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Abstract 

In the present work, we intend to demonstrate how to do topology optimization in an explicit 

and geometrical way. To this end, a new computational framework for structural topology 

optimization based on the concept of moving morphable components is proposed. 

Compared with the traditional pixel or node point-based solution framework, the proposed 

solution paradigm can incorporate more geometry and mechanical information into topology 

optimization directly and therefore render the solution process more flexibility. It also has the 

great potential to reduce the computational burden associated with topology optimization 

substantially. Some representative examples are presented to illustrate the effectiveness of 

the proposed approach.  
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1. Introduction 

Structural topology optimization, which aims at placing available material within a 

prescribed design domain appropriately in order to achieve optimized structural 

performances, has received considerable research attention since the pioneering work of 

Bendsoe and Kikuchi [1]. Many approaches have been proposed for structural topology 

optimization and it now has been extended to a wide range of physical disciplines such as 

acoustics, electromagnetics and optics. Besides, topology optimization methods have 

already been implemented in commercial software to solve practical design optimization 

problems (e.g., Altair-Optistruct and Abaqus-ATOM) [2, 3]. We refer the readers to [4-7] and 

the references therein for a state-of-the-art review of topology optimization.  

From geometry representation point of view, most of the existing topology optimization 

methods are developed within the pixel or node point-based solution framework. For 

example, in the well-established artificial density with penalization approach [8-11], the 

design domain is first discretized into finite elements (pixels) with reasonable resolution, 

then mathematical programming or optimality criteria-based algorithms are applied to find 

the element-wise black-and-white (i.e., 0 or 1 in each pixel) density distribution, which 

represents the topology of the structure, see Fig. 1 for reference. Although remarkable 

achievements have been made by this approach, there are still some challenging issues 

need further explorations. Firstly, it is worth noting that the pixel-based geometry/topology 

representations is not quite consistent with that in modern Computer-Aided-Design (CAD) 

modeling systems, where the geometries/topologies of structures are often described by 

geometric primitives such as points, line segments or Bezier curves and the corresponding 

Boolean operations between them (See Fig. 2 for reference). Therefore topology 

optimization cannot be conducted on CAD platform directly. Secondly, since no geometry 

information is embedded in the pixel-based topology optimization approaches explicitly, it is 

difficult to give a precise control of the structural feature sizes (i.e., minimum/maximum 

length scale, minimum curvature), which is usually very important from manufacturing 

considerations. Finally, since the element-wise material distribution is utilized to represent 

the structural topology, the computational efforts involved in pixel-based topology 

optimization approaches are relatively large especially when three-dimensional problems 
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are considered. For example, if the design domain is a       cubic as shown in Fig. 3 

and discretized by 100 elements along each direction (note that this is only a relatively low 

resolution), the number of the design variables will increase to one million, which is far 

beyond the solution capacity of existing mathematical optimization algorithms.  

For the node point-based topology optimization approaches, level-set method [12, 13] is 

a representative one. In the level set method, it is also needed to discretize the design 

domain into finite elements to calculate the structural responses, the values of the level set 

function at the node points, however, are often used as topological design variables, see Fig. 

4 for reference. The structural boundary (topology) can be identified by extracting the zero 

contour of the level set function. Although geometry information such as the normal outward 

vector and curvature of the boundary can be calculated from the level set function, level set 

method basically suffers from the same disadvantage of the variable density method since 

its implicit geometry representation is also quite different from the explicit one adopted in 

CAD modeling systems. Furthermore, node point-based level set method also cannot 

escape from the curse of dimensionality as mentioned before. 

With the primary aim of establishing a direct link between structural topology 

optimization and CAD modeling systems and therefore conducting topology optimization in a 

more geometrically explicit and flexible way, in the present work, a new computational 

framework for structural topology optimization based on the concept of moving morphable 

components is proposed. Compared with the traditional pixel or node point-based solution 

framework, the proposed solution paradigm can incorporate more geometry and mechanical 

information into topology optimization directly and therefore render the solution process 

more flexible. Furthermore, it also has the great potential to reduce the computational 

burden associated with topology optimization substantially. 

