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Abstract 
  

In the present work, polarization distributions around an open crack with different 

electrical boundary conditions in a single crystal ferroelectric are investigated by using a 

phase field model. The surface effect of polarization is taken into account in the phase field 

model, which has not been included in previous ferroelectric crack models. The simulation 

results show that the impermeable crack and the crack filled with air have a significant 

influence on the polarization distribution, while the permeable and the crack filled with water 

have little influence. It is also found that the zero boundary condition of polarization increases 

the influence of the crack on the permeable crack and the crack filled with water.  The results 

of the present work suggest that a crack filled with air can be approximated as an 

impermeable crack, and a crack filled with water can be regarded as a permeable crack in 

ferroelectric materials.   
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1. Introduction  
 

Ferroelectric materials have received considerable attention in the industry and the 

academia due to their distinguished piezoelectric, dielectric and ferroelectric properties. The 

piezoelectric or inverse piezoelectric effect of ferroelectric materials is highly dependent on 

the polarization distribution. The piezoelectric constant in ferroelectric materials is 

inhomogeneous before poling and determined by locally electrical polarization. Without any 

external loadings, the electrical polarization is called spontaneous polarization, which is a 

function of temperature for a given material system. When large external loadings and/or 

different boundary conditions are applied on ferroelectrics, the distribution of spontaneous 

polarization may change. Correspondingly, the piezoelectric properties will be changed. Thus, 

the piezoelectric properties of ferroelectric materials are not only dependent on the nature of 

the material but also on the external loadings and boundary conditions. In general, it requires 

three physical fields, namely polarization field, electric field and strain field, to describe the 

nonlinear electromechanical behavior of ferroelectric materials under external loadings and 

different boundary conditions [1].  

  

 Ferroelectric materials often possess defects, such as notches and cracks.  The presence of 

these defects will also greatly influence the polarization distribution inside the materials. For 

example, the different electrical boundary conditions on the surfaces of notches or cracks can 

change the polarization distribution through the strong depolarization field, which is induced 

by the spatial discontinuity of polarization. Because of the change of polarization, the 

piezoelectric constant around the cracks is changed completely. As a result, the 

electromechanical coupling behavior in front of the crack tip is changed. Based on different 

crack surface boundary conditions, the predictions from linear piezoelectric fracture 

mechanics are totally different [2-7]. Due to the change of polarization around the crack tip, 
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the theoretical results based on linear piezoelectric fracture mechanics cannot predict the 

experimental observations of the fracture behavior of ferroelectric ceramics under mechanical 

and/or electrical loading [8-9]. Therefore, the nonlinear analysis on the polarization 

distribution around the notches or cracks with different electrical boundary conditions is 

needed for studying the fracture behavior of ferroelectric materials. To investigate the 

nonlinear behavior of ferroelectrics, different phenomenological models have been proposed 

[10-13]. In the phenomenological models, the total polarization in ferroelectric materials is 

often divided into reversible and irreversible parts. The reversible part is a function of the 

external mechanical and electrical loadings, while the irreversible part depends on the loading 

history via internal state variables. Recently, phase field models have also been employed to 

study the nonlinear behavior of ferroelectrics [14-16]. In the phase field models, the 

polarization is regarded as an order parameter which can change its orientation and magnitude 

under the external mechanical and electrical loadings. In the present work, we employ a 3D 

finite-element based phase field model to study the polarization distribution around an open 

crack with different electrical boundary conditions in a single crystal ferroelectric plate with 

single domain. The 3D finite-element based phase field model was previously employed to 

study the polarization distribution in ferroelectric nanostructures [17-18]. In the present work, 

the surface effect of polarization and different crack electrical boundary conditions are taken 

into account, which has not been studied in the previous simulations.             

 

2. Electrical boundary conditions for an open crack 
 

The electrical boundary conditions on crack surface have a significant influence on the 

polarization distribution and the fracture behavior of ferroelectric materials. For an open crack, 

the electrical boundary condition of crack surface depends on the medium inside the crack. 

