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Abstract

Eigenstrains are created as a result of anelastic effects such as defects, temperature changes, bulk growth, etc.,
and strongly affect the overall response of solids. In this paper, we study the residual stress and deformation
fields of an incompressible, isotropic, infinite wedge due to a circumferentially-symmetric distribution of finite
eigenstrains. In particular, we establish explicit exact solutions for the residual stresses and deformation of a neo-
Hookean wedge containing a symmetric inclusion with finite radial and circumferential eigenstrains. In addition,
we numerically solve for the residual stress field of a neo-Hookean wedge induced by a symmetric Mooney-Rivlin

inhomogeneity with finite eigenstrains.

Keywords: Finite eigenstrains; residual stresses; nonlinear elasticity; elastic wedge.

1. Introduction

The governing equations of nonlinear elasticity
are formidably complicated and are amenable to an-
alytic solutions only for very few problems. Semi-
inverse methods have been particularly useful for ob-
taining exact solutions for nonlinear elasticity prob-
lems. One problem that has attracted several re-
searchers in the last few decades is that of an infinite
wedge made of a nonlinear elastic solid (either com-
pressible or incompressible) under various boundary
conditions and in the absence of body forces.

Tao and Rajagopal [1] studied the inhomogeneous
deformation of a wedge made of a Blatz-Ko mate-
rial. They assumed a specific form of deformations in
which radial planes in the reference configuration re-
main radial planes after deformation. They found the
only possible inhomogeneous solution, which turned
out to be asymmetric with respect to the bisecting
plane of the wedge. This specific class of deforma-
tions was further studied in the literature to find the
inhomogeneous deformations in wedges and cones.
Fu et al. [2] explored circumferentially-symmetric fi-
nite deformations of a wedge made of an incompress-
ible Mooney-Rivlin material. To solve the problem,
they specified the translation and rotation of the lat-
eral faces of the wedge. They proved that the defor-
mation is homogeneous when the pressure field as-
sociated with the incompressibility condition is uni-
form. For the inhomogeneous solutions, they were
able to reduce the governing equations to a convenient
form that allowed for a plane-phase analysis. They
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observed that for certain wedge angles, the deforma-
tion of the wedge is not radially-unidirectional, i.e.,
some parts of the wedge radially stretch, while others
contract. Rajagopal and Carroll [3] assumed inhomo-
geneous circumferentially-symmetric finite deforma-
tions of a wedge made of an isotropic material. Using
the displacement lateral boundary conditions and by
applying the required tractions on the circular bound-
ary, they obtained, when the material is compressible,
a necessary condition that the energy function needs
to satisfy for the assumed inhomogeneous deforma-
tion to be possible. For incompressible materials, they
showed that such an inhomogeneous deformation is
possible if the pressure field has a logarithmic singu-
larity at the origin. Rajagopal and Tao [4] studied in-
homogeneous circumferentially-symmetric finite de-
formations of a wedge made of an incompressible
power law material. They showed that a “boundary
layer solution”, i.e., one that is homogeneous in the in-
terior of the wedge but is inhomogeneous close to the
boundary, is possible with a bounded pressure field.
However, they showed that inhomogeneous solutions
are possible only if the pressure field develops a log-
arithmic singularity at the apex of the wedge. Walton
and Wilber [5] investigated the deformations of a neo-
Hookean elastic wedge considering the aforemen-
tioned class of deformations. They observed that ho-
mogeneous non-unidirectional deformations are pos-
sible in every incompressible, isotropic, hyperelastic
material. Assuming a more general class of deforma-
tions, where some restrictions on the form of the de-
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formation were relaxed, they showed that there exist
no additional solutions. Walton [6] studied the sta-
bility of this class of deformations under small am-
plitude vibrational perturbations of the lateral faces
of a wedge. He found that even to the first order in
an asymptotic expansion of the amplitude of the lat-
eral sides of the wedge, the vibrations cannot remain
planar; rather out-of-plane vibrational modes must be
excited in the interior of the wedge.

In continuum mechanics a strain is some measure
of deformation that gives the length of an infinitesi-
mal line element assuming that the length of this line
element is known in some other (reference) config-
uration. A stress is usually defined to be an areal
density of force. Given a pair of thermodynamically-
conjugate stress and strain, e.g. the first Piola-
Kirchhoff stress and the deformation gradient (P, F)
or the second Piola-Kirchhoff stress and the right
Cauchy-Green strain (S, C), locally a non-zero strain
does not correspond to a non-zero stress. That part of
strain that locally is related to the corresponding stress
is called elastic strain. The remaining part is usu-
ally referred to as eigenstrain or pre-strain. The term
eigenstrain was first used by Mura [7]. Other terms
have been used in the literature for the same concept,
e.g. initial strain (8], inherent strain [9], and trans-
formation strain [10] (see [11] for a more detailed
discussion). In a homogeneous body by an inclusion
we mean a region with a distribution of eigenstrains.
When the region with eignstrains and the matrix are
made of different materials instead of inclusion we use
inhomogeneity with eigenstrain.