The rest of the paper is organized as follows. In Section 2, the basic idea of the 

proposed approach is explained in detail. The corresponding numerical solution aspects are 

discussed in Section 3. A comparison of the new solution framework with the existing ones is 

made in Section 4. In Section 5, some representative examples are presented to illustrate 

the effectiveness of the proposed approach. Finally, some concluding remarks are provided 

in Section 6. 
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2. Moving morphable components-based topology optimization framework 

In this section, the basic idea of the proposed topology optimization approach will be 

explained in detail. 

 

2.1 Morphable component-the primary building block of topology optimization 

Traditional topology optimization approaches, both pixel-based and node point-based 

ones, are basically based on the framework of ground structure. In this framework, one first 

fills the entire design domain with material and then deletes the unnecessary parts from it 

gradually. This is achieved by updating the element densities in variable density approaches 

while the evolution of structural boundaries in level set approaches, respectively. In the 

present work, we propose a different solution framework for topology optimization, where 

morphable components are intended to use as primary building blocks. 

To illustrate the basic idea, let us consider the topology optimization of a short-beam 

shown in Fig. 5a, which is designed to transmit a vertical load to the clamped support with 

minimum structural compliance (maximum stiffness) under available volume constraint. It is 

well known that a manufacturable optimal solution takes the form shown in Fig. 5b. It can be 

observed from this figure that the optimal structure is constituted by eight “structural 

components”. Hereinafter, a structural component is an object constituted by an amount of 

solid material occupying a specific volume in the design domain. In fact, any structure with 

any type of topology can all be decomposed into a finite number of components. The above 

observation inspires us that these “structural components” may be used as the basic 

building blocks of topology optimization as shown schematically in Fig. 6. The optimal 

structural topology can be obtained by determining the geometry characteristic parameters, 

such as the shape, length, thickness and orientation as well as the layout (connectivity) of 

these components, through optimality conditions. With use of this idea, a computational 

framework for topology optimization of continuum structures, which is quite different from the 

previous ones and capable of incorporating more geometry information into problem 

formulation, can be established. It is worth noting that in the proposed solution framework, 

the components are allowed to be overlapped with each other. It is just through this 

overlapping mechanism, the layout of the structure are changed and optimized. In the 
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present framework, redundant components can be “disappeared” (in the sense that it has no 

influence on structural responses) through being overlapped by another component. This is 

quite different from the traditional approaches where unnecessary materials are deleted 

from the design domain through some degeneration mechanisms to achieve structural 

topology changes. In some sense, the proposed approach can be viewed as an adaptive 

ground structure approach for topology optimization. This is actually the main source where 

its advantages come from. We will come back to this point in the following discussions. 

 

2.2 Geometry description of a structural component 

In this subsection, we shall discuss how to describe the geometry of a structural 

component using explicit parameters. As a primary attempt to develop the present new 

computational framework, a relatively simple form of building component is introduced in the 

present work. However, we will also discuss how to deal with the more general situations 

where structural components with more complex geometries are involved at the end of this 

subsection. For the sake of simplicity, only two-dimensional (2D) case is considered here. 

Extensions to three-dimensional (3D) case will be discussed in a separate work. 

If the topology of a structure is the main concern of a structural design and optimization 

problem, structural components with rectangular shapes can serve as the basic building 

blocks of topology optimization especially when the number of involved components is 

relatively large. As shown in Fig. 7, even a small number of components can represent 

various fairly complicated structural topologies. Mathematically, the region   occupied by a 

rectangular component centered at         with length    thickness   and inclined angle 

  (measured from the horizontal axis anti-clockwisely) can be described by the following 

level set function (see Fig. 8 for reference) 
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and   is a relatively large even integer number (we take     in the present study). The 

structural component can move, dilate/shrink and rotate in the design domain by changing 

the values of           and    If there are totally   structural components in the design 

domain, the structural topology can be described implicitly as 

 

                               

                                 

                                     

                                                           

where             
  with            denoting the topology description function of 

the  -th component and    is the region occupied by the solid structural components. 

 

2.3 Topology optimization based on moving morphable components: problem 

formulation 

Based on the discussion above, we propose the following formulation for moving 

morphable component-based topology optimization: 

                         Find             
  

                         Minimize           

                      s.t. 

