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Abstract

A damage plasticity model for ductile fracture is proposed. This model is established on the cylindrical coordinate sys-
tem of principal stress space. Experimental results show that fracture initiation in uncracked ductile solids is sensitive to the
hydrostatic pressure and dependent on the Lode angle. The joint effects of pressure and Lode angle define a fracture enve-

lope in principal stress space. Plastic deformation induced damage is calculated by an integral of the damage rate measured
at current loading and deformation status with respect to the fracture envelope. A power law damage rule is proposed to
characterize the nonlinearity in damage accumulation. A damage-related weakening factor is adopted to describe the mate-
rial deterioration. The material parameters are calibrated from standard laboratory tests. The proposed model is numer-
ically implemented. Four simulations with emphasis on crack path prediction are presented.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The ductile failure of structures usually consists of three phases: (a) accumulation of damage; (b) initiation
of fracture; and (c) crack propagation. One way to think of fracture initiation is to consider it as the result of
the accumulation of ductile plastic damage (Lemaı̂tre, 1985). Microscopically, such damages associated with
void nucleation, growth and coalescence, shear band movement and the propagation of micro-cracks
(McClintock, 1968; Rice and Tracey, 1969). Macroscopically, degradation of the material exhibits a decrease
of the material stiffness, strength and a reduction of the remaining ductility (Lemaı̂tre, 1992). These physical
changes are often used as indicators to predict the onset of fracture, either based on the current value or in a
cumulative fashion. In continuum damage mechanics, the material deterioration is described by an internal
variable of the so-called ‘‘damage.’’ In many applications, the damage can be considered isotropic but still give
good predictions and, therefore, is assumed as a scalar quantity herein. Damage should be distinguished from
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the ductility or the fracture strain in that damage is an internal quantity and often cannot be measured directly.
To utilize cumulative damage as a criterion to predict the onset of fracture, the relationship between damage
and some measurable quantities has to be established.

Various fracture models have been proposed to quantify the damage associated with material deformation
and are used to predict fracture initiation, (e.g. Cockcroft and Latham, 1968; Gurson, 1977; Johnson and
Cook, 1985; McClintock, 1968; Rice and Tracey, 1969; Wilkins et al., 1980).

Using conventional J2 plasticity, cumulative strain damage models describe the damage and its accumula-
tion in a phenomenological way. The material is considered to be homogenous and the plastic deformation is
isochoric. Acknowledging the damage is associated with the plastic deformation, a cumulative strain damage
fracture model accesses the damage using an integral of a weighting function with respect to plastic strain
increments. For many materials, such as poly-crystalline metals, in the moderate range of pressure and tem-
perature, the damage is a monotonically increasing function if no recrystallization occurs.
2. Formulation of a new damage plasticity model

Material fracture is characterized by a complete loss of its load carrying capacity and deformability. We
propose a damage plasticity model which incorporates the pressure and Lode angle dependence of ductile frac-
ture. The evolution of damage is considered to be a non-linear process. The material deterioration is included
by a weakening factor on the material strength.

Experimental work shows that compressive pressure increases the ductility in many ductile and brittle mate-
rials, such as metals (Bridgman, 1952; Lewandowski and Lowhaphandu, 1998; Pugh et al., 1960; Spitzig, 1990)
and rocks (von Karman, 1911; Mogi, 1972). Hydrostatic tension speeds up both the void nucleation-growth-
coalescence process and the shear band slip movement; while compressive pressure slows down such actions.
The Lode angle characterizes the deviatoric stress state on a hydrostatic plane. The Lode angle dependence of
ductile fracture is less studied compared with the well-known pressure sensitivity. Experiments suggest that the
fracture strain in the plane strain condition is less than that in the axisymmetric tension case (Clausing, 1970;
McClintock et al., 1971; Mogi, 1967). Fracture is a sudden change in the configuration, but damage is a cumu-
lative process.
2.1. Hypothesis

We start by distinguishing the matrix material, which remains undamaged throughout the plastic deforma-
tion all the way to the onset of fracture, and the damaged material, which is the matrix containing solid that
also includes damages, such as micro voids, micro cracks, etc. The matrix stress–strain relationship is
described by a strain hardening function, i.e.
rM ¼ rMðepÞ; ð1Þ
where rM is the equivalent matrix stress and ep is the plastic strain. Here, we assume the material to be iso-
tropic and to follow von Mises yield condition.

The material deterioration can be characterized by a weakening factor, which is a function of the so-called
damage,
req ¼ wðDÞrM; ð2Þ
where req is the equivalent stress of the applied stress and w(D) is the weakening factor defined on the damage
variable D.

In the present paper, we adopt the relative loss of deformability of the ductile solids as the damage variable.
If a body fractures after repeating the same deformation 10 times, the damage is considered to be 0.1 each
time. An immediate corollary of this definition of damage is that the material is intact when D = 0 and is fully
damaged or fractured at D = 1.