In the setting of linear elasticity [10] computed the
stress field of an ellipsoidal inclusion with uniform
(infinitesimal) eigenstrains in an infinite isotropic
solid. There have been a few 2D extensions of Esh-
leby’s problem to finite elasticity for harmonic ma-
terials [12-16]. The classical shrink-fit problem of
nonlinear elasticity [17] is the nonlinear analogue of
an inclusion with pure dilatational eigenstrains. The
problem of finite eigenstrains in 3D nonlinear elastic-
ity was analytically studied by [18]. They calculated
the residual stress fields induced by finite radial and
circumferential eigenstrains for the case of spherical
balls and (finite and infinite) circular cylindrical bars
made of arbitrary incompressible and isotropic solids.
The problem of finite shear eigenstrains and the twist-
fit problem were investigated recently by [19].

To our best knowledge, finite eigenstrains in the
framework of nonlinear elasticity have not been stud-
ied in any geometry other than spherical and cylin-
drical. In this paper, we consider an infinite wedge
made of an incompressible and isotropic solid and as-
sume that it has a circumferentially-symmetric distri-
bution of finite radial and circumferential eigenstrains.
We derive the governing equilibrium equations of the
wedge and using a semi-inverse method and assuming
a specific class of deformations find the stresses that

are induced by finite radial and circumferential eigen-
strains. In particular, we solve for the stress field of
both neo-Hookean and Mooney-Rivlin wedges with
a symmetric inclusion or inhomogeneity with eigen-
strains.

This paper is organized as follows. In section 2,
we tersely review some basic concepts of geometric
anelasticity. In section 3, we discuss the material man-
ifold of a wedge with a circumferentially-symmetric
distribution of finite eigenstrains and find the govern-
ing equations for an incompressible, isotropic wedge.
In sections 3.1 and 3.2, we solve the problems of
an inclusion and a Mooney-Rivlin inhomogeneity
with uniform eigenstrains in a neo-Hookean wedge.
In section 3.3, we find the impotent (stress-free)
circumferentially-symmetric finite eigenstrain distri-
butions. In section 4, we conclude the paper with
some remarks.

2. Elements of Geometric Anelasticity

In this section, we briefly review some fundamen-
tal elements of the geometric theory of nonlinear elas-
ticity and anelasticity. For more detailed discussions,
see [20, 21].

Kinematics.. A body B is assumed to be identified
with a Riemannian manifold (8, G). A configuration
of B is a smooth embedding ¢ : B — S, where (S, g)
is the Euclidean ambient space. We denote by V¢
and V# the Levi-Civita connections associated with
the Riemannian manifolds (8, G) and (S, g), respec-
tively. The set of all configurations of 8 is denoted by
C. A motion of Bis a curve R™ — ¢, € C such that ¢,
assigns a spatial point x = ¢,(X) = ¢ (X, ) € S to ev-
ery material point X € 8 at a time ¢. The deformation
gradient F is the derivative map of ¢, defined as

F(X,t) =dp(X) : TxB — T¢((X)S. 2.1)

The adjoint of F is defined by

F'(X,1): T,08 — TxB,
gFV.v)=G(V.Fv),
YV eTxB, ve wa(X)S . 2.2)

The right Cauchy-Green deformation tensor is defined
as

CX,t)= FIX,0)F(X,1) : TxB — TxB. (2.3)

In the coordinate charts {X“} and {x?} for 8 and S,
respectively, in components, C can be written as:
C%s = GALF* FPgg,,. The Jacobian of the motion
J relates the material and spatial Riemannian volume
elements dV(X, G) and dv(x, g) by dv = JdV and is

given by
det g
J= det F. 24
VdetG 24




Constitutive equations.. In this paper we restrict our
calculations to incompressible isotropic hyperelastic
solids. That is, there exists an energy function W
that depends only on the first two principal invari-
antsof C: I} = trC and I, = %(tr(C)2 —tr(C?)), ie.,
W = W(X, 1,, 1), such that the Cauchy stress tensor
is given in components by [22]

o = 2FAF 5 (W), + L W,,)G*P — W, C*]
-pg”, (25

wher.e W" = g—{v‘l/ , Wi, .:: ‘;T":., and p %s the Lagra.nge
multiplier associated with the internal incompressibil-

ity constraint J = 1.

Equilibrium equations.. In terms of the Cauchy stress
tensor, the localized balance of linear momentum of a
body in static equilibrium and in the absence of body
forces reads

divo=0, (2.6)

where div denotes the spatial divergence operator. In
components, the spatial divergence operator reads

ab
(divo)* = 0'“b|b =9 + O'“Cybcb + o-“by“c;, , 2.7
OxP
where y%,. is the Christoffel symbol of the Levi-
Civita connection V¢ in the local chart {x“}, defined
as V&;,0. = y*pc0,, (similarly, for the material mani-
fold VG(?gaC = FABCHA).

The Riemannian material manifold.. In geometric
anelasticity one starts with a stress-free body 8 with-
out eigenstrains sitting in the Euclidean space with
metric Gg. This means that the body free of eigen-
strains is a Riemannian manifold (8, Gy). The effect
of an eigenstrain distribution is to locally transform a
line element dXj to dX = KdXy, where K explicitly
depends on the distribution of eigenstrains. Note that

Gy (dXo, dXp) = G (dX, dX), (2.8)

where G = K.Gy is the push-forward of Gy by K.
In the manifold (8B, G), the body with the distributed
eigenstrains is stress-free because the distances are set
to be those of the hypothetically relaxed body. Note
that in components, G4p = K%, KP 8(Go)qp, Where the
coordinate charts {X?} and {X“} in the initial and dis-
torted reference configurations, respectively, are as-
sumed.