                                              

                                                                                                                  

where the symbol    denotes the total number of components involved in the optimization 

problem. The symbol            
 represents the vector of design variables with 

                     
          .    is the admissible sets that   belongs to. In Eq. 

(2.3),            are the considered constraint functionals. 

If the considered topology optimization is to minimize the compliance of the structure 

under available volume constraint, the problem formulation can be specified as 

    Find              
  

    Minimize             

s.t. 
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In Eq. (2.4),             denote the region occupied by the  -th component, 

respectively.   and   are the displacement field and the corresponding test function 

defined on       
  
    with                                and   denote the body 

force density in             and the surface traction on Neumann boundary    of     

respectively.    is the prescribed displacement on Dirichlet boundary     The symbol   

denotes the second order linear strain tensor. In Eq. (2.4),                  

        (  and   denote the fourth and second order identity tensor, respectively) is the 

fourth order isotropic elasticity tensor with   and   denoting the corresponding Young’s 

modulus and Poisson’s ratio, respectively. To be more specific,                , where 

   and    are the corresponding values associated with the  -th component, respectively. 

Furthermore, the symbol    denotes the upper bound of the available materials volume. 

It is worth noting that if the above topology optimization is solved with use of Eulerian 

description and fixed finite element mesh on a prescribed design domain    the 

corresponding problem formulation can be expressed in terms of    as  

       Find              
  

       Minimize             

s.t. 

                   
 

            
 

       
  

         

        
 

     

      

                                                                                         

where, for the sake of simplicity, the assumption that all structural components are made 

from the same type material is adopted. For the case where multi-materials are considered, 

one can resort to the so-called “color level set” representation, which will not be touched in 

the present study for the limitation of space. 
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Remark 1. A natural problem associated with the proposed approach is how many structural 

components should be included in the problem formulation? Of course, it can be expected 

that the more components are included, the better the optimal solutions will be. In fact, 

theoretical analysis indicates that optimal solutions of topology optimization problems 

always contain microstructures constituted by infinite numbers of “bars” with infinitesimal 

thickness. If the manufacturability and robustness (e.g., refrain from buckling under 

compressive forces) of the design is taken into consideration, however, only structures with 

finite number of structural components are of practical use in engineering applications. Due 

to this fact, it seems reasonable to include only limited number of structural components in 

the problem formulation. It is also worth noting that in the problem formulation, it is not 

necessary to eliminate the redundant structural components completely to achieve topology 

degenerations since the structural components can change their lengths and positions freely. 

This means that a long bar can be constituted by several short bars. Furthermore, as shown 

in Fig. 9, a redundant component can also be disappeared by hiding itself into another larger 

component. This feature is very helpful to circumvent the singularity phenomena which are 

often related to the degeneration of materials in traditional topology optimization approaches 

[14, 15]. Actually, allowing the overlapping of structural components is the key point for the 

success of the proposed approach. 

 

Remark 2. Although in the present study, only structural components with rectangular 

shapes are considered, the proposed computational framework does has the potential to 

account for the case where structural components with curved boundaries are involved. This 

is due to the fact that on the one hand, any curved structural components can be 

approximated with controllable accuracy through a number of rectangular structural 

components both geometrically and mechanically (see Fig. 10 for reference). On the other 

hand, we can also introduce appropriate geometry design variables to optimize the positions, 

shapes and the layout of a set of curved structural components directly. For example, as 

illustrated in Fig. 11, this can be achieved by optimizing the shape of the skeleton (see [16] 

and [17] for its definition and applications) of a structural component, which can be 

described by the well-established Non-Uniform Rational B-Spline (NURBS), and the 
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thicknesses of the component at some specific interpolation points (i.e.,   ). Furthermore, 

we can also model the structural components with curved geometries by iso-parametric 

curved surface as shown in Fig. 12a. Then by changing the coordinates of the 

corresponding control points (indicated by red balls in Fig. 12a), the shape of the component 

can be optimized. At the same time, the topology change can still be achieved by the 

“overlapping” and “hiding” mechanisms described above. For example, if we use 8-node 

quadratic iso-parametric element to model the shape of a structural component, only 

4x8x2=64 design variables are needed to represent the complex structural topology with 

curved boundaries shown in Fig. 12b. This means that even for the case where curved 

boundaries are involved, the proposed approach still has the potential to reduce the number 

of design variables significantly. We will not pursue the details on this aspect here and intend 

to report the corresponding results in a separate work. 

