on a vibrating machine, and watch for resonance. 
 Determine Young’s modulus by measuring the resonant frequency.  You need 
to measure Young’s modulus of a material. Make a beam out of the material.  Make a device so 
that you can change the forcing frequency. Resonance experiment allows you to determine the 
natural frequency, and provides a measurement of Young’s modulus.  
 The advantage of the beam, as compared to other forms of springs, is that it can be made 
very small by using the microfabrication technology.   

• Atomic force microscope (AFM).   
• Micro-electro-mechanical systems (MEMS).   
• Accelerometer in an automobile air bag. 

 
  Longitudinal vibration of a rod 
 When an elastic rod vibrates, each material particle provides a degree of freedom.  Thus, 
the rod has infinite degrees of freedom.  We will use the longitudinal vibration of a rod to 
illustrate a fundamental phenomenon in structural vibration: normal modes.    
 Consider a rod, cross-sectional area A, length L, mass density ρ , and Young’s modulus E.  
The rod is constrained to move along its axial direction, clamped at one end, and free to move at 
the other end.  We neglect damping. 
 
 
 
 
 
 
 
  
 
   

( )txu , ( )tdxxu ,+

x + dx x 
Reference  
configuration  

Configuration  
at time t 

      
 
 The displacement is a time-dependent field. Take the unstressed rod as the 
reference state.  Label each material particle by its coordinate x in the reference state.  To 
visualize the motion of the material particles, place markers on the rod.  In the figure, two 
markers indicate two material particles, x and x + dx.  When the rod is stressed, the markers 
move to new positions.  The distance by which each marker moves is the displacement of the 
material particle. Denote the displacement of the material particle x at time t by   ( )txu , .
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 Three ingredients of solid mechanics.  We now translate the three ingredients of 
solid mechanics into equations.   
 Strain-displacement relation.  Denote the strain of the material particle x at time t by 
( tx, )ε .  Look at a small piece of the rod between x and x + dx.  At time t, the displacement of 

material particle x is , and the displacement of material particle x + dx is .  The 
strain of this piece of the rod is    

( txu , ) ( )tdxxu ,+

  ( ) ( ) ( )
dx

txutdxxu
tx

,,
lenghoriginal

elongation
,

−+
==ε . 

We obtain the relation between the strain field and the displacement field: 
 

  
x

u

∂
∂

=ε   

 
The partial derivative is taken at a fixed time.  
 Material law.  Denote the stress of the material particle x at time t by ( tx, )σ .  We 
assume that the rod is made of an elastic material.  That is, for every material particle and at any 
time, Hooke’s law relates the stress to the strain 
 
  εσ E=  
 
 

( )tdxxA ,+σ( )txA ,σ

2

2

t
u

∂
∂

acceleration

x + dx x  
 
 
 
 
 
 
 Newton’s second law.  Draw the free body diagram of the small piece of the rod between 
x and x + dx.   At time t, the stress at cross-section x gives a force ( )txA ,σ to the left, and the 

stress at cross section x + dx gives a force ( )tdxxA ,+σ  to the right.  The piece of the rod has 

mass Adxρ , and acceleration .  Apply Newton’s law, Force = (Mass)(Acceleration), to 
this piece of the rod.  We obtain that 

22 / tu ∂∂

  ( ) ( ) ( )( )22 /,, tuAdxtxAtdxxA ∂∂=−+ ρσσ , 
or 

  
2

2

t

u

x ∂
∂

=
∂
∂ ρσ

   

 
 Put the three ingredients together.  A combination of the three boxed equations 
gives 

    
2

2

2

2

t
u

x
u

E
∂
∂

=
∂
∂ ρ . 

This is a partial differential equation that governs the displacement field . It is known as 
the equation of motion.   

( txu , )

 Separate spatial coordinates from time.  As a first dynamic phenomenon, consider 
free vibration of the rod.  In a normal mode, each material particle x vibrates with its individual 
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amplitude , but all material particles vibrate at the same natural circular frequency ( )xU
ω  (radian per unit time).  The displacement field of such a normal mode takes the form 
  ( ) ( ) ( )txUtxu ωsin, = . 
The two variables x and t are separated.  
 We next calculate the amplitude function ( )xU  and the natural frequency ω . 
Substituting the normal mode into the equation of motion, we obtain that 

  U
dx

UdE 2

2

2

ω
ρ

−= . 

