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Abstract

Piezoresponse Force Microscopy (PFM) is a powerful scanning-probe technique to charac-
terize important aspects of microstructure in ferroelectrics. It has been widely applied to un-
derstand domain patterns, domain nucleation, and the structure of domain walls. In the article,
we apply a real-space phase-field model to consistently simulate various PFM configurations.
We model the PFM tip as a charged region that is external to the ferroelectric, and implement
a boundary element method to efficiently and accurately account for the external stray fields
that mediate the interactions between the tip and the ferroelectric. Our phase-field model and
the solution method together are able to account for the electrical fields both within the spec-
imen as well as those outside, and also consistently solve for the resulting electromechanical
response with the same phase-field model. We apply this to various problems: first, the effect of
crystal lattice orientation on the induced tip displacement and rotation; second, PFM scanning
of a 90-degree domain wall that emerges at a free surface; third, the effect of closure domain
microstructure on PFM response; fourth, the effect of surface modulations on PFM response;
and fifth, the effect of surface charge compensation on PFM response.

Keywords: Piezoresponse Force Microscopy; Ferroelectrics; Phase-Field Modeling; Do-
main Walls; Boundary Element Method

1 Introduction

Ferroelectric materials are widely-used in sensors and actuators [1, 2], high-speed memory devices
[3], microwave circuit elements [4, 5] and photonics [6, 7, 8] due to their attractive electrome-
chanical and optical properties. Because these properties are strongly linked to microstructure and
domain patterns, there has been much experimental effort to obtain an understanding of domain
patterns at small scales. A leading experimental characterization tool that has been developed over
the last decade is Piezoresponse Force Microscopy (PFM). The essential principle of Piezoresponse
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Force Microscopy is straightforward: an AC voltage applied through the tip of a conventional Scan-
ning Probe Microscopy (SPM) excites the electromechanical (piezo) response of the ferroelectric,
and the SPM then measures the superposition of local topography with the electromechanical dis-
tortion induced by the applied voltage. By keeping the frequencies of SPM scanning and the ap-
plied AC well-separated, the SPM measurement can be deconvolved to individually provide both
topography as well as electromechanical distortion response. Thus, it is possible to obtain a spatial
map of electromechanical response over the specimen surface, and from it an indication of domain
patterns and other properties.

PFM has been successfully applied to a wide variety of settings and materials; important reviews of
the development, implementation and challenge of PFM are [9, 10, 11]. A number of PFM modes
have been developed: the vertical mode to measure the out-of-plane polarization based on induced
displacements [12]; the lateral mode to measure the in-plane polarization based on induced angles
[13]; and vector PFM that is a combination of both vertical and lateral PFM [14] to image the entire
polarization vector at the surface. Based on these techniques, various measurements of domain
patterns have been reported, e.g. 180◦ [15] and 90◦ [16, 17] domain patterns in ferroelectrics have
been successfully observed. In addition, imaging of ferroelectric domains with high resolution was
demonstrated when the PFM is used in an aqueous environment [18]. There have also been studies
to image the detailed structure of both 90◦ and 180◦ domain walls [19, 20, 21].

Analytical models and numerical simulations have also been developed to provide guidance and
support to PFM experiments. Simple analytical approaches are presented in [22, 23] to understand
the intricate tip-surface contact. While these provides important insights, many approximations are
necessary to enable a tractable analysis. For instance, the ferroelectric is dealt with as a homo-
geneous linear dielectric, and the bound charges and anisotropy that arise due to changes in the
domain patterns induced by the tip are difficult to account for. In addition, the details of the domain
pattern response to the applied field are unavailable. Numerical approaches based on phase-field
modeling have also been used. Important contributions include [24] and [25]. In [24], they use
phase-field modeling to simulate domain formation. However, they are forced to make significant
approximations in their treatment of the electrical fields due to their inability to handle the external
stray fields. Hence, the PFM tip is approximated roughly as flat electrodes directly on the specimen
surface. In [25], they use semi-analytical approaches, and reach the important conclusion that the
standard PFM approach to compute piezoelectric coefficients based on calibration against refer-
ence samples is questionable. While they are able to obtain important insights, the semi-analytical
approach depends on additional approximations beyond the phase-field approach, and is also re-
stricted in applicability.