 

 

3. Numerical solution aspects 

In this section, we shall discuss the numerical solution aspects of the proposed 

component-based topology optimization framework.  

 

3.1 Finite element analysis 

In the proposed optimization framework, the background finite element mesh is fixed 

and the boundary of a structural component is described implicitly by an explicit level set 

function. This treatment is very flexible to deal with the possible overlapping of the structural 

components, which is the key mechanism to achieve topology changes in the proposed 

optimization framework. In view of this, the XFEM analysis based on the level set description 

of structural geometries is adopted for structural analysis [18]. With use of this approach, 

re-meshing is only needed in the vicinity of structural boundaries in order to enhance the 

accuracy of displacement/stress computations (see Fig. 13 for reference). Furthermore, we 

also need weak material (         ) to mimic voids in the design domain, which is 

indispensible to establish the interactions between different components before the final 

optimized structure is obtained.  
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Remark 3 

The computation burdens for the solution of topology problems (especially for 3D cases) 

in traditional methods (i.e., both density based and node based) come from two sources. 

The first one is the huge number of design variables and the second one is the huge number 

of elements involved in FEM analysis. As described in the previous sections, our method has 

great potential to alleviate the problem associated with the huge number of design variables. 

At this position, we also would like to emphasis that, actually our approach also has the 

advantage of tackling the problem associated with the huge number of finite elements. This 

can be achieved by developing the so-called adaptive “narrow band” FEM analysis scheme 

(see Fig. 14 for reference), which is quite consistent with the proposed computational 

framework. The key point is that unlike in traditional approaches, optimal topologies are 

found by growing and deleting materials in the whole design domain, in our approach, 

however, topology changes are achieved only by the “overlapping” and “hiding” operations 

between structural components. Mathematical analysis also shows that the design 

sensitivity is only dependent on the quantities along the boundaries of the components. 

Therefore we can only concentrate on the moving, dilating or shrinking of the components 

themselves and are not necessary to concern about what happens elsewhere. This solution 

approach is currently under investigation and we intend to report the corresponding results 

elsewhere.  

 

3.2 Sensitivity analysis 

For a general optimization problem where the objective functional can be written as a 

volume integral such that 

                                                                                 
 

      

where             
  is the level set function of the entire structure with   denoting the 

total number of structural components in the design domain. Under this circumstance, the 

variation of   with respect to the variation of individual    can be calculated as  

        
                                                                        

 

 

where   is the primary displacement field and   is the adjoint displacement field, which 
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can be determined by solving a corresponding adjoint boundary value problem. In Eq. (2.7), 

  is a function of   as well as   and     
                

     

For the considered optimization problem (i.e., structural compliance minimization under 

volume constraint and therefore                        
 

), we have     and 

                            since it is a self-adjoint problem. It is also 

straightforward to obtain that  
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where          and               
   respectively.  

In summary, we have 
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4. Merits of the proposed topology optimization framework 

As mentioned in the introduction, topology optimization has undergone tremendous 

development during the last three decades. Many approaches have been proposed since 

the pioneering work of Bendsoe and Kikuchi [1]. Then a problem arises naturally: why 

another new topology optimization framework? The following are some discussions on this 

point. 