This ODE for the amplitude function ( )xU  is homogeneous, and has constant coefficients.  The 
general solution to the ODE is 

   ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= x

E
Bx

E
AxU ωρωρ cossin , 

where A and B are arbitrary constants.  The time-dependent displacement field is 

  ( ) tx
E

Bx
E

Atxu ωωρωρ sincossin,
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

The three numbers, A, B, ω  are yet to be determined. 
 Normal modes.  The above solution satisfies the equation of motion.  We now examine 
the boundary conditions.  The rod is constrained at the left end, so that the displacement 
vanishes at 0=x  for all time:  
  ( ) 0,0 =tu .   
The rod moves freely at the right end, so that the stress vanishes at the right Lx =  for all time.  
Recall that xuEE ∂∂== /εσ .  The stress-free boundary condition means that  

  0
,

=
∂
∂

= timeallLxx
u

. 

Apply the two boundary conditions, and we obtain that 
  0=B ,   

  0cos =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
L

EE
A ωρωρ . 

Possible solutions are as follows.  First, A = 0.  This solution makes the displacement vanish at 
all time.  Second, 0=ω .  This solution makes the natural frequency vanish, so that the rod is 
static.  The third possibility is of most interest to us: 

  0cos =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
L

E
ωρ . 

This requires that 

  ...
2

5
,

2
3

,
2

πππωρ =L
E

 

or 

  
2/1

1 2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
πω E
L

, 
2/1

2 2
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
πω E
L

, 
2/1

3 2
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
πω E
L

… 

The rod has infinite many normal modes:   

1st mode:   
2/1

1 2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
πω E
L

,  ( ) t
L
x

Atxu 11 sin
2

sin, ωπ
⎟
⎠
⎞

⎜
⎝
⎛= ,    ( ) t

L
x

L
EAtx 11 sin

2
cos

2
, ωππσ ⎟

⎠
⎞

⎜
⎝
⎛=  
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2nd mode:   
2/1

2 2
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
πω E
L

,  ( ) t
L
x

Atxu 22 sin
2
3

sin, ωπ
⎟
⎠
⎞

⎜
⎝
⎛= ,    ( ) t

L
x

L
EAtx 22 sin

2
3

cos
2
3

, ωππσ ⎟
⎠
⎞

⎜
⎝
⎛=  

and so on so forth.  When excited, the motion of the rod is a superposition of all the normal 
modes.    
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The first mode is known as the fundamental mode.  It has the lowest frequency:  

  
ρπ

ω E
L

f
4
1

2
1

1 == . 

For steel, kg7800GPa,210 == ρE .  A rod of length L = 1 m has a frequency about 1 kHz.  The 
audible range of an average human being is between 20 Hz to 20 kHz. 
 
 Visualize engenmode. Please take a look at a video that shows the eigenmodes of a 
plate (http://imechanica.org/node/2004).   
 
  Finite element method for the dynamics of an elastic solid 
 Weak statement of momentum balance.  In three-dimensional elasticity, 
momentum balance leads to three PDEs  

  
2

2

t

u
b

x
i

i
j

ij

∂
∂

=+
∂
∂

ρ
σ  

in the body, and the three stress-traction relations 
  ijij tn =σ  

on the surface of the body. 
 The momentum balance holds true if   
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  dV
x
w

j

i
ij∫ ∂
∂σ  = ( ) ∫∫ +∂∂− dAwtdVwtub iii

T

ii
22 /ρ  

holds true for every test function ( )xw .  It might help you memorize the above by regarding 

 as the “inertia force” 22 / t∂∂− uρ
 
 Finite element method.  Divide a body into many finite elements.  Interpolate the 
displacement field in an element as 
  Nqu = , 
where u is the time-dependent displacement field inside the element, and q is the time-
dependent nodal displacement column.  The shape function matrix N is the same as that for 
static problem.  The strain column is 
  Bq=ε . 
The stress column is 
  DBq=σ . 
These steps are the same as in static problems. 
 Insert these interpolations into the weak statement.  Compared to the static problem, the 
only new term is inertia term: 

  . ( ) ∑∫ =∂∂ qmquu δδρ TT
dVt &&22 /

The sum is carried over all elements.  The mass matrix for each element is 

  dVT NNm ∫= ρ . 