In the geometric formulation of anelasticity, all the
anelastic effects are buried into the material manifold.
In other words, if one succeeds in building a material
manifold (where the body is stress-free by construc-
tion) then the anelasticity problem is transformed into

a classical nonlinear elasticity problem as long as the
non-trivial geometry of the material manifold is taken
into account properly. In our formulation of nonlinear
anelasticity kinematics and the governing equations
have forms identical to those of the classical nonlin-
ear elasticity; nonlinear elasticity is a special case in
this formulation in which the material manifold is Eu-
clidean. Certain questions, e.g. finding the stress-free
finite eigenstrain distributions, are formulated quite
naturally in the geometric framework as we will ex-
plain in this paper.

3. An infinite incompressible isotropic wedge with
finite circumferentially symmetric eigenstrains

In this section we consider an infinitely long
wedge of radius R, and angle 20, (see Figure 1).
Let (R, ©, Z) be the cylindrical coordinates for which
R>0,-0, <0 <0,, and Z € R such that the axis
of the wedge corresponds to R = 0. In the cylindri-
cal coordinates (R, ®,Z), the material metric for the
eigenstrain-free configuration reads

1 0 0
Go=|0 R 0][. 3.1)
0 0 1

We assume a circumferentially-symmetric eigenstrain
(pre-strain) distribution in the wedge. With respect to
the initial reference configuration and using the cylin-
drical coordinates (R, ®, Z) for the material manifold
K is assumed to have the following representation

ex® 0 0
K=| 0 ¢»® ¢ | (3.2)
0 0 1

where wg(0) and we(O®) are arbitrary functions that
describe the radial and circumferential eigenstrain dis-
tributions in the wedge. Now the material metric
G = K.Gy will have the following representation in
the cylindrical coordinates (R, ®, Z):

e2r(©) 0 0
G= 0 R?e?%0®) (|| (3.3)
0 0 1

This is the metric that was introduced by Yavari and
Goriely [18].!

I'Similar constructions using non-trivial material geometries have been introduced in thermoelasticity, growth mechanics, and the mechan-

ics of distributed defects [21, 23-29].



Figure 1: A wedge with a finite circumferentially-symmetric eigen-
strain distribution.

We endow the ambient space with the flat Euclidean
metric, which in cylindrical coordinates (r, 6, z) reads

1 0 0
g=|0 oo |. (3.4)
0 0 1

Let us consider the class of deformations for which
radial surfaces ® = constant in the reference configu-
ration remain planar and are mapped to radial surfaces
in the current configuration. That is, we assume an
embedding of the material manifold into the ambient
space with the following form

r=k(R,®), 06=h®), z=Z. (3.5)
Therefore, the deformation gradient reads
F=[ 0o % 0 ] ) (3.6)
0o 0 1

[ det
Assuming incompressibility J = ° gdetF =1,
detG

we find
H(©) [(R,0) - K*(0,0)] = R @@ (37

Eliminating the rigid body translation by set-
ting (0, ®) = 0, we find that

r = k(R,®) = R{(0), (3.8)
where
R 0 - e“R(©)+we(0) 39
£O=—re (3.9)

This means that for an incompressible wedge within
the class of deformations (3.5), and given the radial
and circumferential eigenstrain distributions, the kine-
matics is fully determined after solving for the un-
known function ¢ = {(®). The right Cauchy-Green
deformation tensor is written as

eO2@)  ReHOLO)(©) 0

¢-206(©) 29R(©)

C= 7 4O)'(0) T + (@)% 290®

0 0 1
(3.10)

The invariants of C are

[1 — tr(C) =1+ éa(@)Ze—ZwR(@) + §,(®)2€_2w®(®)

¢2on(©) 3.11)
Ter
I = 5(5(C?) ~ W(0)) = 1+ {(O)en®)
2
/o2 —2w6(©) ¢2r©®) (3.12)
+'(®)e + W )
I =det(C) = 1. (3.13)

Note that I; = I, depends only on ©.

We assume that the wedge is made of an in-
compressible isotropic radially-homogenous material,
i.e., the strain energy function has the form W =
W(®,1,,1;). Following (2.5), for the class of defor-
mations (3.5), the non-zero components of the Cauchy
stress tensor read

o =2 (W, + Wp,) (€720 (0 + £(©)e @)

- p+2Wg,,
(3.14)
i 24,(6) Wr(O)—w,
o' = aeay Wi+t Wi)en@r®,
(3.15)
1
06 _ 2wg(0)
ROy (2@ (W), + W)
- {O) (p-2Wy,)),
(3.16)
z 206(0) 2 2 2wop@) . €@
=2W,, e 20@ (@) + (@22 ® L &
o sz(e (@) +{(®)e +§(®)2)
-p+ 2W1] .
(3.17)

The physical components of the Cauchy stress, i.e.,
5 = 0 \Jgaagpy (N0 summation) [30] read

& =" , é\_ré' - Ré«(@)o_rﬁ , é\_é’g — R2{2(®)0'90 ,
5= 0%, (3.18)

The first Piola-Kirchhoff stress tensor P“ =
J(F~1%,0% has the following non-zero components

—2wg(®)

P = s (2@ W+ W)
—O (p - 2W,)) |
(3.19)
2e2we(0)
PO = SO (Wi, + W) .
(3.20)

e~ we(0)-wr () é"(@))

