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ABSTRACT 

Prior continuum models of van der Waals force between carbon nanotube walls 

assume that the pressures be either the same on the walls, or inversely proportional to 

wall radius.  A new continuum model is obtained analytically from the Lennard-Jones 

potential for van der Waals force, without the above assumptions.  Buckling of a 

double-wall carbon nanotube under external pressure is studied, and the critical buckling 

pressure is much smaller than those models involving the above assumptions. 
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In order to overcome limitations of atomistic simulations, continuum models have been 

developed for carbon nanotubes (CNT), such as the linear elastic shell theory1,2, 

finite-deformation membrane theory3 and shell theory4 based on interatomic potentials.  For 

multi-wall CNTs, the interaction between walls is governed by the van der Waals force, which is 

characterized by the Lennard-Jones 6-12 potential, ( ) ( ) ( )12 64V d d dε σ σ⎡ ⎤= −⎣ ⎦ , where d is 

the distance between a pair of atoms, and 0.3415nmσ =  and 0.00239evε =  for carbon5.  Its 

derivative gives the force between two atoms, ( )F V d′=  (positive for attractive force). 

There are two types of continuum models to represent the van der Waals force between 

CNT walls.  One assumes the pressure to be the same, in outp p= , between two adjacent CNT 

walls6, where pin and pout are pressures on the inner and outer walls.  The other assumes the 

pressure to be inversely proportional to the wall radius7,8, i.e., in in out outp R p R= , where Rin and 

Rout are the inner and outer wall radii (Fig. 1). 

The purpose of this letter is to avoid the above assumptions and obtain the pressures on 

inner and outer walls analytically from the Lennard-Jones 6-12 potential.  Such analytical 

expressions will be useful in the continuum modeling of multi-wall CNTs and their composite 

materials.  Analytical expressions are also obtained for the effective pressures on the inner and 

outer walls of electrically charged double-wall CNTs. 

Cylindrical coordinates ( , ,R zθ ) are used for the double-wall CNT with the inner and 

outer radii Rin and Rout shown in Fig. 1.  Without losing generality, the distance between an atom 

on the inner wall ( ,0,0inR ) and an atom on the outer wall ( , ,outR zθ ) is 



 3

2 2 22 cosin out in outd R R R R zθ= + − + .  The forces between two atoms are equal and opposite, and 

are obtained from the Lennard-Jones potential as ( )F V d′=  (Fig. 1).  Their projections along 

the normal direction give the normal forces as ( )cosin
R out inF F R R dθ= −  and 

( )cosout
R out inF F R R dθ= − , which are not equal anymore (Fig. 1).  

 

Figure 1.  A schematic diagram of double-wall carbon nanotube 

The carbon atoms on each wall are represented by their area density ( )2
04 3 3c lρ =  

such that the number of carbon atoms is cdAρ  over the area dA, where l0 is the equilibrium bond 

length (of graphene).  This accurately represents the average behavior of van der Waals 

interactions between atoms from adjacent CNT walls9.  For an infinitesimal area indA  on the 

inner wall, the net force in the normal direction is 

( )
22 1

0
cosin

c in R c c c in out in outA
dA F dA dA dz F R R d R d

π
ρ ρ ρ θ θ

∞ −

−∞
= −∫ ∫ ∫ , which gives the pressure on the 

inner wall as ( )
22 1

0
cosin c out out inp R dz F R R d d

π
ρ θ θ

∞ −

−∞
= − −∫ ∫  (positive for compression).  

Similarly, the pressure on the outer wall is ( )
22 1

0
cosout c in out inp R dz F R R d d

π
ρ θ θ

∞ −

−∞
= − −∫ ∫ . 

For the Lennard-Jones 6-12 potential, the above pressures are obtained analytically as 
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and 
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 where ( ) 22 2 2

0
1 sin

m

mE k d
π

θ θ
−

= −∫ , and ( )22 4 in out in outk R R R R= + ; Em satisfies the recurring 

relation ( ) ( ) ( )( ) ( )2 2
2 42 1 3 2 4m m mm k E m k E m E− −− − = − − − − , and 

( ) ( ) 1 22 2 2
1 0

1 sinE K k k d
π

θ θ
−

= = −∫  and ( ) 2 2 2
1 0

1 sinE E k k d
π

θ θ− = = −∫  are the complete 

elliptic integrals of 1st and 2nd kind, respectively. 

 
Figure 2.  The normalized pressure, and pressure multiplied by the wall radius R, on the inner and outer walls 

of a double-wall CNT versus the normalized sum of inner and outer wall radii.  Results of Ref. 8 are also 

shown for comparison. 

Figure 2 shows the normalized pressure, ( )28 cp πεσρ , versus normalized radius, 

( )in outR R σ+ , for the inter-wall spacing out inR R σ− = , which is the equilibrium spacing due to 
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van der Waals force between graphenes9.  It is observed that inp  and outp  have different signs, 

and therefore in outp p≠ .  The result of He et al.8, 
22

0in c outp dz F R d
π

ρ θ
∞

−∞
= − ∫ ∫ , also shown in 

Fig. 2, is (in absolute value) much larger than Eq. (1) because the force F was not projected to the 

normal direction, and therefore misses the factor ( )cosout inR R dθ −  inside the integration.  