Let Q be the column of displacements of all the nodes in the body.  The global stiffness matrix 
and the global force column are assembled as before.  The global mass matrix is assembled in a 
similar way.  The weak statement takes the form 

  ( ) 0=−+ QFKQQM δ
T&& , 

which must holds true for every variation in the displacement column, Qδ .  We obtain that 

  . FKQQM =+&&

This is a set of ODEs for the displacement column ( )tQ . 
 
 Normal mode analysis.  Consider free vibration, where F = 0.  In a normal mode, all 
nodes vibrate at a single frequency, and each node vibrates with its individual amplitude.  That is, 
a normal mode takes the form  
  ( ) tt ωsinUQ = , 
where U is the column of the amplitude of the nodal displacements, and ω  is a natural 

frequency.  Insert this expression into , and we obtain that 0KQQM =+&&

  . MUKU 2ω=
This is a generalized eigenvalue problem.  Both the mass matrix and the stiffness matrix are 
positive definite.  A n-DOF system has n distinct normal modes. 
 For example, the frequency equation for a 2DOF system is 

   ⎥
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⎡

2

1

2221

12112

2

1

2221

1211

U

U

MM

MM

U

U

KK

KK
ω

or 
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   ⎥
⎦
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⎡
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To obtain nonzero amplitude column [ ]21,UU , the determinant of the matrix must vanish 

  . 0det
22

2
2221

2
21

12
2

1211
2

11 =⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

MKMK

MKMK

ωω
ωω

This is quadratic equation for , and has two solutions, each corresponding to a normal mode. 2ω
  
 Approximate the rod as a 1-DOF system.   The computer readily assemble the 
stiffness matrix and mass matrix, and performs normal mode analysis.  To gain some empathy 
for the computer, we now simulate the computer, and determine the fundamental frequency by 
using the PVW.   
 We use the single element to represent the rod.  The displacement of the node on the left 
vanishes.  The displacement of the node on the right, ( )tq , is the degree of freedom.  Interpolate 
the displacement inside the rod by a linear function 

  ( ) ( )tq
L
x

txu =, . 

From the exact solution, we know the amplitude function is sinusoidal, not linear.  Thus, our 
assumption is wrong, resulting an approximate frequency. 
 Calculate the strain in the rod by xu ∂∂= /ε , giving 

  Lq /=ε . 
Using Hooke’s law, we obtain the stress 
  LEq /=σ . 
The variation in the displacement is 

   q
L
xu δδ = . 

The variation in the strain is 

  q
L
δδε 1

= . 

 Inserting the above into the weak statement, we obtain that 

  ∫ ⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛L

Adx
L
q

L
Eq

0

δ
 = ∫ ⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛−

L

Adx
L
qx

L
qx

0

δρ
&&

. 

Evaluate the integrals, and we obtain that 

  0
3
1 2 =⎟

⎠
⎞

⎜
⎝
⎛ + qEqqL δρ && . 

The PVW requires that this equation hold true for every variation qδ , so that 

  0
3
1 2 =+ EqqL &&ρ . 

This ODE governs the function .  The solution to this ODE is sinusoidal, ( )tq
  ( ) ttq ωsinconstant ×= , 
with the frequency 

11/1/08 Vibration -12  



ES 240  Solid Mechanics Z. Suo 
 

  
ρ

ω E
L
3

= . 

We make the following comments. 
• This approximate frequency takes the same form as the exact frequency, except for the 

numerical factor:  3  vs. 2/π .  The approximate frequency is somewhat larger than the 
exact frequency.  This trend is understood as follows.  In obtaining the approximate 
solution, we have constrained the displacement field to a small family (i.e., the linear 
distribution).  The constraint makes the rod appear to be more rigid, increasing the 
frequency. 

• By approximating the rod with a single degree of freedom, we can only find one normal 
mode.  If we want to find higher modes, we must divide the rod into more elements.  
View a particular normal mode as a standing wave of some wavelength.  To resolve this 
normal mode, the element size should be smaller than a fraction of the wavelength. 

• If we divide the rod into many elements, the resulting displacement distribution for the 
fundamental mode will approach to the sinusoidal function, and the frequency will 
approach to the exact value. 

In a homework problem, you will appreciate these comments by dividing the rod into two linear 
elements. 
 