Pé’R —
R{(©)

(p - 2W12) s
(3.21)



e~ wo(©)-wr(®)

PO _ W (262wk(®) Wy, + W)
(0 (p - 2W)) .
(3.22)
2060 2 2 p=2wr(® —ezwk@)
PZZ =2W12 (6_ we ( )é”(@) + ((@) e wg(0) + §(®)2 )
—-p+2W,;,.
(3.23)

In the absence of body forces, the non-trivial equi-
librium equations are o’?), = 0 and 0%}, = 0 (the
axial equilibrium equation implies that p = p(R, ©®)).
Note that, following (3.5), (3.8), and (3.9), we have

0 1 0

el () 0 R{(©) I
80~ ewr(@)two(®) (% 0 ﬁ) - (329

Therefore, the non-trivial equilibrium equations read
2002w [g” (Wi, + Wi) + & (Wi, + W) (wh - )

+§’ (W;l + W;z)] + 2(‘/V]l + W’Z)

2Wg
_ e
{26 2wg _ :|

52
dp
-R— =0,
OR
(3.26a)
0P 20D 5
R{ — — " — + 2™} (W, + W]
(L ar e + 2 Wi+ W) (3.26b)
+4e2“"*a);e (W[l + WIz) + 2§2WI’2 =0 ,
where by using the chain rule, one can write
owy o, oW, oL, oW
W@)=—t S+ L2y
! oL, 0® 9L, 00 90 (3.27)
wr @)= e ol | W, 0l oW,
RS 8L 00 AL 40 00
It follows from (3.26a) that
P(R,0) = f(®)InR + D(®), (3.28)

where
£(©) = 227 ¢ (Wi, + W)+

& Wi+ W) (= ) + & (W, + W, ) |
2wg

+2(W, + W) [gze-zwk - e?] (3.29)

and ®(O®) is an arbitrary function of ® to be deter-
mined. Substituting the pressure field into (3.26b)
yields

{0 f-00+28% (W), + W), J+4ewiy (Wy, + W)
+20°W;, - InR=0. (3.30)

Note that (3.30) must hold for any R and {(®) # 0.

Therefore, f is constant, i.e., f(®) = f,, and hence
P(R,0®) = f,InR + ©(®). (3.31)

Therefore, the equilibrium equation (3.30) is reduced
to the following ODE

L fy = PV + 4e* Ry (W, + W)
+ 2620 W] + 2] + 2| W) =0, (3.32)
One then obtains @’ as

’ zeZwR
£y

'(0) = f,
¢z
4e2r wh
§2
Equation (3.29) gives us the following nonlinear
second-order ODE for £(®).

(W;] + W}z)

+

(Wi, + Wp,) +2W) . (3.33)

2Le2we [g” (Wi, + Wi,) + ' (W, + W) (wh — wg)

w0 (W) + W;z)] L2(Wy, + W)

2wg
PPedon _ %]
=f,. (3.34)

In the next section, we will solve for the residual stress
field of a neo-Hookean wedge with a symmetric inclu-
sion with uniform eigenstrains.

3.1. An inclusion with uniform eigenstrains in a neo-
Hookean wedge with traction-free lateral bound-
aries

Let us consider the following distribution of

eigenstrains in the wedge (see Figure 2)

Figure 2: A wedge with uniform eigenstrains in the shaded region.

w1, |®| < @,
@) = ,
wr(®) {o, 0l > a,
(3.35)
w, O] < a,
@) = ,
wo(®) {0, 0| > a,

where w; and w, are constants. Let us assume that
the wedge is made of an incompressible homogeneous
neo-Hookean solid, i.e., W = W(I;) = ’5‘(1]—3). Thus,



Wi, = 5, Wi, = 0. Simplifying (3.34), we find the
following non-linear second-order ODEs inside and

outside the inclusion

20.)1
R fo oi<a,,
44 l o
& % 0> ay .
(3.36)

Note that in the absence of eigenstrains (w; = w; =
0), the above equations reduce to the equation for the
deformation of a wedge derived by Fu et al. [2], Ra-
jagopal and Carroll [3], Rajagopal and Tao [4]. We
integrate (3.33) for the assumed eigenstrain distribu-
tion and find that the pressure field has the following
distribution

P(R,0) = f,InR + O®)

_ JfoIn(RE©®) + pi, 16] < a,,
foIn(R{(®)) + p,, 16 >,

(3.37)

where p; and p, are constants of integration. We inte-
grate (3.36) once and obtain

20w
ci, + 21[0”;2 In¢ — F2eX@on)

1B < a,,

2@ +w))

(2 s

()7 = (3.38)
Cop+ LIy -2
1

L. e,

where ¢;, and c,, are constants of integration. In order
to solve (3.38) for ¢, we next examine the boundary
and continuity conditions.

Boundary conditions.. The traction vector is defined
as

t=(o,ny,. (339)

In components, t“(x, n) = o““gpen”. From (3.39), the
continuity of the traction vector on the boundary of
the inclusion (or inhomogeneity) implies that both o
and % must be continuous at ®=+q,. Thus, after
some simplifications, (3.15) and (3.16) give us

¢ (O)lo=a; = ¢’ (©)lo=a; (3.40)

and

(e = 1) = (pi = po) {(a,)*. (3.41)

Remark 3.1. From (3.41), it is clear that when the
eigenstrain distribution is purely circumferential, i.e.,
w; = 0, one finds that p; = p, = c¢. Hence, the pres-
sure field is continuous at the inclusion boundary and
reads p(R, ®) = f,In(R{(®)) + c.