The damage evolves when the solid materials subjected to plastic loading. We use the three dimensional
space of the principal stresses to consider the damage process. The principal stresses are represented in the
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cylindrical coordinate system denoted by (p,h,req), where p is the hydrostatic pressure, h is the azimuthal angle
on the octahedral plane and req is the von Mises equivalent stress.

The fundamental assumption made in deriving this model is the following:

‘‘The damaging process is self-similar with respect to the ratio of the plastic strain to the fracture strain on any

deviatorically proportional loading path at any given pressure.’’

By making this hypothesis, we fix the pressure and the azimuthal angle on the octahedral plane. The dam-
age evolution is now dependent only on the ratio of the plastic strain to the fracture strain. The above ‘‘self-
similarity’’ hypothesis can be formally written as
D ¼ f
ep

ef

� �
; ð3Þ
where D is the accumulated damage and ef is the fracture strain on the given path identified by p and h. The
rate form of Eq. (3) is
_D ¼
of ep

ef

� �
o

ep

ef

� � _ep

ef

: ð4Þ
We assume the ductile damage is due to plastic straining, therefore, the partial derivatives with respect to the
pressure p and the azimuthal angle h do not appear in Eq. (4) since op/oep = 0 and oh/oep = 0. In Eq. (4), the
normalization denominator ef is defined by the pressure and the azimuthal angle h, i.e.
ef ¼ efðp; hÞ: ð5Þ

Assuming the effects of the hydrostatic pressure and the azimuthal angle are independent of each other, the
equivalent failure strain can be further decomposed as
ef ¼ ef0lpðpÞlhðhÞ; ð6Þ
where ef0 is a material constant (a reference fracture strain), lp(p) and lh(h) represents the effect of the hydro-
static pressure and the deviatoric state, respectively. When both lp and lh take the value of unity, the present
model degenerates to the constant failure strain criterion.

The fracture envelope shows the relative extent of ductility for a given pressure and azimuthal angle. How-
ever, in practical situations, all three stress invariants vary along the plastic loading path. The actual damage is
the result of progressive accumulation from the loading history of varying pressure and azimuthal angle.
Therefore, the damage has to be described by a history variable.

Based on these assumptions, the constitutive relationship of the material is described by a set of four equa-
tions, Eqs. (1), (2), (4) and (6). These equations form the theoretical basis of the proposed damage plasticity
model. The internal variables are the plastic strain and the damage. The input functions for the material are
these five curves: rM(ep), w(D), f ðep

ef
Þ, lp(p) and lh(h). The method to calculate the damage accumulation is

called ‘‘cylindrical decomposition’’ hereafter.

2.2. Damage evolution

There is a wide spectrum of definitions of damage including micro void volume fraction and the reduction of
stiffness etc. The critical amount of damage in the cumulative strain damage models is often thought of as a cal-
ibration constant depending on the weighting function of the integral. However, it can always be normalized such
that the fracture criterion can be considered as the fracture occurring when the damage reaches unity.

The simplest form of a damage accumulation rule is a linear function, which in turn means the damage is
proportional to the equivalent plastic strain, i.e.
_D ¼ 1

ef

_ep ð7Þ
which is used by many researchers, e.g. Johnson and Cook (1985). Moreover, the damage is not necessarily
linear with respect to the equivalent plastic strain on a constant pressure or a constant stress triaxiality path
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(Bonora and Newaz, 1998). For instance, Børvik et al. (2001) considered that there exists a threshold of plastic
strain below which no damage is accumulated.

The present definition of damage carries an analogue to reversed and repeated loading. It has been shown by
experiments that low cycle fatigue is a plasticity-dominated phenomenon and it appears to be dependent mainly
upon the ductility of metals (Libertiny, 1967; Suresh, 1998). By using the Palmgren–Miner rule and further
assuming that the forward motion and the backward motion (i.e. ebackward

ij ¼ �eforward
ij ) induce the same amount

of damage, a power law damage accumulation rule is derived from the relationship of the so-called ‘‘Dep–N’’
curve, where Dep is the range of the cyclic equivalent plastic strain, N is the number of cycles to fracture initiation.

The relationship between the applied plastic strain and the number of cycles to failure (Dep–N curve) can be
described by the so-called Manson–Coffin relationship (Coffin, 1954; Manson et al., 1954) for a number of
materials, i.e.
Dep � N k0 ¼ C; ð8Þ

where C and k0 are material constants.

The low cycle fatigue type of loading can be characterized by the ratio of the minimum to the maximum strain,
i.e. R = emin/emax. Let us consider the special case of R = 0. The first monotonic loading path is considered as a
half cycle, i.e. N ¼ 1

2
. The Manson–Coffin relationship appears to be linear on a log–log scale of Dep and N.