The key difficulty in modeling PFM without any approximations beyond the phase-field model is
the fact that the PFM tip with applied voltage is outside the specimen. Therefore, stray electric
fields exist outside the ferroelectric specimen in vacuum. Hence, numerically, this requires the
solution of the electrostatics equation on an infinite computational domain, simultaneously and
consistently with the phase-field model that describes domain response to the applied field. We
apply a boundary element method that enables efficient solution of the electrostatics equation by
consistently transforming it to a finite domain [26, 27, 28] and couple this to the phase-field model.
Hence, we are able to model a ferroelectric material in real-space with a complex mix of electrical
and mechanical boundary conditions including those relevant to PFM [29].

We organize the article as follows. We present the phase-field model and numerical solution method
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in Section 2. We apply this various questions of interest to PFM: first, the effect of crystal lattice
orientation on the induced tip displacement and rotation, Section 3; second, PFM scanning of a
90-degree domain wall that emerges at a free surface, Section 4; third, the effect of closure domain
microstructure on PFM response, Section 5; fourth, the effect of surface modulations on PFM
response, Section 6; and fifth, the effect of surface charge compensation on PFM response, Section
7. Finally, we conclude and summarize the results in Section 8.

2 The Phase-Field Model and Numerical Solution Method

Following [30, 31, 32], the total potential energy E of a ferroelectric body Ω (Fig.1) with elastic
strain field ε and the polarization field p is written as:

E[ε,p] =

∫
Ω

[U(∇p) +W (ε,p)] dΩ +
ε0
2

∫
R3

|∇φ|2 dV (2.1)

Here, U penalizes gradients in p and models the energy contributions from domain walls, and the
stored (Devonshire) energy density W penalizes p and ε deviating from the spontaneous polar-
ization and strain. The last term represents the electrostatic energy contained in the electric field
E = −∇φ, where φ is electric potential obtained from the electrostatic equation:

∇ · (p− ε0∇φ) = 0 over R3. (2.2)

The first two terms in the energy (2.1) are local to the body being considered, while the electrostatic
contribution is over all space.

The domain patterns in a ferroelectric can be described by fields ε and p that are local minimizers
of E. Further, the response due to electric fields that are applied through the PFM tip is calculated
by finding local minimizers of E with terms that account for external loads. This assumes that the
frequency of the AC excitation is much lower than the timescales of electrodynamics and elasto-
dynamics respectively, i.e. the ferroelectric reaches mechanical and electrical equilibrium within a
small fraction of an AC cycle. Such an assumption is standard in the field of PFM experiments and
agrees with the estimated timescales for these phenomena.

We use tetragonal barium titanate in two-dimensions as our model material. Following [33, 34, 27,
35], we use for the energy:

U(∇p) =
a0

2

(
p2

1,1 + p2
1,2 + p2

2,1 + p2
2,2

)
W (ε,p) = polynomial in p +

1

2
(ε− εT (p)) · C · (ε− εT (p))

(2.3)

The details of the polynomial and other constants can be obtained from the references cited above.

These minimizers are numerically calculated by starting with assumed fields ε,p and evolving
towards a minimum using a gradient descent. The gradient flow of E in the H1 norm is [36]:

µ1
dpi
dt
− µ2

d(pi,j),j
dt

=

(
∂U

∂pi,j

)
,j

− ∂W

∂pi
− φ,i over Ω(

∂W

∂εij

)
,j

= 0 over Ω

pi,i − ε0φ,ii = 0 over R3

(2.4)
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with µ1, µ2 both non-negative.