From the authors’ point of view, compared with existing topology optimization 

approaches, the proposed one has the following distinctive features: 

(1) As discussed in the previous sections, it is obvious that the proposed method has a 

natural link with the CAD modeling systems since the geometries of the basic building blocks 

of optimization, the structural components, are described explicitly by parameterized 

surfaces/curves, which are the basic operable objects in computer graphics. This is quite 

different from the traditional pixel-based variable density method and the implicit 

surface-based level set method. In some sense, the proposed way of geometry description 

is quite consistent with the modern language of differential geometry where a complex 

manifold, roughly speaking, can be represented by a series of overlapping parametrizable 

patches. This feature makes it possible that the proposed approach can not only being 

integrated with CAD systems seamlessly but also give an explicit and local control of the 

structural features in a natural way. Furthermore, as shown clearly in the previous 

discussions, in the proposed method, the optimization model is totally independent of the 

analysis model. This is very helpful to circumvent the numerical problems such as 

checkerboard patterns, mesh-dependency of optimal solutions, which often appear in 

traditional topology optimization frameworks. Another advantage is that since the geometry 

of the structural components are described explicitly in the present computational framework, 

possible uncertainties of the components shapes usually arising from manufacture errors 

can also be dealt with in a relatively direct way compared to existing approaches [19-21]. 

Finally, it is also worth noting that the complete independence of the optimization model and 

analysis model may also give us more freedom to develop non-FEM based topology 

optimization methods, which are very needed for multi-physics applications. 



13 
 

(2) The proposed method has the capability to integrate shape, size and topology 

optimization or even structural type optimization, where the appropriate types of structural 

components (i.e., beam, shell, plane membrane) are sought for, in a unified framework. In 

the proposed method, the shape and size of individual structural components can be 

optimized by changing their geometry description parameters (e.g., coordinates of the 

interpolation points) while the optimal structural topology can be obtained by varying the 

connectivity of the structural components. The later can be achieved through appropriate 

positioning and overlapping of the components. As for the optimal selection of the type of 

structural components, we can discretize the individual structural components using different 

types of finite elements (e.g., beam element, shell element and plane membrane element) 

and impose the relevant geometrical constraints in order to make the corresponding 

structural mechanics theory applicable (e.g., the characteristic length to thickness ratio is 

greater than 10 for a beam component). With use of optimization algorithms, we can 

determine the optimal layout of these structural elements and therefore achieve the 

(structural element) type optimization. The above treatment may also help eliminate the 

possible inconsistency between the optimization model and the analysis model (e.g., 

modeling a slender beam with a small number of plane membrane elements), which often 

exists in traditional topology optimization frameworks and open a new avenue in practical 

application of topology optimization. 

(3) The proposed method has great potential to share the merits of both Lagrangian and 

Eulerian topology optimization approaches. This is due to the fact that on the one hand, we 

have crisp description of the structural boundaries, which provides a natural advantage of 

dealing with boundary-dependent loads or complex boundary conditions by constructing 

body fitted meshes especially in multi-physics settings. On the other hand, since the 

structural components are allowed to overlap with each other in the proposed solution 

framework, the intrinsic flexibility of Eulerian description for describing the change of 

structural topology has also been inherited successfully.  

(4) The proposed method is a pure black-and–white one since in fact only layout 

optimization of solid structural components is utilized to achieve the variation of structural 

topology. In view of this, some intrinsic difficulties associated with the traditional approaches 
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(e.g., the variable density approach) such as the suppression of gray elements and the 

construction of rational interpolation schemes (especially for multi-physics problem) can be 

totally eliminated. Furthermore manipulating pure black-and–white designs can also help 

accelerate the convergence rate since no grey elements, which are the main sources 

preventing the optimization algorithms from rapid converging [7], exist during the entire 

course of optimization. 

(5) The proposed method has great potential to reduce the computational efforts 

associated with topology optimization. In the proposed method, geometry description 

parameters of the structural components are adopted as design variables. As a 

consequence, the number of design variables may be quite smaller than that involved in 

traditional topology optimization approaches. For example, for the short beam problem 

discussed in Section 2, if we include 20 structural components with rectangular shape in the 

initial design, the total number of design variables is 100, which includes 40 coordinate 

variables (                ), 40 thickness and length variables (              ) and 20 

inclined angle variables (           ), respectively. It is also worth noting that this number 

is totally independent of the finite element resolution used for structural analysis. On the 

contrary, for the variable density or level set method, the total number of design variable, is 

more than 3000 even for a relatively low 80X40 mesh resolution! There is no doubt that this 

reduction of the number of design variables will be even more remarkable for 3D problems. 