For each half cycle, the damage associated with the strain increment Dep is approximately
D ¼ 1

2N
: ð9Þ
Differentiating Eqs. (8) and (9) and letting m = 1/k0, the damage evolution law can be derived as a power law
function, i.e.
dD ¼ m
ep

ef

� �ðm�1Þ
1

ef

dep; ð10Þ
where ef is the fracture strain from monotonic loading. Integrating Eq. (10) from intact state, the damage evo-
lution is a power function on a deviatorically proportional loading path of constant pressure, i.e.
D
ep

ef

� �
¼ ep

ef

� �m

: ð11Þ
Typical values of the exponent k0 in Eq. (8) vary from 0.33 to 0.75 for many metals, e.g. aluminum alloy, steel
and brass etc. (Osgood, 1982), which means m = 1.3–3. For instance, the exponent m for 2024-T6 aluminum
alloy can be determined by fitting the experimental Dep–N curve from Coffin and Tavernelli (1959) and
m = 1.73 as shown in Fig. 1.

It should be noted that a large amount of experimental work on the low cycle fatigue was done for push–
pull (tension–compression) loading cycles, e.g. (Coffin, 1958, 1967; Manson et al., 1963). Under such condi-
tions, the hydrostatic pressure experienced in a full cycle changes according to the strain state. However, in
the torsion test, the hydrostatic stress is always zero. Halford et al. (1962) did low cycle torsion fatigue tests
on several metals and found the same linear relationship on the log–log scale of the equivalent plastic strain
versus the number of cycles to fracture.

2.3. Material weakening

The damage-induced material weakening is introduced into the constitutive model by coupling the yield
function and associated flow rule with the damage. Following the continuum damage mechanics, the yield
condition is
U ¼ r2
eq � ½ð1� DsÞrM�2 P 0; ð12Þ
where rM is the yield strength for the matrix material and req is the applied stress on the damaged material.
The damage Ds represents the decrease of the effective load carrying area in the material (Kachanov, 1958).
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Fig. 1. A linear fit for the Dep–N relationship for the aluminum alloy 2024-T6. Experimental data from Coffin and Tavernelli (1959).

L. Xue / International Journal of Solids and Structures 44 (2007) 5163–5181 5167
Following the hypothesis of strain equivalence (Lemaı̂tre and Chaboche, 1978), the strain for a damaged
material is assumed to be equal to the undamaged material and the stress of the damaged material is replaced
by the effective stress. Material hardening is described by the hardening behavior of the matrix material, which
is represented by the rM in Eq. (12); while material softening is represented by the multiplication factor of
(1 � Ds). We assume the elastic modulus decreases at the same rate, i.e.
E ¼ ð1� DsÞE0; ð13Þ
where E is the current elastic modulus and E0 is the original Young’s modulus. The two damage quantities D

and Ds are referred to as the ductile damage and the stiffness damage. Lemaı̂tre and Dufailly (1987) measured
the stiffness damage and showed increasing rate of stiffness loss when matrials approach fracture point. In gen-
eral, the ductile damage and the stiffness damage are not necessarily the same. For instance, a power law rela-
tionship Ds ¼ Db1 is adopted in Xue (2007), where b1 is a material constant and b1 > 1. In the present paper, the
stiffness damage and the ductile damage are assumed to be the same by a first order approximation, i.e. Ds = D.
2.4. Hydrostatic pressure sensitivity

Materials become more ductile as they experience high compressive pressures (Bridgman, 1952). For por-
ous materials, the equivalent fracture strain is found to decrease exponentially with respect to increasing stress
triaxiality, i.e. the ratio of the mean stress to the equivalent stress (Johnson and Cook, 1985; Norris et al.,
1978). Notched round bars experience higher triaxiality than un-notched round bars when subjected to ten-
sion. The fracture strains of notched specimens are found to be less than those of the un-notched round bars
(Hancock and Mackenzie, 1976; Holland et al., 1990). The relationship between the plastic strain at fracture
and the hydrostatic pressure is determined from a particular load condition – the generalized tension.

One of the most comprehensive studies was carried out by Bridgman (1952), who tested the effect of hydro-
static pressure on the material fracture strain for several types of armor steels. Bridgman used round bars and
pulled them in a pressure chamber. The round bar specimens are in a uniaxial tension condition superimposed
on which is a hydrostatic pressure. Because the two lateral principal stress components remain identical at the
center line for the axisymmetric specimen, Lode angle remains �30� at the center of the neck throughout his
experiments. The ratio of the cross-sectional area at the neck after fracture to the initial cross-sectional area
was found to decrease with respect to the superimposed confining pressure.