Fig. 1 shows the mesh and the computational domain Ω. The boundary conditions for the polar-
ization evolution (2.4)1 are ∇p · n = 0 on all boundaries of the specimen, where n is the outward
normal to the boundary. The boundary conditions for mechanical equilibrium (2.4)2 are traction-
free on the top surface, and clamped on the other 3 faces. The clamping displacement is set to the
value of the stress-free strain corresponding to a bulk crystal, to simulate the effect of the compu-
tational domain being embedded in a large bulk specimen on all sides except the top free surface.
The boundary conditions for the electrostatics (2.4)3 are grounded on the bottom and side faces,
and voltage decays as the distance from the specimen tends to infinity. Similar boundary conditions
have been used in our recent study of free-surface domain nucleation [29]. We start with an initial
polarization field that we use to obtain the strain and electric potential from (2.4)23. We then update
the polarization using (2.4)1. This process is repeated until convergence. The polarization update
(2.4)1 and mechanical equilibrium (2.4)2 both use standard finite element methods (FEM) with
triangle elements and linear shape functions, and polarization and displacement are the primary
variables respectively.

The electrostatic equation (2.4)3 needs attention as the electric fields are not confined to the fer-
roelectric but extend over all space. We model the tip as triangular with a uniform charge density
σ above the specimen. Hence, it is important to account for the electric fields in vacuum and
they cannot be neglected as they mediate the tip-ferroelectric interactions. We apply a Dirichlet-
to-Neumann boundary element method to solve this infinite domain problem efficiently and accu-
rately, as described in [26, 28]; in particular, [28] describes an iterative formulation that is particu-
larly suited for nonlinear coupled problems such as arise here. While the details of the method are
discussed in these references, the essential aspect of the method is that it consistently transforms
the Neumann-type boundary conditions from the charge on the tip and the bound charge in the
ferroelectric to the Dirichlet-type boundary conditions of potential specified on the boundary of the
ferroelectric Ω, Fig. 1. This enables us to then solve (2.4)3 using standard FEM.

The raw signal from a PFM experiment is simply the superposition of tip displacement due to
specimen surface topography and tip displacement due to piezoresponse. These signals are however
at very different frequencies, and can be deconvolved by a lock-in amplifier. Hence, the final
output regarding piezoresponse consists of two specific pieces of information: (i) the amplitude
of the sinusoidal tip displacement due to piezoresponse from applied sinusoidal AC signal (ii) and
the phase difference between the sinusoidal tip displacement response and the sinusoidal applied
AC signal. Because damping is typically assumed small, the phase difference is either 0 or π
radians, depending on the sign of the piezoresponse, and is readily calculated. The main quantity
of interest here is the amplitude of the tip displacement. Because only amplitude is measured
and not the entire cycle, for our simulations it suffices to examine only the maximum voltage
of the simulated AC cycle as this leads to the maximum response (unless large-scale switching
occurs). Therefore, to calculate the amplitude of the PFM response signal, we simply apply the
charge/voltage corresponding to the amplitude of the applied AC at the spatial position of the
tip, and compute ε and p that are local minimizers of E with accounting of applied loads. The
polarization p provides the dielectric response, and the strain field ε can be used to compute the
displacement beneath the tip that is measured. In addition, ε provides the slope at the surface,
which is related to the twisting of the PFM tip that has been the focus of recent PFM studies. The
slope provides a means to distinguish the in-plane direction of the spontaneous polarization.
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Finally, we note that we only examine the positive maximum of the applied electric field amplitude.
This is sufficient because the system is symmetric with respect to a change in sign of both the
applied electric field and the polarization vector together.