This reduction of design space is very important to enhance the efficiency of topology 

optimization and circumvent the curse of dimensionality since the computation complexity of 

an optimization problem increases almost linearly with respect to the number of design 

variables. Besides, the relatively small size of design space also makes it possible that 

global optimization methods can be utilized to find the optimal designs with global optimality 

and surrogate models can be constructed to further alleviate the computational efforts 

associated with the structural responses analysis. Furthermore, since geometry description 

of each component is totally independent, the proposed method has the intrinsic parallelism, 

which can be further utilized to enhance the computational efficiency. 

We will further explore the above advantages of the proposed computational framework 

in a series of subsequent research works. 
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5. Numerical examples 

In this section, the proposed moving morphable components-based topology 

optimization approach is applied to several numerical examples for demonstration of its 

effectiveness. Since the main purpose of the present study is to examine the numerical 

performance of the proposed algorithm and not to design real life structures, the material, 

load and geometry data are all chosen as dimensionless. Only 2D plane stress problems 

with unit thickness are considered. The displacement fields are solved approximately with 

use of uniform bilinear square elements. Furthermore, Method of Moving Asymptotes (MMA) 

[22] is adopted to solve the optimization problems numerically. 

 

5.1  The short beam example 

The problem under investigation is plotted in Fig. 15. The displacement is set to zero 

along the left side of the design domain. First, let us consider the case where a unit vertical 

load is imposed on the middle point of the right side (Point A in Fig. 15). The dimensions of 

the initial design domain are     and      respectively. The design domain is 

discretized by a        FEM mesh. The design objective is to minimize the mean 

compliance of the structure under the available solid material constraint such that         

The initial design shown in Fig. 16 is composed of 16 components which can move, 

rotate, dilate and shrink during the process of optimization. The corresponding optimal 

topology is shown in Fig. 17. The value of the objective functional is        .  

This result is almost the same as that obtained by the other methods, for example SIMP 

and level set methods. But it is worth mentioning that the number of the design variable 

using the proposed method is only 80. On the contrary, for the variable density or level set 

method, the total number of design variable, is about 5000 for the same FEM mesh. If the 

FEM mesh is further refined to get double resolution, the corresponding number of design 

variables of traditional methods will increase to 20000 while for the proposed method, the 

number of design variable is still 80. This means that the proposed method has the potential 

to reduce the computational cost dramatically since theoretical analysis indicates that the 

computational complexity associated with the solution of a general optimization problem is 
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roughly proportional to the cube of the number of involved design variables [23]. Fig. 18 

shows some intermediate steps of the optimization process. Considering the fact that a little 

change of the component may lead to a big change of topology, a relatively small step length 

is adopted. Even under this circumstance, an optimal solution can be achieved within 100 

iterations. The numerical results illustrate clearly the flexibility and capability of the proposed 

method to handle drastic topological changes. Table 1 lists the value of design variables 

corresponding to the optimal solution. It is worth noting that although the boundaries of the 

solutions in Fig. 17a and Fig. 18 look like zigzag, it is only a manifestation of the contour 

extraction algorithm on a coarse mesh. In fact, if we plot the result in a CAD system (also 

shown in the same figure), smooth boundary can be observed. From Fig. 17b, the layout of 

the components can also be identified clearly. Note that in the CAD plot, the components 

whose widths are less than one mesh width have not been plotted. 

Next, let us consider the case where the unit vertical load is imposed on the right bottom 

of the design domain (Point B in Fig. 15). The other parameters are the same as previous 

example. Starting from the same initial design as shown in Fig. 16, we can obtain the optimal 

design shown in Fig. 19, which is very close to the solution obtained by classical methods. 

The corresponding value of the objective functional is        . Some intermediate steps 

of numerical optimization are shown in Fig. 20 and the values of optimal design variables are 

listed in Table 2, respectively. From Fig. 20, it can be observed that during the course of 

optimization, the sizes of the components locating at the regions with small strain energy 

densities (i.e., component 13) will reduce to small values and those components locating at 

central region of the design domain will merge into a single one gradually. This is quite 

reasonable from optimization point of view. 