In addition to the confining pressure, a tensile force is applied on the longitudinal direction. Bridgman
defines the flow stress rflow as the difference between the stress in the longitudinal direction and the confining
pressure (Bridgman, 1952), i.e.
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rflow ¼ rlong � pconf ; ð14Þ
where rlong is the true stress in the pulling direction and rconf is the confining pressure.
By observing the test results, the relationship of the fracture strain to the confining pressure may be

expressed as a power law, viz.
Af

A0

¼ Af0

A0

� 1� pconf

plim

� ��q

; ð15Þ
where �q is a material constant that fits the experimental data best, A0 is the original cross-sectional area, Af is
the cross-sectional area after fracture at the neck, Af0 is the cross-sectional area after fracture at the neck at
atmospheric pressure and plim is a limiting pressure beyond which the material will not fail in the uniaxial ten-
sile condition.

Taking logarithms of both sides of Eq. (15), one gets1
ef ¼ ef0 1� q log 1� p
plim

� �� �
; ð16Þ
where ef is the fracture strain at the confining pressure p, ef0 ¼ log A0

A f0
is the uniaxial tensile failure strain with-

out confining pressure, and q ¼ �q
ef0

. Therefore, the pressure dependence function lp(p) becomes
lpðpÞ ¼ 1� q log 1� p
plim

� �
: ð17Þ
There are two concerns about Eq. (17). First, for numerical implementation, it is not feasible to use the
confining pressure for triaxial loading cases. Therefore, the confining pressure is replaced by the hydrostatic
pressure and the form of Eq. (17) is retained, except that the material constants are re-calibrated for the hydro-
static pressure.

The second concern is the hydrostatic pressure is not constant in the course of the Bridgman tests. Thus, an
approximate method of averaging the experienced hydrostatic pressure over the plastic loading path is used to
calibrate the material parameters.

The average hydrostatic pressure experienced in the course of pulling is illustrated in Fig. 2. The equivalent
stress path on the req–p plane is shown as the thick solid line. The mean hydrostatic pressure, pave, along the
entire loading path is estimated to be
pave ¼ pconf �
rflow

6
: ð18Þ
The estimated average pressure is used to determine the pressure dependence of the fracture envelope. The
intersect of the fracture loci with the mean stress axis denoted by pcutoff in Fig. 2 indicates beyond which
the material can not take any plastic deformation before fracture. The nonlinearity becomes more significant
for higher compressive pressure, meanwhile, the equivalent strain at failure is difficult to measure, since the
cross-sectional area becomes too small. The limiting pressure is so high that under such pressure, an existing
crack can actually heal. Ideally, the strain at failure goes to infinity as the hydrostatic pressure approaches plim.
A complete analysis shows that the limiting pressures for the armor steels are approximately in the range of 2–
4 GPa. For soft metals, this limiting pressure can be lower. For instance, Pugh et al. (1960) showed that the
limiting confining pressure is relatively low for zinc, �100 MPa. On the other hand, except some extreme
cases, practical applications seldom reach such high compressive pressures. In the moderate hydrostatic pres-
sure range, the obtained logarithmic relation is sufficient for practical purposes.

The first order linear approximation of Eq. (16) is
ef ¼ ef0 1� q
p

plim

� �
: ð19Þ
the present paper, ‘‘log’’ denotes natural logarithm.



Fig. 2. An illustrative sketch of the average hydrostatic pressure experienced in the course of uniaxial pulling under a confining pressure.
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Admittedly, both q and plim are sensitive to the experimental error from limited data. However, from this lin-
earized relationship of the effective failure strain and the hydrostatic pressure, the value of plim

q can be estimated
with fairly good confidence in the pressure level of many industrial applications. A precise measurement of the
fracture strain at high compressive pressure has to be assured, if nonlinearity under high pressure is of interest.

From Eq. (16), a cut-off value of tensile pressure emerges. It could be shown from Eq. (16) that the fracture
strain becomes negative when the hydrostatic pressure falls below
pcutoff ¼ plim½1� eð1=qÞ�: ð20Þ
At this cut-off pressure, the effective failure strain ef0 is zero, which means the material could not take any plas-
tic strain.

In reality, it is difficult to design a constant pressure test for calibration purposes. For instance, the torsion
tests in a pressure chamber is a constant pressure test, but there are difficulties in constructing such an appa-
ratus (Bridgman, 1952). Using an averaging method, the loading paths with different hydrostatic pressures can
be estimated from tensile tests in a pressure chamber in the negative mean stress side or from tension test of the
un-notched and notched round bar in the positive mean stress side.