For example, if the medium inside the crack is conductive, the electric potential   on the 

crack surface will be constant,  
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 0,   (conductive crack)                                          (1)  

which is so-called conductive crack. If the medium is a dielectric, there exist three kinds of 

electrical boundary conditions on the crack surface: permeable crack; semi-permeable crack; 

and impermeable crack, which depend on the dielectric constant of the medium. If the 

dielectric medium is a fluid, there is no elastic energy inside the crack but there exists an 

electrically internal energy due to the presence of electric field, which can be expressed as 

iiciiE EEEDU 
2

1

2

1
 ,                                               (2) 

where c  is the dielectric constant of the medium, and iD  and iE  are the electric 

displacement and electric field, respectively. For an infinite large c , the electric 

displacement can penetrate the crack and the normal components of electric displacement nD  

are the same on upper and lower crack surface. This will result in a permeable crack,  

                       _
nn DD     and  _  ,                                               (3) 

 in which superscripts +  and - denote the upper and lower surfaces, respectively.  If c  

approaches zero, the crack becomes impermeable. In this case, the electrical boundary 

condition is 

   0 
nn DD    and  0_   .                                               (4) 

If the dielectric constant c  has a finite value, the crack is called semi-permeable and the 

corresponding electrical boundary condition becomes  

                    








uu

DD cnn

                                                     (5) 

In the present work, the influence of three kinds of electrical boundary condition on the 

polarization distribution around the crack is investigated. For an impermeable crack, the 

dielectric constant c  is assumed to be zero. The dielectric constant c  is taken as 106
0  to 

approximate a permeable crack in which 0  is the dielectric constant of air. The crack is 
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assumed to be filled with different dielectric fluids to model the semi-permeable crack. 

Furthermore, three kinds of dielectric fluids are studied for the semi-permeable crack, which 

are water with c = 80 0  , silicon oil with c = 2.5 0 and air with c = 0 .        

 
3. Surface effect on polarization  
 

Due to the symmetry breaking on the surface of ferroelectric crystal, polarizations on 

surfaces are different from those inside the crystal. This is the surface effect of polarization, 

which is different from the electrical boundary conditions mentioned in Section 2. The 

different electrical boundary conditions are related to the electric displacement on crack 

surface while the surface effect of polarization is only related to the polarization. The relation 

of electric displacement and polarization can be expressed as iii PED  0 . With the size 

decreasing, the surface effect becomes significant. In the study of small size ferroelectrics, the 

surface effect can be included in continuum theories by setting appropriate boundary 

conditions of polarization. The boundary condition for polarization, Pi, is usually given by  

i

ii P

dn

dP


 ,  ( 3,2,1i )                                                  (6) 

where n  refers to a unit length in the outward normal direction of the surface and i  is the 

so-called extrapolation length, which is introduced to describe the difference of polarizations 

between the surface and the interior of the material. Figure 1 schematically shows the surface 

effect on ferroelectric surface, in which iP  and P are the polarization at the surface and the 

inside, respectively. The polarization is reduced at the surface when 
i  is positive or zero, 

while the polarization is enhanced at the surface when 
i  is negative. Therefore, the value of 

i  determines the intrinsic size effect. When 
i  approaches infinity, the boundary condition 

becomes  

0
dn

dPi ,  ( 3,2,1i )                                                        (7) 
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which is called the free-polarization boundary condition [19], and the intrinsic size effect 

vanishes because in this case, there is no difference for polarizations in the media between the 

surface and the interior. When 
i  equals zero, polarizations are completely suppressed at the 

surface, i.e.,  

0iP , ( 3,2,1i )                                                           (8) 

 which is called the zero-polarization boundary condition [19], thereby generating the most 

significant size effect. For an open crack in ferroelectrics, the effect of crack surface on 

polarization is similar to that of the material surface. In the present study, the free-polarization 

and zero-polarization boundary conditions are employed on the crack surface, respectively, to 

investigate how the surface effect changes the polarization distribution around the crack with 

different electrical boundary conditions.    