3 Effect of Lattice Orientation on PFM Tip Induced Displace-
ments and Angles

We first study PFM scanning the surface of a single domain ferroelectric specimen with the crys-
talline lattice at various angles to the free surface. There is a well-understood mapping that en-
ables deduction of the both out-of-plane and in-plane polarization directions from the PFM in-
duced/measured tip displacements and tilt for a- and c-axis domains, i.e. when the spontaneous
polarization is aligned perfectly tangential and perfectly normal to the free surface respectively
[10]. However, when the spontaneous polarization is between these extremes, it is not clear how to
deduce these from PFM. Our simulation can provide some insight. In addition, the extreme cases
of a- and c-axis provide validation for the method.

We denote the angle of the crystal lattice with the horizontal direction to be θ. We start from an
in-plane polarization direction (θ = 0◦), and increase θ in steps of 15◦ until 90◦. At each of these
angles, we compute the induced displacement and angle (slope) directly beneath the tip, Fig. 2.
When there exists an initial displacement/angle before application of the electric field from the tip,
this is subtracted to find the induced displacement/angle.

We find in Fig. 2(a) that the PFM induced displacement increases linearly until θ ' 60◦, followed
by a gradual leveling-off beyond that. On the other hand, the PFM induced angle does not show
much of a linear region at all, Fig. 2(b), but rather the slope of the curve continually increases in
magnitude as it goes towards 0 at θ = 90◦. From Fig. 2, we can conclude that it is difficult to
distinguish between a c domain (θ = 90◦) and a domain with θ = 75◦ from the induced displace-
ment alone; however, the difference in induced slope is significant and the tilt of the PFM tip can
resolve these two cases. Similarly, it is hard to differentiate an a domain (θ = 0◦) from a domain
with θ = 15◦ by the induced angles alone, but in conjunction with the induced displacement it is
possible to tell these cases apart.

While in practice it is unlikely that our simulations will achieve quantitative accuracy, the trends
are likely to be reliable. Hence, by calibrating against a reference sample with known crystal lattice
orientation, the plots in Fig. 2 can potentially provide quantitative guides to deduce crystal lattice
orientations from PFM measurements.

4 PFM Signature of a Single 90◦ Domain Wall

The second example we study is to apply the PFM tip above a simple 90 domain of ferroelectrics.
The initial domain pattern is shown in Fig. 3: a 90◦ domain wall that separates and a-domain from
a c-domain. The domain wall is compatible both mechanically and electrostatically. As we move
the PFM tip, the induced displacements and angles on the sample surface are measured at various
locations, shown in Fig. 4. It is important to note that the plots in Fig. 4, and similar plots for
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other domain patterns, are not the distortions of the free surface for a fixed tip position, but instead
the distortion directly beneath the tip for various tip positions. Mathematically, if we write the
tip position T as a function of time t, i.e. T (t), and we write the displacement field u(x, t) as a
function of position x and time t, then we are not plotting u2(x2 = 0, x1, t = t0) vs. x1; rather
we are plotting u2(x2 = 0, x1 = T (t), t = t) vs. T (t) for various times t. The latter is precisely
the output of a PFM scan. Here, subscripts refer to coordinate directions, 1 being horizontal and
2 being vertical. In addition, time t is simply a parameter since we do not consider truly dynamic
processes. Also note the 2 tip positions on either side of the domain wall marked “1” and “2”.

Our calculations show some interesting features. First, the induced displacements for a polariza-
tion is much smaller than c polarization, while the induced angles are much larger for a polarization
than the c polarization. This result matches well with experiment and is independent of the applied
electrical amplitude σ. Here, we note that σ is non-dimensionalized such that dielectric breakdown
is roughly O(104). Second, we see an asymmetric signature of the 90◦ wall. This shows a com-
plexity that is usually not considered when analyzing experimental measurements to obtain domain
wall thickness, e.g. [19, 20]. In addition, we note that even over the a domain the induced dis-
placement is significantly different from 0 due to interference from the c domain beneath it. Third,
we note the snapshots of domain patterns in Fig. 5 for different tip strengths σ at locations 1 and
2. For σ = 0.4, the polarization at location 1 rotates upwards only slightly, Fig. 5(a); however,
for σ = 1.2, Fig. 5(b), a new domain forms under the PFM tip, giving rise to a large induced dis-
placement. At location 2, we see that the response is much simpler and the polarization primarily
only changes in magnitude, Figs. 5(c) and 5(d). Therefore, not only is the domain wall signature
more complex than the usual tanh(·) solution in the bulk, it is also sensitive to the magnitude of
the applied voltage even in regimes that are nominally completely linear.