For small inter-wall spacing 2out inR R σ− =  (not shown in Fig. 2), all pressures are positive (i.e., 

repulsive force), while they become negative (i.e., attractive force) for large inter-wall spacing 

2out inR R σ− = .  Figure 2 also shows the normalized product of pressure and radius, 

( )2 28 cpR πεσ ρ , which has different signs for the inner and outer walls, and therefore 

in in out outp R p R≠ . 

There exist other potentials that are more accurate than the Lennard-Jones 6-12 potential 

to represent the C-C repulsive term, such as a registry dependent potential to describe the 

corrugation in interlayer interactions in graphene nanostructures (Kolmogorov et al. 10), or a 

modified Morse potential based on the ab initio LDA calculations (Wang et al. 11) that has been 

verified for graphite subject to high pressure12.  We use the Morse-type potential11 to calculate 

the pressures inp  and outp  of a double-wall CNT with an inner wall radius 0.35nm and the 

inter-wall spacing 0.3nm.  The resulting pressures are pin=35.0 and pout=6.7GPa, which give 

in outp p≠  and in in out outp R p R≠ .  These conclusions also hold, in general, for other potentials. 

Equations (1) and (2) are used to study buckling of a double-wall CNT subjected to 

external pressure pext.  The deformation is uniform prior to buckling, but its rate becomes 
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non-uniform at the onset of buckling.  The analysis is similar to that for a single-wall CNT13 

except that  

(i) the outer wall is subjected to a net external pressure pext-pout;  

(ii) the inner wall is subjected to an external pressure pin; and 

(iii) pin and pout are related to the inner and outer wall radii Rin and Rout via Eqs. (1) and (2). 

Figure 3 shows the critical external pressure at the onset of buckling, (pext)cr, versus L/Rout for a 

(8,8)@(13,13) double-wall CNT, where L and Rout are the length and outer radius; (pext)cr is much 

larger than that for the outer wall [(13,13) single-wall CNT]13, almost 4 times for long CNTs. 

This reflects the resistance of vdW force between walls against buckling.  Results based on prior 

assumptions overestimate the critical external pressure for buckling; the assumption in outp p=  

overestimates by 75% for long CNTs, and in in out outp R p R=  overestimates by 26%. 

 
Figure 3.  The critical external pressure at the onset of buckling, (pext)cr, versus the length to outer radius ratio, 

L/Rout, for a (8,8)@(13,13) double-wall CNT.  Results for the (13,13) single-wall CNT, and those based on 

prior assumptions are also shown. 

Equations (1) and (2) can be expressed in the Taylor series of the small parameter 

( ) ( )out in out inR R R Rξ = − +  as 
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where + terms are for inp  and – terms for outp .  Similarly, in inp R  and out outp R  are given by 
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where + terms are for in inp R  and – terms for out outp R .  For the inter-wall spacing out inR R σ− =  

as in Fig. 2, ( )2 2, 0.6 2 3in out cp p πεσρ ξ ξ= ± +  (and therefore in outp p≠ ), and 

( )2 2, 0.3 2in in out out cp R p R πεσ ρ ξ= ± +  (and therefore in in out outp R p R≠ ).  Figure 3 also shows the 

critical external pressure at the onset of buckling, (pext)cr, based on the Taylor series expansion (3) 

and (4), which agrees very well with the exact solution based on Eqs. (1) and (2). 

The last example to illustrate in outp p≠  and in in out outp R p R≠  is for two concentric tubes 

with electrical charges, which are characterized by the electrostatic potential ( ) 1~V d d −  and 

force ( ) 2~F V d d −′= , where 2 2 22 cosin out in outd R R R R zθ= + − +  is the distance between 

electrical charges.  The electrical charges on the inner and outer tubes are represented by their 

area densities (number of charges per unit area) inρ  and outρ .  The pressures on the inner and 

outer walls are then given by ( )
2 1

0
cosin in out out out inp R dz F R R d d

π
ρ ρ θ θ

∞ −

−∞
= −∫ ∫  and 

( )
2 1

0
cosout in out in out inp R dz F R R d d

π
ρ ρ θ θ

∞ −

−∞
= −∫ ∫ .  For ( ) 2~F V d d −′= , it can be shown 
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analytically that the pressure on the inner wall is identically zero, 0inp ≡ , while the pressure on 

the outer wall is not, 0outp ≠ , such that in outp p≠  and in in out outp R p R≠ . 

In summary, continuum models for van der Waals force or electrostatic force between 

CNT walls are obtained analytically.  They bypass assumptions in prior studies, and have been 

applied to determine the critical external pressure for buckling of double-wall CNTs. 
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