Remark 3.2. Note that although the Cauchy traction
vector ¢ (x,n) = (0, n), is continuous at the inclu-
sion boundary, the first Piola-Kirchhoff traction vec-
tor £, (X, N) = (P, N)¢ is not. This is due to the fact
that ¢, is defined with respect to the undeformed sur-
face element dA in the reference configuration. Since
the material metric is discontinuous at the inclusion
boundary, dA is discontinuous as well. However,
t,(X,N)dA = t(x,n)da is continuous. Hence the
first Piola-Kirchhoff traction vector must be discon-
tinuous at the inclusion boundary to account for the
discontinuity of dA and make ¢, (X, N) dA continuous.
On the other hand, ¢ is continuous because it is defined
per unit of deformed area in the current configuration
da, which is continuous at the inclusion boundary.

The continuity of the displacement field implies
that £(®) and h(®) are both continuous at @ = *a,.
For boundary conditions, we can either prescribe the
tractions or the resultant forces acting on the bound-
ary of the wedge. Alternatively, we may specify the
boundary displacements and then find the required
surface tractions. We assume the special case of sym-
metric boundary conditions with respect to the bi-
secting plane of the wedge, and then find the bound-
ary tractions required to maintain such a deforma-
tion. Note, however, that Tao and Rajagopal [1]
showed that for Blatz-Ko (compressible) materials,
only asymmetric inhomogeneous solutions are admit-
ted by the equilibrium equations.

Let us assume that the lateral boundaries are
traction-free, i.e.

Pe=p® =0, 0<R<R,, O0=10,. (342

Imposing (3.42), we find that p(R,®) must be
bounded (f,=0) and

{'&*0,) =0, p,= (3.43)

K
{(©,)*
Furthermore, (3.37) implies that the pressure is equal
to p; inside the inclusion and is equal to p, outside
the inclusion. Note that due to the symmetry of the
problem, {(®) and A(®) must be even and odd, re-
spectively. Thus, since (3.36) implies that {(®) must
be at least C2 inside the inclusion, we have 7’0)=0.
Hence, we can solve the problem by imposing the
above boundary conditions, which in turn specify the
required traction distribution on the circular boundary
of the wedge. Then, we find the resultant force act-
ing on the circular boundary of the wedge, which is
equal to the force that needs to be applied at the apex
of the wedge to maintain the equilibrium. The radial
material traction per unit undeformed area acting on
the circular boundary is calculated using the relation,
4 = PANBGp,. Thus?

#=p® ¢ =PR R=R,, -0,<0<0,. (3.44)

0 =

2Note that the physical components of the first Piola-Kirchhoff stress tensor are defined as P4 = P /G4 g4 (no summation).

6



Therefore, the radial force per unit undeformed area
reads’

F, = f tdAg, (3.45)

where dA¢g = R,e“°®d® A dZ is the Riemannian area
element.* Hence, for the infinite cylinder (in the Z-
direction), the radial force per unit length of the cylin-
der in the Z-direction is written as

0,
Fr = f (Roew(')(@)ewk(@)PrR|(R0,(§))) de N (346)
-0,

which is simplified to read

oo [ pie
F, = 2uR, | e Q) -
H [6 fo (“ )

0, P
+ [(©) - —2 )d@} .
fm, ( Hé(©)

Remark 3.3. It is worth mentioning that only if
{(®) = constant one can enforce pointwise zero trac-
tion boundary conditions on the whole boundary of
the wedge for any values of w;. In this case, we can
only have ®,=a, and { = ¢“', which in turn gives
h(®) = e”7“1@. Hence, all the stress components
vanish point-wise.

2(4)1

)d@
(3.47)

Solving (3.38), one obtains {(®) in the upper half
region of the wedge as’

2
o3 (@i—w2) {[ \/(%C[l ewl—wz) — e2(w1+wz)]

cos (2e“>™1@ + ¢;,)

1
2

[(©) = + %c,-]e“"““2 0<0<a,
1
[(\/chl -1 lcos (20 + ¢,,)
1
2
+ %col} , @, <0<0,,
(3.48)

where ¢;, and ¢,, are constants.

Equation (3.43), i.e., '(®,) = 0, and ’(0) = 0
give us ¢,, = kim — 20, and ¢;, = kpm, respectively,
where ki, k, € Z. Upon using the continuity of ()
at ® = a, as well as (3.40), we find ¢;, and c,,. They
read

ci, = 267

L+ (e* - 1) {—64“" (e** + 1) cot 2 (@, — ©,)) sin (4>~ ar,)
+e*1 csc? (2 (a, — ©,)) sin? (2e“™“1a,) ((34w‘ + 1) cos? (2 (a, — ©,)) + e*' — 1)

+V2 [—egwl esct (2 (ap — ©,)) sin® (2 (1 — e ™), — 20,) { (1= e*1)cos (4 (a, - ©,))

1

+e* cos (4 (1 — e a, — 40,) + (64“" - 1) (84“" cos (4 “a,) + 1) — b } r

1

-112
—e% sin? (2¢” " @, + € (cosz(Zewz_”‘aU)+l)} } , (3.49)
1
eZwl sin (zewz—w]a ) 2 ¢ 2 2
o =2|1 . S (‘)—1 : 3.50
Con [+( sm(2(®0—ao))) 262 (3.50)