2.5. Lode dependence

If taking only the pressure effect into account, one might draw a conclusion that the fracture strain in sim-
ple shear is greater than that in simple tension due to the lack of hydrostatic tension. However, experiments
show that sometimes the simple shear (or torsion) fracture strain can be less than the simple tension fracture
strain (Bao and Wierzbicki, 2004; Halford et al., 1962; McClintock et al., 1971; Neimark, 1968; Wilkins et al.,
1980). Clausing (1970) pointed out the distinct difference in the fracture strain between the round bar (axial
symmetry) and the flat grooved plates (plane strain) from tests of seven ductile metals. Stress triaxiality plays
a role in the transverse plane strain and the axisymmetric tension. Equal importantly is the Lode angle depen-
dence in the distinct difference observed by Clausing. Therefore, we include a Lode angle dependence function
to describe this difference.

For isotropic materials, the principal stresses are interchangeable to reflect the independence of damage to
the observation frame. The Lode angle dependence function for damage evolution should have symmetry in
all three principal planes. On an octahedral plane, the azimuth angle can be divided into six parts that have the
same Lode angle dependence function. Each part covers the complete range of the v from 0 to 1. Following the
assumption that forward motion and backward motion induces the same amount of damage, an additional
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symmetry is introduced to the octahedral plane. In other words, the shape of the twelve segments is the same
(apart from the reflections).

Based on the assumption that the effect of the hydrostatic pressure and the deviatoric state on the failure
strain can be uncoupled and determined from separate series of tests, it is ideal to conduct a series of exper-
iments that covers one sixth of the octahedral plane.

The azimuth angle can be characterized by the Lode angle hL (von Lode, 1925), which is defined as
2 Th
adopte
hL ¼ tan�1 1ffiffiffi
3
p 2

s2 � s3

s1 � s3

� �
� 1

� �	 

; ð21Þ
where s1, s2 and s3 are the maximum, intermediate and minimum principal deviatoric stresses, respectively.
The Lode angle is also shown in Fig. 3. It is widely used in the granular material community and the influ-

ence of the Lode angle is often referred as ‘‘Lode dependence.’’ The relative ratio of the principal stresses is
used here to represent the azimuth angle h, which is defined as the angle to the positive direction of the s1 axis,
i.e. h1 in Fig. 3.

The relative ratio2 of the principal deviatoric stresses, v, is defined as
v ¼ s2 � s3

s1 � s3

: ð22Þ
To recognize the difference between v = 0.5 and v = 0, we define a new parameter c, which is the ratio of the
fracture strain at v = 0.5 to that at v = 0 at the same constant hydrostatic pressure, i.e.
c ¼ efðv ¼ 0:5Þ
efðv ¼ 0Þ : ð23Þ
Due to the lack of experimental data on constant pressure paths, the Lode angle dependence function has to
be constructed in a heuristic way. Here, we present two kinds of the Lode dependence functions. The first kind
is a first order linear relationship in the plane of strain components, as shown in Fig. 4. The fracture point
representing the fracture strain at the generalized tension or compression is connected to that of the plane
strain condition by a straight line and, thus, forms a polygon on the strain plane as shown in Fig. 4 as a solid
line. The ‘‘six point star’’ in Fig. 4 can be represented by the function
e term ‘‘relative ratio’’ is used to describe quantities of the form (b � c)/(a � c), which falls between 0 and 1 when a P b P c. It is
d here to distinguish with quantity of b/a, which is the ‘‘ratio’’ of b and a.
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lh ¼

ffiffiffiffiffiffiffiffiffiffiffi
v2�vþ1
p

1þ
ffiffi
3
p

c �2
� �

v
; 0 6 v 6 0:5;ffiffiffiffiffiffiffiffiffiffiffi

v2�vþ1
p

1þ
ffiffi
3
p

c �2
� �

ð1�vÞ
; 0:5 < v 6 1;

8>><
>>: ð24Þ
which is symmetric with respect to v = 0.5. Therefore, the fracture envelope is constructed for each of the
twelve pie slices on the octahedral plane, which are identified by either 0 6 v 6 0.5 or 0.5 < v 6 1. As a special
case, the first kind of the Lode dependence function reduces to a right hexagon when c ¼

ffiffi
3
p

2
.

The second kind of Lode dependence function is defined by
lh ¼ cþ ð1� cÞ 6jhLj
p

� �k

; ð25Þ
where k is a shape parameter. The second kind of the Lode dependence function degenerates to a prefect circle
when c = 1. It should be emphasized that Figs. 4 and 5 are on the plane of the principal plastic strain com-
ponents and should be distinguished from the yield surface.

Combining Eqs. (17) and (24), the fracture envelope can be expressed in the fracture strain function, i.e.
ef ¼
ef0 1� q log 1� p

plim

� �h i ffiffiffiffiffiffiffiffiffiffiffi
v2�vþ1
p

1þ
ffiffi
3
p

c �2
� �

v
; 0 6 v 6 0:5;

ef0 1� q log 1� p
plim

� �h i ffiffiffiffiffiffiffiffiffiffiffi
v2�vþ1
p

1þ
ffiffi
3
p

c �2
� �

ð1�vÞ
; 0:5 < v 6 1;

8>><
>>: ð26Þ
in which the fracture envelope is characterized by four material constants ef0, c, q and plim and two stress state
parameters p and v.