 

4. Simulation methodology 

 
In the present study, different electrical enthalpies are applied to the crack fluid medium 

and the ferroelectrics, respectively. For the crack medium, the electrical enthalpy is obtained 

from the electrically internal energy of Eq.(1), which is a function of electric field 
iE  and can 

be expressed as 

iiciiEic EEEDUEh 
2

1
)(  ,                                               (9) 

The electrical enthalpy of crack ch has to satisfy the following electrostatic equilibrium 

equation 

  0

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x
.                                                             (10) 
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For the ferroelectric medium, there exists Landau energy and elastic energy due to the 

presence of polarization field and strain field in the material. Therefore, the electrical enthalpy 

of ferroelectrics is a function of polarization
iP , strain 

ij  and electric field
iE , which can be 

expressed as 

,)/)(/(

),,(

02
1

2
1

2
1222222

iiiilkjiijkl

lkijijklklijijklkjiijkjiijiiiiji

PEEEκxPxPg

PPqcPPPPPPEPh



 
                 (11) 

The first three terms in Eq. (11) represent the Landau energy, where 
0001 2/)( CTT    is the 

dielectric stiffness, ,,,, 1121111211   and 
123  are higher order dielectric stiffnesses, T and T0 

denote the temperature and the Curie-Weiss temperature, respectively, C0 is the Curie 

constant. The Landau energy is due to the phase transition from paraelectric phase to 

ferroelectric phase when the temperature decrease to below Curie temperature, which is 

independent of external electric field. The fourth term denotes the elastic energy of the 

system, in which ijklc  are the elastic constants. The fifth term denotes the coupling energy 

between the polarizations and the strains, where ijklq  are the electrostrictive coefficients. The 

sixth term is the gradient energy, in which 
ijklg  are the gradient coefficients, and ji xP  /  

denotes the derivative of the ith component of the polarization vector, Pi, with respect to the 

jth coordinate, jx , and i, j =1, 2, 3. The gradient energy gives the energy penalty for spatially 

inhomogeneous polarization. All the energy terms in Eq. (11) are the same as those in Ref. 

[20]. The last two terms are introduced through Legendre transformation to obtain the 

electrical enthalpy. With the electrical enthalpy, the stresses and electric displacements can be 

derived as 
ijij h   / and 

ii EhD  / . The form of Eq.(11) can be reduced to the form of 

Eq.(9) for air with c = 0  if the polarization and strain are zero.  
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In the phase field model of ferroelectrics, the temporal evolution of the polarization 

formation in ferroelectrics can be obtained from the following time-dependent Ginzburg-

Landau equation 

t),(δP

δF
L=

t

t),(P

i

i

x

x





     (i=1, 2, 3),                                  (12) 

where L is the kinetic coefficient, dvEDhF iiV∫ +=  is the total free energy of the simulated 

system, t),(δPδF i x/  represents the thermodynamic driving force for the spatial and temporal 

evolution of the simulated system, x denotes the spatial vector, )x,x,(x= 321x , and t is time. 

In addition to Eq. (12), the following mechanical equilibrium equation  

0











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ijj

h

x 
                                                        (13) 

and Maxwell’s (or Gauss' ) equation 

0



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
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


ii E

h

x
                                                        (14) 

must be satisfied at the same time for charge and body force free ferroelectric materials, in 

which the repeated indices imply summing over 1, 2 and 3. A nonlinear multi-field coupling 

finite element formulation is developed to solve the governing equations (12), (13) and (14). 

The finite element formulation is based on the weak form  
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of the governing equations where i is the surface traction,   is the surface charge. j
ji

n
P

h

,


 is 

the surface gradient flux, where jn denotes the components of the normal unit vector of the 

surfaces. For the space discretization, an eight-node brick element with seven degrees of 
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freedom at each node is employed. The seven degrees of freedom are three displacements, 

electrical potential and three polarization components. The detailed derivation of the three-

dimensional finite element formulation can be found in our previous work [1].  

 

5. Simulation results and discussion 
 

A 3D PbTiO3 ferroelectric single crystal plate with the in-plane size of 120nm   90nm 

and the thickness of one nm is studied in the present simulation, which is similar to a plane 

stress problem. Although the thickness is far smaller than the size of in-plane, three-

dimensional brick elements are employed. In thickness direction, one element thickness 

equals to the plate thickness, i.e. only one element is employed in thickness 1x  direction. 