Using (3.8), one finds

2
tan™! 16_(w]+w2) [_ \/(%Ciletm—wz) — e2wi+w)

h(@) — + %c,-]e‘““‘”z]tan (sz_w]® + %C,‘Z) + Ciy,s 0<B< Q,, (351)
-] L Lo~ i |ian@ + 1 <0<0
tan € =\ 760 ~ tan(® + 3¢,)| + o35 2, <0 <L0,,

3The resultant force acting in the f-direction on the circular boundary is trivially zero as ¢/(®) is an odd function. In addition, ## = 0 as
PR=0.
4The volume form of a Riemannian manifold is defined as Q = [det(g; j)dx1 Adx® A ... Adx".

SHere, it suffices to specify £(®) and /(®) only in the upper half region of the wedge as these functions are even and odd, respectively.
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where c;, and c,, are constants of integration. Im-
posing the condition A#(0) = 0, implies that ¢;; =
—k25 — kam, where k3 € Z. Using the continuity of
h(®) at ® = «a,, we have

2
1
Cop = tan—l e—(wH—wz) _ \/(Ecilewl—wz) — e2wi+w)

1 _ _ k2ﬂ'
+§cile““ “2tan|e”* ' a, + —

2

— 1 1 k17T
—tan”! [(ECO] - chl - l]tan(a/(, -0, + 7)}

- k27—2r — k. (3.52)

Remark 3.4. From (3.49) and (3.50), it can be seen
that w; = 0 implies that ¢;, = 26292 and Co, = 2. In
this case, the radius of the wedge does not change, and
the inclusion deforms independently of the matrix in
the circumferential direction, such that /(@) = ¢“20@
in the inclusion, and A(®) = (¢“> — 1) @, + O outside
the inclusion. Furthermore, all the components of the
stress tensor are zero point-wise.

Using (3.18), (3.37), (3.41), and (3.43), one finds
the physical components of the Cauchy stress, along
with the pressure field as follows

p (€22 @) + e ((©))
é‘.rr —Di» |®| < @,

—po+ (IO +L©P), 101> 0y,
(3.53)
#'(©®) wi-w,
o [EO e Q| < q,,
6" =1 5% (3.54)
((@) ’ |®| > a’o >

L (ue? — p,t(©)?2), |0|<a,,
5% = {((19)2 (,u p 4’2( ) ) © (3.55)
o7 (4= Pol©)) . 10>y,
—-pit+tu, ® <a,,
6% = pitH 0] < o (3.56)
—Po + U, |®|>a'0,
where
_u #(ezu]_l)
(@) = Pi= oy T @y o 10l < a, (3.57)
Do = __4(5“)2 , B > a,.

Remark 3.5. Note that the physical components of
the Cauchy stress are independent of the radial coor-
dinate R. Therefore, the stress components at the apex

of the wedge do not have a unique value. In fact, this
should not be surprising given that the eigenstrain dis-
tribution (3.35) is multi-valued at the apex.

Numerical results.. We now consider some specific
examples and find the deformed shape of the wedge
and the corresponding residual stress field. A com-
parison of the deformations and the distribution of the
stress components for different values of eigenstrains
w; and wy, and various wedge geometries are pre-
sented in Figures 3 to 7. A wedge having an inclusion
with positive pure dilatational eigenstrains is depicted
in Figure 3. As expected both the inclusion and the
matrix regions are pushed outward in the radial di-
rection, with the matrix filaments stretched more than
those of the inclusion. Although the circumferential
eigenstrain is positive in this case, the total wedge an-
gle is decreased. As a matter of fact, for any posi-
tive value of pure dilatational eigenstrains the angle
of the wedge is reduced after deformation. Moreover,
G is compressive in the inclusion and tensile in the
matrix, and undergoes a jump at the inclusion-matrix
interface, which is also the case as illustrated in other
figures.

For an inclusion with negative purely dilatational
eigenstrains, all the radial planes of the wedge dis-
place inward, with the matrix region being short-
ened more than the inclusion (Figure 4). Undeformed
and deformed configurations of a wedge with posi-
tive radial and negative circumferential eigenstrains is
shown in Figure 5. Note that 5% is tensile throughout
the wedge, and &' is compressive and tensile in the
inclusion and the matrix, respectively. A wedge con-
taining an inclusion with a negative radial and pos-
itive circumferential eigenstrains is shown in Figure
6. Notice that unlike other cases for which the de-
formation was purely inward or purely outward, in
this example, the deformation is no longer unidirec-
tional. In this example, the central region of the in-
clusion moves outward, while the region close to the
inclusion-matrix interface moves inward. Moreover,
this trend continues even for the large negative values
of the radial eigenstrain. Although the circumferen-
tial eigenstrain is positive, the inclusion shrinks in the
circumferential direction, while the matrix expands in
this direction such that the total angle of the wedge is
increased. Figure 7 shows an inclusion with a purely
radial eigenstrain. Note that although the eigenstrian
is purely radial, the wedge is deformed considerably
in the circumferential direction, with the inclusion ex-
panding and the matrix shrinking circumferentially
such that the total angle of the wedge is reduced.