 

5.2  The MBB example 

This is another well-known benchmark example usually used for examining the 

numerical performance of a topology optimization approach. The design domain, boundary 

conditions, geometry data and external load are all shown in Fig. 21. Since the problem 

under consideration is symmetric in nature, only half of the design domain is taken into 

account and discretized by a        FEM mesh. The initial design shown in Fig. 22 is 
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composed of 24 components which is similar to that in the previous example. As the same in 

the previous example, the structure is optimized to minimize the mean compliance of the 

structure under the available solid material constraint         

The optimal topology is shown in Fig. 23 and the corresponding value of the objective 

functional is         . This result is very similar to that obtained by traditional methods but 

obtained with only 120 design variables! This is a significant reduction of design variables 

compared to traditional methods (4800 design variables for the same FEM mesh). In 

addition, some intermediate steps of numerical optimization are shown in Fig. 24 and the 

values of optimal design variables are listed in Table 3, respectively. It can be observed from 

Fig. 24 that some components will first get close, then overlap and finally merge into a single 

one during the process of optimization, which is in fact the critical mechanism to allow for the 

change of structural topology. The numerical results of this example indicate once again that 

the proposed method dose have the capability to deal with topology optimization problems. 

 

 

6. Concluding remarks 

In the present work, a moving morphable component-based theoretical framework for 

structural topology optimization is suggested. We have demonstrated that how to do 

topology optimization in an explicit and geometrical way within the proposed framework. 

Unlike in the traditional solution frameworks, where topology optimization is achieved by 

eliminating unnecessary materials from the design domain or evolving the structural 

boundaries, optimal structural topology is obtained by optimizing the layout of morphable 

structural components in the proposed approach. To the best of the authors’ knowledge, this 

is a novel idea which has not been explored in literature. One of the advantages of the 

proposed approach, which may have great potential in engineering applications, is that it 

can integrate the size, shape and topology optimization in CAD modeling systems 

seamlessly. It can also combine both the advantages of explicit and implicit geometry 

descriptions for topology optimization. In the present work, we only considered how to 

optimize the layout of the solid part of a structure. In fact, the proposed approach can also be 

applied to embed geometrical features into the topological design of mechanical 
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components explicitly. For example, by optimizing the positions of some specified holes and 

rectangles (this can be easily implemented within the proposed computational framework 

since the overlapping and non-overlapping regions can be well determined by the levels set 

functions of the components), optimal designs with fillets and grooves which having desired 

curvature of radii and shapes can be obtained (see Fig. 25 for reference). 

Of course, the proposed method is still in the stage of infancy. Although the new solution 

framework seems attractive from theoretical point of view and the presented examples do 

have shown its potentials, more work need to be done to explore its efficiency, initial 

design-dependency, robustness and rate of convergence especially for non-self-adjoint, 

large scale and multi-physics oriented topology optimization problems. Corresponding 

research results will be reported elsewhere. 
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Fig.1 Pixel-based topology optimization 
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Fig. 2 Geometry and topology representation in CAD system 
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Fig. 3 The curse of dimensionality in topology optimization 
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Fig. 4 Node point-based topology optimization 
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Fig. 5 Structural topology represented by the layout of structural components 
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Fig. 6 Structural components as basic building blocks of topology optimization 
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Fig. 7 Simple components and complex structural topologies 
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Fig. 8 Rectangular structural component and its level set function (   ) 
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Fig. 9 Topology variation through hiding mechanism of components 
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Fig. 10 Approximation of curved structural components with use of straight ones 

  

  

  

 
  

  
  

  
  
  
  

  



32 
 

 

 

 

Fig. 11 Skeleton-based topology optimization 
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Fig. 12a Geometry modeling of structural component with a curved geometry 

 

 

 

Fig. 12b Geometry modeling of structural components with curved geometries 

 

 



34 
 

 

 

 

Fig. 13 XFEM analysis based on a fixed mesh 
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Fig. 14 Fixed FEM mesh and adaptive narrow band FEM mesh. 
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Fig. 15 The short beam example 
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Fig. 16 Initial design for the short beam example 
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Fig. 17 Optimal topology of the short beam example 

(load imposed at Point A) 
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Fig. 18 Some intermediate iteration steps of the short beam example 