 Properties of the normal modes (I.M. Gel’fand, Lectures on Linear Algebra, Dover 
Publications).    What can normal modes do for us?  To answer this question, we need to learn a 
few more facts about the normal modes.   
 The normal mode analysis leads to an eigenvalue problem: 
  MUKU λ= . 

The natural frequency ω  corresponds to the eigenvalue, .  The amplitude column U 
corresponds to the eigenvector.  The eigenvalues are roots to 

2ωλ =

  [ ] 0det =− MK λ . 
This is a polynomial of degree n for a system of n degrees of freedom.  Let the eigenvalues be 
  nλλλλ ,...,,, 321 , 

and their associated eigenvectors be 
  . nUUUU ,...,,, 321

To avoid a certain subtle point, we assume that the n eigenvalues are distinct.   
 Because the two matrices M and K are symmetric and positive-definite, this eigenvalue 
problem has several specific properties.  
 All eigenvalues are real and positive numbers.  Let’s say that an eigenvalue λ  might a 
complex number, so that its associated eigenvector U would be a complex column.  Denote the 
complex-conjugate of U by U .  Multiply TU  and MUKU λ= , giving 

  MUUKUU TT λ= . 
The matrix M is real and symmetric, so that 

  ( ) ...... 21211222221111 +++++= UUUUMUUMUUMT MUU  

Copnsequently, MUUT  is a real number.  Similarly, KUUT  is a real number.  This proves that 
λ  is a real number.  The eigenvector U must also be real. 

 Because M and K are positive definite, KUUT  and MUUT are positive numbers.  
Consequently, λ  is also positive. 
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 Eigenvectors associated with different eigenvalues are orthogonal to one another.  Let 

iλ  and jλ  be two different eigenvalues, and  and  be their associated eigenvectors.  

Orthogonality here means that 
iU jU

  . 0=j
T
i MUU

If this equation holds, we also have 

  . 0== j
T
ijj

T
i MUUKUU λ

 To prove the orthoganality, multiply iii MUKU λ=  by , giving T
jU

  . i
T
jii

T
j MUUKUU λ=

Similarly, multiply jjj MUKU λ=  by , giving T
iU

  . j
T
ijj

T
i MUUKUU λ=

Because M and K are symmetric and real,  and .  The 

difference of the above two equations gives that 

T
j

T
i

T
i

T
j KUUKUU = T

j
T
i

T
i

T
j MUUMUU =

  ( ) i
T
jji MUUλλ −=0  

This proves that .  0=j
T
i MUU

 Normalize each eigenvector.  Each eigenvector is determined up to a scalar.  We can 
choose the scalar so that the eigenvector is normalized, namely, 

  , 1=i
T
i MUU

and 

  . ii
T
iii

T
i λλ == MUUKUU

  
 Forced vibration.  Excite a system by a periodic force column,  
  ( ) tt Ω= sin0FF ,  

where  is the amplitude of the force column, and 0F Ω  is the forcing frequency.  The equation 

of motion becomes  

   tΩ=+ sin0FKQQM &&

We want to determine .  Write ( )tQ ( )tQ  as a liner superposition of the eigenvectors: 

  ( ) ( ) ( ) ( ) nn tatatat UUUQ +++= ...2211 , 

Multiplying the equation of motion by a particular eigenvector, , we obtain that iU

  , tbaa iiii Ω=+ sin2ω&&

where .  This equation is identical to the equation of motion of a 1-DOF system.  Thus, 

the n-DOF system is a superposition of n normal modes, each acting like a 1-DOF system.   
0FUT

iib =

 This is an inhomogeneous ODE.  The full solution is the sum of all homogeneous 
solution and one particular solution.   

  ( ) t
b

tBtAta
i

i
iii Ω

Ω−
++= sincossin

22ω
ωω . 

With damping (which is neglected here), the homogenous solution will die out, but the 
particular solution will persist.  The particular solution is 
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  ( ) t
b

ta
i

i
i Ω

Ω−
= sin

22ω
. 

 Initial value problem.  Normal modes are useful if you only care about a few modes, 
say to avoid resonance or perform vibration control.  If you are interested in dynamic 
disturbance of some wavelength much smaller than the overall structure size, such as impact and 
wave propagation, you may want to evolve the displacement field in time.  Given the initial 

displacements and velocities, as well as the external forces,  is a set of ODE that 
evolves the nodal displacements over time.  This is a standard numerical problem.  ABAQUS 
provides this option. 

FKQQM =+&&
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