SNote that the undeformed (reference) configuration shown in the following figures has a metric different from that of the deformed con-
figuration, and hence, the area of the body seen in the figures is not representative of the actual volume of the body in the (non-flat) reference
configuration. In particular, the material manifold is equipped with the non-trivial Riemannian metric (3.3), giving a volume for the body in
the reference configuration different from that given by the flat Euclidean metric.
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3.2. A Mooney-Rivlin inhomogeneity with uniform
eigenstrains in a neo-Hookean wedge with
clamped lateral boundaries

In this example, we consider an inhomogeneity
made of a Mooney-Rivlin material in a neo-Hookean
wedge with fixed (clamped) lateral boundaries such
that they cannot move in the radial and circumferen-
tial directions. The energy function has the following
®-dependence in the wedge

B =3)+ 2, -3), ol <a,.
Wi = {2 =Y+ 5BR=. (el<a
73, 0] > a .

(3.58)

Moreover, we consider the eigenstrain distribu-
tion in the wedge given by (3.35). Looking at
(3.33) and (3.34) one observes that equations (3.37)
and (3.38) of Section 3.1 hold for this example as well
if p in (3.38) is replaced by u; + o and y, in the in-
homogeneity and the matrix, respectively. Therefore

JoIn(RL(©)) + pi.,
JoIn(RE(®)) + po

0] < a,

1®] > a,,
(3.59)

P(R,0©) = {

and
. 2f,e%2 1 ®) — 2 ® 2(wr—wi)
¢ + 22 1 g(©) - (O)e
2(w) +w3)
64«21(@)2 > |®| S a() >
2/o 2
Cop + 72 Ind(®) = 7(0)
1

*©)°

(@) =
®] > «a, .
(3.60)

Boundary conditions.. The continuity of the traction
vector at the inhomogeneity-matrix interface implies

that
HTED o 0 (@), = £ @Nomag.  (3.61)
and
BLTE2 o g o PiZPo B2 0,02 (3.62)
m 1o

We assume that the lateral boundaries of the wedge
are clamped, i.e.”
§(®0) = ]3

e, =0,. (3.63)

In order to determine the pressure constants p; and p,,
we assume that the resultant force acting on the circu-
lar boundary of the wedge vanishes. Using (3.46), the
radial force per unit length of the cylinder in the Z-
direction is simplified to read

F, = 2#0Ro[em|+m2 f‘a {eZml (/ﬂ + &){(G)
0 Ho Mo

o) (n_r) 1,
Mo (®) Ho Mo) {(®)

()
: HINRLO)  po
Q) - — - do|.
+L {5() 1 L(O) u0§(®>} ]
(3.64)

We proceed to numerically solve the boundary-value
problem (3.60) along with the above boundary condi-
tions and the constraint of a zero-boundary resultant.
The physical components of the Cauchy stress read

"The functions £(©) and 2(®) are even and odd, respectively, and hgnee, £7(0) = 0 and A(0) = 0.



sor _ [~FoIREO)) = pi+ (s + ) (722 ©F + ¢ 2L(OF ) + 2, 10] < (365
—f, I(RE(O)) = p, + 1y (' (©)® + £(©)?) , 01> a,, '
W1+2)"(©) wi—w,y 0| <a,,

6" = {ﬂl,mé?) ’ :®: o (3.66)

{© o

590 _ o (1 + 1) 2 = O (£, IN(REO) + pi — ), 10| < @, 3.67)
o7 (1o = £O) (f, In(RE®)) + po)) , 81> a,, '

e _ [ Lo INRE@)) = pi +pa (7L (@) + e L@ + £ ) +ur, 1)< e, (3.68)
/o In(RZ(®)) = py + 1, 01> a,, '

Remark 3.6. Note that "¢ depends only on ®. More-
over, the radial dependence of 6", 6%, and 6= is lin-
ear with respect to In R. We use this property and plot
the stress components at R = R,.

Numerical results.. The deformation of the wedge
and the variation of the stress components for various
eigenstrain distributions in the inhomogeneity with
different elastic constants are examined and are pre-
sented in Figures 8 to 12. A wedge containing an
inhomogeneity stiffer than the matrix with positive
eigenstrains such that the circumferential eigenstrain
is twice the radial one is shown in Figure 8. As ex-
pected all the radial planes of the wedge displace out-
ward, with the inhomogeneity expanding more than
the matrix. Furthermore, on the circular boundary 6"
is negative in the inhomogeneity, positive in the ma-
trix, and discontinuous at the inhomogeneity-matrix
interface. Note that % is compressive almost every-
where on the circular boundary except for some small
regions close to the lateral boundaries.

Figure 9 depicts an inhomogeneity placed in a
stiffer matrix with anisotropic eigenstrains such that
the radial eigenstrain is twice the circumferential one.
It is observed that % is tensile on the circular bound-
ary. Moreover, % and &' are almost uniform in the
inhomogeneity. For a wedge having an inhomogene-
ity stiffer than the matrix with negative circumferen-
tially dominated eigenstrains, all the radial planes are
contracted. In addition, 6™ and 6% are almost uni-
form, and 6" is almost zero in the inhomogeneity
(Figure 10).