Wilkins et al. (1980) suggested the Lode dependence is governed by
lh ¼ ð2� AÞb; ð27Þ
where b is a material constant and A is the stress asymmetry
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A ¼ max
s2

s1

;
s2

s3

	 

: ð28Þ
It can be shown that the stress asymmetry and the relative ratio of the principal stresses are related by
v ¼
2� 3ðAþ1Þ

Aþ2
; s2 6 0;

2� 3
2þA ; s2 > 0:

(
or A ¼

1�2v
1þv ; 0 6 v 6 1

2
;

2v�1
2�v ;

1
2
6 v 6 1:

(
ð29Þ
The material parameters c and b can be related by
c ¼ 2�b: ð30Þ

A comparison of the Lode angle dependence functions is shown in Fig. 6.
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Zhang et al. used a void containing cubic cell under prescribed loadings at different Lode parameters
(Zhang et al., 2001). The applied boundary condition requires the cell remain rectangular and thus they
obtained an upper bound of the response. Similar results was obtained by Kim et al. (2004).

Expressing the fracture envelope in the principal stress space, the combined effects of the hydrostatic pres-
sure and the deviatoric state are shown in Fig. 7, which appear to be a ‘‘blossom.’’ For each sextant of the
fracture envelope, Wierzbicki and Xue (submitted) also provided a non-dimensional form of the fracture locus
in the space of the stress invariants for proportional loadings.
2.6. Comparison with several existing models

In summary, a damage plasticity model is developed to incorporate the pressure sensitivity and the Lode angle
dependence through the so-called ‘‘cylindrical decomposition.’’ A nonlinear damage evolution law and the dam-
age associated material weakening are also taken into account. Individual effects are considered in existing frac-
ture prediction models. It is thus desired to compare the present model with existing ones. A comparison of
several representative models is shown in Table 1. The considered effects in the individual models are marked.
3. A special case of the plane stress condition

The plane stress condition offers a special set of problems that has been extensively studied experimentally,
analytically and numerically. Due to the absence of the normal stress, the relative ratio of the principal stresses
v is related to the ratio of the two nonzero in-plane principal stresses a, i.e.



Fig

Table 1
Comparison of the present model with several existing models for fracture prediction

Pressure* Lode angle Damage rule Weakening

Johnson and Cook (1985) d g

Wilkins et al. (1980) d d g

Lemaı̂tre (1985) d d d

Gurson–Tvergaard–Needleman d d d

present model d d d d

* A filled circle ‘‘d’’ indicates a dependence. A half filled circle ‘‘g’’ indicates a proportional linear damage rule. For Johnson-Cook
model, the damage is assumed to be linearly related to the plastic strain on a proportional loading path. For Wilkins model, the damage is
assumed to be linearly related to the proportional deviatoric loading path.
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a ¼
1� v r1;6 r2 6 0
v�1
v ; r1 6 0 6 r2

v; 0 6 r1 6 r2:

8><
>: ð31Þ
The range of the stress ratio, the relative ratio of the principal stresses and the stress triaxiality are illustrated
in the top-left half plane. The bottom-right half plane is symmetric with respect to the line identified by
rx = ry.

For fracture under plane stress proportional loadings, the effective failure strain can be equally expressed in
one of the three parameters. From Fig. 8, the rx–ry plane is divided into six sections of full coverage of v from
0 to 1. These six sections are each of the halves of the first and third quadrants and the second and the fourth
quadrant. Meanwhile, the same plane is divided into equal halves by line rx = ry, each covering stress triax-
iality g from �2

3
to 2

3
. Therefore, the joint effects of the Lode angle and the stress triaxiality on the fracture

strain can be determined on any proportional loading paths in each of these six sections. This results in a gar-
land curve on the plane of the fracture strain versus the stress triaxiality. For example, the equivalent fracture
strain is plotted versus the stress triaxiality in Fig. 9 for 2024-T351 aluminum alloy.

The solid line in Fig. 9 denotes the plane stress fracture locus. In Fig. 9, the upper dash-dot line represents
the fracture locus of axisymmetric loading conditions (v = 0) and the low dash-dot line represents that of
plane strain conditions (v = 0.5). For proportional loading conditions other than these two extreme condi-
tions, the fracture locus falls in-between these two bounds.