Fig.2. shows the mesh partition of the simulated ferroelectric plate in 1x =0 plane. The 1x  axis 

is normal to the paper plane and pointing outside. The mesh partition in 1x =1 nm plane is 

exactly same as Fig.2 because only one element is used in 1x  direction. Fig.2. (a) denotes the 

global mesh and Fig.2 (b) is the refined mesh around the crack tip and the green area denotes 

the crack medium. The crack is also partitioned and is assumed to be filled with fluids. The 

initial polarization of Po=0.757 C/m2 is along 3x  positive direction. The materials parameters 

of ferroelectrics is the same as those in Ref.[17]. The temperature in the simulations is room 

temperature. The upper and lower boundaries of the ferroelectric plate are short-circuited and 

other boundaries are open-circuited so that the initial polarization is uniform and stable if 

there is no crack. All boundaries of the ferroelectric plate are assumed to be stress-free. The 

crack is located in the middle of the ferroelectric plate. For different crack electrical boundary 

conditions, we use different dielectric constants as discussed in Section 2.  For surface effect 

of polarization discussed in Section 3, the zero-polarization boundary condition corresponds 

to the boundary condition 0iP  at crack surfaces in Eq.(15), and free-polarization boundary 
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condition corresponds to zero gradient flux, i.e. 0
,





j
ji

n
P

h
, at surface in the right hand side 

of Eq.(15).  Therefore, we can use  0iP  and 0
,





j
ji

n
P

h
 to model the zero-polarization and 

free-polarization boundary conditions, respectively.  

  

Fig.3.(a) and Fig.3.(b) show the polarization distributions around electrically permeable 

cracks for free-polarization and zero-polarization boundary conditions, respectively. Due to 

the thickness of the simulated ferroelectric plate is far smaller than in-plane size, the results 

remain unchanged in thickness direction. So we only report the results at 1x =0. All units are 

nanometer in the figure. Only part of the polarizations around the crack is plotted in the 

figures for clarity. The polarizations far from the crack almost remain unchanged. For the 

free-polarization boundary condition, the crack has little influence on the polarization 

distribution. When the zero-polarization boundary condition is applied on the crack surfaces, 

it can be found that the polarization distribution has some changes in orientation. The 

influence of zero-polarization boundary condition on the polarizations around the crack can 

be clearly seen from Fig.4. Fig.4.(a) and Fig.4.(b) give the changes of polarization 

components in 3x direction and in 2x direction, respectively, at 2x = 0 in Fig.3.  The 

polarization component P3 near the crack with zero-polarization boundary condition is smaller 

than that of free-polarization boundary condition as shown in Fig.4.(a). In the area far from 

the crack, the results from the two boundary conditions become the same. The polarization 

component P2 with zero-polarization is positive below the crack, while it becomes negative 

above the crack as shown in Fig.4.(b). The curve with zero-polarization is anti-symmetrical 

with respect to the line 3x = 0. The trend of the change is different from that of free-

polarization.              
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Fig.5.(a) and Fig.5.(b) show the polarization distributions around electrically semi-

permeable cracks filled with water for the free-polarization and zero-polarization boundary 

conditions, respectively. It can be found that the results are similar to those of the permeable 

crack in Fig.3. These results imply that when a ferroelectric crack is filled with water or other 

fluid with higher dielectric constant than water, it can be regarded as an electrically permeable 

crack. Fig.6.(a) and Fig.6.(b) show the polarization distributions around electrically semi-

permeable cracks filled with silicon oil for the free-polarization and zero-polarization 

boundary conditions, respectively. For the crack with silicon oil, the crack has some 

influences on the orientation of the polarization vectors even in the condition of free-

polarization as shown in Fig.6.(a). It is interesting that the polarization vectors above and 

below the crack change orientation greatly and form small polarization vortices under the 

zero-polarization boundary condition as shown in Fig.6.(b). The influence of crack on the 

polarization distribution becomes significant when the dielectric constant of the fluid in the 

crack further increases. This can be seen from Fig.7 where the crack is filled with air. Fig.7.(a) 

and Fig.7.(b) show the polarization distributions around electrically semi-permeable cracks 

filled with air for the free-polarization and zero-polarization boundary conditions, respectively. 

For both free-polarization and zero-polarization boundary conditions, the crack has a 

significant influence on the polarization distribution. Four polarization vortices can be found 

from both cases. The crack filled with air approaches an impermeable crack. This can be 

confirmed by the results in Fig.8, which is an electrically impermeable crack.    