Inhomogeneities with purely radial and purely cir-
cumferential eigenstrains are shown in Figures 11 and
12, respectively. For both cases, all the radial planes
are elongated, with the inhomogeneity expanded and
the matrix shrunk in the circumferential direction. In-
terestingly, the circumferential deformation is more
pronounced in the purely radial eigenstrain case while

radial deformation is more pronounced in the purely
circumferential eigenstrain case.® Unlike wedges with
traction-free lateral boundaries for which a purely cir-
cumferential eigenstrain does not induce any residual
stresses in the wedge, here residual stress is devel-
oped due to a purely circumferential eigenstrain be-
cause the wedge can no longer move freely in the
circumferential direction. Note that " and &% are
almost uniform in the inhomogeneity for the purely
radial eigenstrain case, with " undergoing a jump
at the inhomogeneity-matrix interface. For the purely
circumferential eigenstrain case, however, the stress
components exhibit a different behavior in the inho-
mogeneity. For instance, " remains continuous at
the inhomogeneity-matrix interface and does not tend
to be uniform in the inhomogeneity.

3.3. Stress-free eigenstrain distributions in a wedge

In this section, we find those eigenstrain distri-
butions that induce no residual stresses. For such
eigenstrain distributions, the material manifold can be
isometrically embedded into the ambient space, i.e,
G = ¢*g.’ Hence, for a simply-connected body,
a stress-free eigenstrain distribution corresponds to a
material metric with vanishing Riemannian curvature.
Note that the wedge is a simply-connected body. Cur-
vature tensor has the following components

My  oMcy o o
= - + 1" cgl
aXC ~ 9xD CEL DB (369)
T pelEes,

where the Christoffel symbols are defined as

BGKB N 5GKC _ aGBC
0x¢ 0XB 0XK

1
Mpe = EGAK (3.70)

For the material metric of the wedge, the Christoffel
symbol matrices read

8 A similar observation was made for the wedge with traction-free lateral boundaries having an inclusion with a purely radial eigenstrain

(cf. Figure 7).
9Equivalently, the Lagrangian strain tensor must vanish.
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and the constant eigenstrain distribution w; = 1 and wy = 0. (f" = -3.7629, f:—(’; = 3.2785). Right:
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0 Wy(©) 0
= [FRAB] = | WH(®) —Rewo@-wr®) 0 |
0 0 —Re2@o(@-wr(®)) ¢in2 @

L2en®-0o®@) @) L 0
I° = [1°,] = i Wy (©) 0 , (3.71)
0 0 —sin®[cos® + sin Ow}, (0)]
0 0 1le
r?=[r*]=| 0 0 cot® + wy (©)
% cot® + wg (®) 0
The non-trivially non-zero components of the cur- Using this ODE, given wg(0), wr(0) is expressed as
vature tensor for the cylinder with the metric G are o
— (@)
20r(©)-00(6) wgr(®) =c, +1n (c1 + fo‘ eve d¢). (3.75)

RSRR = _Rlee)m = R2 [_wé(®)wk(®) _

) Remark 3.7. In the special case of w = wg(®) =
+wi(0)” + wy (®)] (3.72) we(®), we have a linear solution (w(®) = ¢;0 + ¢»)
for the stress-free eigenstrain distribution, where ¢
, , , and c; are constants.

RRoo = —Rbre = —Wp(®)wi(8) + wi(©) ?
+wp(®). (3.73

#(©). G.73) 4. Conclusions

Therefore, in order for an eigenstrain distribution to be
stress-free in a wedge, it needs to satisfy the following

non-linear ordinary differential equation:

In this paper we studied the residual stress field
generated by a circumferentially-symmetric distri-
bution of finite eigenstrains in an incompressible,
- we(O)wR(O) + cu}e(('))2 +wp@®)=0. (3.74) isotropic elastic wedge. Using a semi-inverse method
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by assuming a specific class of deformations, we
solved for the deformation and stress fields in the
wedge for an arbitrary circumferentially-symmetric
distribution of finite eigenstrains. We solved two ex-
amples. In the first one, we considered an inclusion
with uniform eigenstrains in a neo-Hookean wedge
with traction-free lateral boundaries and obtained ex-
act solutions for the residual stress and deformation
fields. We observed that if the eigenstrain distribu-
tion is purely circumferential, the pressure field re-
mains continuous at the inclusion-matrix interface and
the stress tensor is zero everywhere. Moreover, we
observed that the deformation of the wedge fails to
be unidirectional for an inclusion with a negative ra-
dial (w; < 0) and positive circumferential (w, > 0)
eigenstrians even for large negative values of the ra-
dial eigenstrain. Furthermore, we found that the total
wedge angle is reduced for any value of pure dilata-
tional eigenstrains. In the second example, we con-
sidered a neo-Hookean wedge with clamped lateral
boundaries having a symmetric Mooney-Rivlin inho-
mogeneity with uniform eigenstrains. We examined
several cases of eigenstrain distributions for different
relative stiffnesses of the inhomogeneity and the ma-
trix. We observed that the circumferential and radial
deformations are more pronounced in wedges con-
taining inhomogeneities with only radial and only cir-
cumferential eigenstrains. In addition, we noticed that
for a pure radial eigenstrain distribution, 6" and 6%
are almost uniform in the inhomogeneity, and 6" has
a jump at the inhomogeneity-matrix interface. In con-
trast, for a pure circumferential eigenstrain distribu-
tion 6’ and 6% are nonuniform in the inhomogene-
ity, with &’ being continuous at the inhomogeneity-
matrix interface.
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