Experimental data are also plotted in Fig. 9 for aluminum alloy 2024-T351. The right three points (denoted
by triangles) of experimental data in Fig. 9 are from un-notched and notched round bars and the rests
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Fig. 9. The equivalent fracture strain versus the stress triaxiality for the plane stress condition. Experimental data from Bao and
Wierzbicki (2004).

Table 2
Material constants for fracture characterization of 2024-T351 aluminum alloy

ef0 plim q c m

0.70 925.7 MPa 1.75 0.4 1.73
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(denoted by circles) are close to plane stress condition. Bao and Wierzbicki’s tests locate at the middle portion
of the three branches. The positive side of stress triaxiality are from tension tests of different shapes and the
negative side of stress triaxiality are from upsetting tests. The upper bound shown in Fig. 9 is fitted from the
axisymmetric tests.

The material parameter c, which is the ratio of the fracture strain at v = 0.5 and v = 0 at same constant
pressure, can be determined from Fig. 9. The point of intersection of this upper bound and the vertical axis
rm

req
¼ 0 (denoted by point ‘‘B’’) corresponds to the reference generalized tension condition, where the pressure

is constant zero along the loading path. Point ‘‘B’’ defines the value of the reference fracture strain ef0. The
nonlinear parameters plim and q are also obtained from the fitting of the upper bound. The ratio of the simple
shear fracture strain (denoted by point ‘‘A’’) and ef0 defines the fracture strain ratio at plane strain condition
to generalized tension condition, i.e. the material constant c. For aluminum alloy 2024-T351, it appears that
the material is Lode angle sensitive. For simple shear case, the fracture strain is only 0.2. From the extrapo-
lation of the fracture loci from round bar specimens, the intersection (point B) indicates ef0 = 0.7. Therefore,
c = 0.29. Batra et al. (1995) showed the fracture strain of AA 2024-T351 in torsion is about 0.4, which indi-
cates a larger c = 0.57. In the present study, we choose an intermediate value of c = 0.4. The complete set of
five parameters for the fracture envelope is listed in Table 2.

4. Numerical validation

The proposed model is implemented into a commercial code LS-DYNA as a user defined material model.
Backward Euler method is used in the numerical integration scheme (Xue, 2007). Several numerical calcula-
tions for representative load conditions have been performed. These calculations include (a) an un-notched
round bar in axial tension; (b) a doubly grooved flat plate (transverse plane strain); (c) a dog-bone plane stress
coupon in tensile test and (d) a compact tension test. In all these cases, the specimens are pulled at both ends in
the vertical direction. Some other simulation results are reported in Xue (2007); Xue et al. (2006). The stress–
strain curve for the matrix material is shown in Fig. 10.
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Fig. 10. The approximate stress–strain curve for the matrix material of aluminum alloy 2024-T351.

5176 L. Xue / International Journal of Solids and Structures 44 (2007) 5163–5181
4.1. Un-notched axisymmetric round bar

The uniaxial tension of an un-notched round bar is often used as a standard test to determine the material
strength. For ductile metals, the specimen usually forms a localized neck before final fracture occurs. Careful
examination of the microstructure at the neck reveals that the fracture starts at the center of the neck and
propagates towards the free outer surface. The initial crack is in tensile mode and is perpendicular to the load-
ing direction. The crack propagates until a large shear lip occurs (Puttick, 1959; Rogers, 1960). A ‘‘cup-cone’’
shaped fracture surface is thus formed.

The numerical calculation shows a realistic ‘‘cup-cone’’ fracture mode as shown in Fig. 11. Similar results
were obtained by Tvergaard and Needleman (1984), Besson et al. (2001) using Gurson-like model (Gurson,
1977) and more recently by Scheider and Brocks (2003) using cohesive model. In the present study, the pro-
posed damage plasticity model is applied. The simulation is performed using axisymmetric brick elements. The
un-notched round bar has a diameter of 9 mm and is discretized using 0.1 mm by 0.1 mm elements at the mid-
dle section. The crack propagation is shown in Fig. 11.

As the crack propagates toward to free outer surface, the plastic deformation localizes in two shear bands,
which forms shear lips. The simulation results show that the inclination angle of the deviatoric state, strain
rate and the damage rate in the shear bands are different. The differences in the inclination angles are shown
in Fig. 12. The contour lines of the deviatoric state v shows the values of v in these bands are between 0.4 and
0.5 and these bands are inclined towards the cross-sectional plane about 57�, as shown in Fig. 12(a). The incli-
nation angle of the localized bands of the plastic strain rate is about 46�, as shown in Fig. 12(b). The joint
Fig. 11. A cup-cone fracture mode is observed in the un-notched round bar (left, finite element mesh; right, propagation of the crack.
Plotted are the contours of damage).