 

Fig.9. gives the change of polarization components in 3x direction at 2x = 0 for the 

cracks with different electrical boundary conditions. Fig.9.(a) and Fig.9.(b) show the results 

for the free-polarization and zero-polarization boundary conditions, respectively. It can be 

found that the impermeable crack has the largest influence and the permeable crack has the 
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smallest influence on the polarization for both the free-polarization and zero-polarization 

boundary conditions. For zero-polarization boundary condition, the permeable crack and the 

crack with water have almost the same influence on the polarization as shown in Fig.9.(b). 

Fig.10(a) shows the change of polarization components in 2x direction at 2x = 17 in front of 

cracks with different electrical boundary conditions for the free-polarization boundary 

condition. It can be found that the impermeable crack and the cracks with air and oil have the 

similar influence on the polarization. But the permeable crack and the crack with water have 

different influences on the polarization. The permeable crack has the smallest influence on the 

polarization. For zero-polarization boundary condition, however, the permeable crack and the 

crack with water have the same influence on the polarization as shown in Fig.10(b). From 

Fig.10(b), it can also be found that the cracks with different electrical boundary conditions 

have the similar influence on polarization component P2  in front of crack.           

        

6. Concluding remarks 

 
To conclusion, a phase field model is employed to study the polarization distribution 

around an open crack with different electrical boundary conditions in a single crystal 

ferroelectric with single domain. The phase field model is based on a three-dimensional 

nonlinear finite element method for ferroelectric materials, which includes three physical 

fields, namely polarization field, electric field and strain field. The new feature of the present 

model is to taken into account the surface effect on the polarization on crack surfaces, which 

has not been studied before. It is found that the impermeable crack and the crack filled with 

air have a significant influence on the polarization distribution while the permeable and the 

crack filled with water have little influence on the polarization distribution in the 

ferroelectrics. It is also found that the zero boundary condition of polarization increases the 
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influence of the crack on the polarization distribution for the permeable crack and the crack 

filled with water.  The results in the present study suggest that a crack filled with air can be 

approximated as an impermeable crack and a crack filled with water can be regarded as a 

permeable crack in ferroelectric materials.   
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Fig.1. The surface effect of polarization on ferroelectric surface, in which iP  and P are the 

polarization at the surface and the inside of the ferroelectrics, respectively.  
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Fig.2. Mesh partition of the simulated ferroelectric single crystal plate with a crack in the 

middle. (a) Global mesh; (b) Refined mesh around the crack tip (the green area denotes the 

crack). The crack is also partitioned and is assumed to be filled with fluids. The initial 

polarization of Po=0.757 C/m2 is along 3x  positive direction. The upper and lower boundaries 

of the ferroelectric plate are short-circuited and other boundaries are open-circuited so that the 

initial polarization is uniform and stable if there is no crack. All boundaries of the 

ferroelectric plate are assumed to be stress-free. 
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Fig.3. Polarization distributions around electrically permeable cracks with (a) free-

polarization and (b) zero-polarization boundary conditions. All units are nanometer in the 

figure. 
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Fig.4. Change of polarization components (a) in 3x direction and (b) in 2x direction at 2x = 0 

(in the middle of crack) in Fig.3.  
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Fig.5. Polarization distributions around cracks filled with water and with (a) free-polarization 

and (b) zero-polarization boundary conditions.  
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Fig.6. Polarization distributions around cracks filled with silicon oil and with (a) free-

polarization and (b) zero-polarization boundary conditions.  
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Fig.7. Polarization distributions around cracks filled with air and with (a) free-polarization 

and (b) zero-polarization boundary conditions. 
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Fig.8. Polarization distributions around electrically impermeable cracks with (a) free-

polarization and (b) zero-polarization boundary conditions. 
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Fig.9. Change of polarization components in 3x direction at 2x = 0 (in the middle of crack) in 

Fig.3, Fig.5, Fig.6, Fig.7 and Fig.8 for different cracks. (a) free-polarization; (b) zero-

polarization.     
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Fig.10. Change of polarization components in 2x direction at 2x = 17 nm (in front of crack) in 

Fig.3, Fig.5, Fig.6, Fig.7 and Fig.8 for different cracks. (a) free-polarization; (b) zero-

polarization.     
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