(load imposed at Point A) 
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Fig. 19 Optimal topology of the short beam example 

(load imposed at Point B) 
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Fig. 20 Some intermediate iteration steps of the short beam example 

(load imposed at Point B) 
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Fig. 21 The MBB example 
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Fig. 22 The initial design of the MBB example 
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Fig. 23 Optimal topology of the MBB example (half) 
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Fig. 24 Some intermediate iteration steps of the MBB example (half) 
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Fig. 25 Topological design with embedded geometrical features  
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Table 1. Optimal solution of the short beam example (load imposed at Point A) 

 

  

Component       L/2 t/2 p 

1 0.53 0.95 0.75 0.10 0.04 

2 0.31 0.83 0.73 0.09 0.45 

3 0.32 0.16 0.72 0.09 0.43 

4 0.51 0.05 0.74 0.10 0.03 

5 0.43 0.95 0.59 0.08 0.00 

6 0.41 0.78 0.79 0.09 0.45 

7 0.40 0.21 0.78 0.09 0.43 

8 0.49 0.06 0.57 0.08 0.01 

9 0.54 0.95 0.77 0.08 0.00 

10 0.71 0.63 0.47 0.08 0.44 

11 0.66 0.34 0.48 0.08 0.41 

12 0.53 0.06 0.77 0.08 0.00 

13 1.20 0.82 0.40 0.06 0.84 

14 1.65 0.72 0.75 0.06 0.53 

15 1.62 0.26 0.79 0.05 0.52 

16 1.18 0.22 0.53 0.07 0.79 
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Table 2. Optimal solution of the short beam example (load imposed at Point B) 

 

  

Component       L/2 t/2 p 

1 0.39 0.91 0.73 0.12 -0.18 

2 0.39 0.90 0.77 0.11 -0.17 

3 0.30 0.18 0.69 0.09 0.52 

4 0.45 0.04 0.70 0.10 -0.04 

5 0.41 0.90 0.67 0.12 -0.18 

6 0.40 0.90 0.77 0.12 -0.17 

7 0.40 0.24 0.80 0.08 0.52 

8 0.50 0.05 0.76 0.08 -0.01 

9 0.97 0.59 0.45 0.08 0.54 

10 1.27 0.76 0.66 0.09 -0.67 

11 0.79 0.41 0.66 0.03 0.51 

12 1.52 0.04 0.80 0.08 -0.01 

13 1.98 0.49 0.42 0.01 0.38 

14 2.00 1.00 0.33 0.03 -0.94 

15 1.52 0.04 0.80 0.08 0.00 

16 1.77 0.28 0.80 0.10 -0.71 
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Table 3. Optimal solution of the MBB example 

 

 

Component        L/2 t/2 p 

1 0.49 0.94 0.76 0.12 0.01 

2 0.53 0.94 0.80 0.11 0.00 

3 0.59 0.08 0.76 0.13 0.00 

4 0.53 0.08 0.72 0.13 0.01 

5 0.43 0.98 0.69 0.09 0.04 

6 0.31 0.79 0.71 0.06 -0.62 

7 0.52 0.08 0.68 0.13 0.01 

8 0.70 0.03 0.76 0.09 -0.01 

9 0.46 0.94 0.71 0.11 0.00 

10 1.00 0.93 0.70 0.11 -0.01 

11 0.76 0.02 0.80 0.08 0.02 

12 0.56 0.08 0.74 0.13 0.00 

13 1.45 0.58 0.61 0.05 0.76 

14 1.91 0.81 0.63 0.08 -0.55 

15 1.68 0.04 0.50 0.08 0.01 

16 1.10 0.18 0.55 0.09 -0.52 

17 2.32 0.67 0.36 0.01 0.92 

18 2.15 0.64 0.58 0.08 -0.56 

19 2.12 0.04 0.61 0.09 0.03 

20 1.66 0.04 0.48 0.08 0.01 

21 2.98 0.71 0.34 0.01 0.66 

22 3.00 0.80 0.34 0.01 -0.69 

23 2.94 0.16 0.35 0.04 0.61 

24 2.78 0.20 0.59 0.10 -0.60 