Fig. 12. The formation of shear lips. The differences in the inclination angles of v, the plastic strain rate and the damage rate are shown. (a)
Contours of v; (b) contours of plastic strain rate; (c) contours of damage rate.
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effects of v and the plastic strain rate results in an inclination angle of 50� of the damage rate bands, as shown
in Fig. 12(c).
4.2. Doubly grooved flat plate (transverse plane strain)

The stress condition in transverse plane strain loading is a shear loading superimposed by a hydrostatic ten-
sion. Experiments show the crack usually propagates in the direction of the maximum shear in this case. The
doubly grooved flat plate is often used to study the plane strain in tension, e.g. Clausing (1970). The grooves
are perpendicular to the loading direction. At large deflection, two distinct shear bands at an angle of �45� to
the loading direction appeared at the grooved section of the plate. The fracture mode of the doubly grooved
flat plate is dominated by a slant fracture (or sometimes a symmetric chevron-type of crack (Besson et al.,
2003). This slant fracture is shown in Fig. 13. In this calculation, the grooved section is 3 mm wide and
6 mm tall and is descritized by plane strain brick elements of size 0.1 mm by 0.1 mm.
4.3. Tensile flat specimen

The third example is a tensile flat coupon test. The width of the center section is 20 mm and is discretized
using 0.33 mm by 0.33 mm shell elements. The localized necking follows the diffused necking and then fracture
initiates at the center of the neck. The contour lines of damage at the neck are plotted on the right side of
Fig. 14 at the onset of fracture. It is found that the damage accumulated faster at the two preferred directions,
which are inclined to the loading direction at an angle of 55�. This inclination angle agrees with theoretical
analysis (Hill, 1952; McClintock and Zheng, 1993). The final crack forms in one of the two damage bands,
as shown on the right side of Fig. 14.
4.4. Compact tension specimen

A slant fracture surface is often found in the compact tension specimen in certain range of thickness
(Anderson, 1995; James and Newman, 2003; Mahmoud and Lease, 2003; Rivalin et al., 2001). Three-dimen-
sional calculations have been performed to simulate the crack propagation of a compact tension test (Dawicke
et al., 1995; Mahmoud and Lease, 2004; Mathur et al., 1996). Because of the constraint of normal stress at the
symmetric plane, the center of the crack tip is close to plane strain condition. However, the normal stress
reduces to zero at the surface. The plastic fracture process zone is in a triaxial stress zone ahead of the creak
tip. Therefore, a full three dimensional simulation is necessary to simulate the crack tip behavior in a compact
tension specimen (Xue et al., 2006). The finite element model of the compact tension specimen with a/W = 0.5
and width W = 50.8 mm is shown Fig. 15. A realistic slant fracture model is predicted, as shown in Fig. 16.



Fig. 13. A 45� slant crack is observed in the flat grooved plate (left, overall cross-section; middle, slant crack at the grooved section; right,
contour lines of damage just before fracture occurs).

Fig. 14. A slant crack is observed for thin-walled flat dog-bone tensile specimen (left, before test; middle, after test; right, contour lines of
damage at the neck).
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Xue et al. (2006) also showed that the synegistic effects of the combination of the Lode angle dependence and
the material weakening favor a slant fracture mode.

5. Conclusions

A damage plasticity model is proposed in the present paper. The ductile damage is induced by the plastic
deformation and leads to ultimate fracture. The material properties are characterized by a set of constitutive
equations describing damage evolution and material deterioration. In the present paper, damage is defined as
the relative loss of the deformability. The damage evolution is given in the rate form through a ‘‘cylindrical



Fig. 16. The predicted slant fracture mode of a compact tension specimen (After Xue et al. (2006)). The von Miese equivalent stress
contours are plotted. (a) Fractured specimen; (b) Slant crack propagation.

Fig. 15. The finite element mesh of a compact tension specimen.
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decomposition’’ of damage by incorporating the pressure dependence, the Lode angle effect and a power law
damage rule. The material fracture occurs when the accumulated damage reaches unity.

While the hydrostatic pressure and the Lode angle may have joint effects, it is assumed in the present model
that these two effects are independent and can be calibrated separately. The Lode angle dependence is simpli-
fied as a ‘‘six point star’’ on the plastic strain plane. The combined pressure and Lode angle effects result in a
‘‘blossom’’ shaped fracture envelope in the principle stress space. The fracture envelope can be described by a
set of four parameters, viz. ef0, plim, q and c, which can be calibrated through laboratory experiments. Further-
more, a damage exponent m is adopted to describe the nonlinear damage accumulation effect. Four numerical
calculations are given to illustrate the capability of the proposed model in predicting crack paths.

It is recognized that the relationships in describing the pressure sensitivity, the Lode angle dependence and
the damage accumulation are phenomenological in nature. More data are in need to better define these rela-
tionships. A deliberate experimental program is being conducted. The test results and the numerical compar-
ison will be used to further justify the present method.
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