5 PFM Signature of Closure Domains

We next examine PFM scanning of the surface of a specimen with closure domains. Closure do-
mains form at free surfaces if the bound surface charge is not compensated [26, 34]. The initial
domain pattern and the direction of PFM tip motion is shown in Fig. 6. The domain pattern is a
combination of both a and c domains that minimizes surface bound charge and is compatible in
the interior. a domains form near the surface to minimize the electrostatic energy from the surface
charge p · n. Beneath this, c+ and c− domains exist and are separated by 180◦ domain walls.

Fig. 7 compares the induced displacements for various σ as the PFM scans the specimen. Because
the a domain dominates the surface, the displacements are small except for location 1. At location
1, the electric field from the tip causes an increase in size of the existing c− domain, Figs. 8(a) and
8(b). Thus, the displacement is large at location 1 compared with the other locations, and increases
with σ. Figs. 8(c), 8(e), 8(d) and 8(f) compare the domain patterns at locations 2 and 3 for different
σ. When σ = 0.4, the polarization rotates a little without any new domains nucleating. When
σ = 1.2 however, new c− domains nucleate. However, since the tip is above a large a domain, the
displacements are relatively small for both locations 2 and 3.
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6 PFM Signature of Closure Domains with Surface Modulation

We next examine PFM scanning above the surface of closure domains with surface modulation.
Closure domain patterns with surface modulation have been modeled by phase-field simulation
without any surface charge compensation [34]. The domain patterns and the direction of tip motion
is shown in Fig. 9.

Fig. 10 compares the displacements for various σ as the PFM scans the specimen. Similar to
Section 5, the displacement is small except for locations 1 and 5. For the same reason that the
tip field promotes the enlargement of the c− domain, the PFM induced displacement is large in
location 1 and 5. Further, as in the flat surface case, the displacement increases with σ at location
1. However, location 3 shows a c− domain nucleated due to the tip above the original c+ domain
inside the specimen, resulting in a relatively larger response compared to the flat surface case, Fig.
10. The domain patterns at locations 1, 3, and 5 are shown in Fig. 11. The asymmetry due to the
surface modulation provides different closure domain patterns at different locations, such as at the
peak and the valley [34]. This is reflected in the asymmetry of Fig. 10 around location 3. We also
see that the displacement is positive for σ = 0.4 but becomes negative for σ = 0.8 and σ = 1.2 at
location 3.

7 Effect of Surface Charge Compensation

We now examine the effect of surface charge compensation on PFM scanning signatures above clo-
sure domains. There are different proposed mechanisms for charge screening, e.g. [37, 38], but it is
not completely clear whether screening is intrinsic or extrinsic. However, different charge compen-
sation mechanisms can cause completely different domain patterns at the free surface. Therefore,
we use three distinct compensation models and examine the PFM signature of each of these.

The three surface compensation models are: (i) complete compensation from a layer of charges in-
side the specimen; (ii) complete charge compensation from a layer of charges outside the specimen;
and (iii) partial charge compensation from outside the specimen. In case (i), the compensation is
to model the semiconductor nature of ferroelectrics [38] and the free charges inside the material
are likely to move to the surface under the electric field generated from ferroelectric closure do-
main patterns. Cases (ii) and (iii) correspond to compensation by charged species from the ambient
surroundings [37].

In (i), we set the total compensating charge to be equal to the bound surface charge p · n, and the
charges are uniformly distributed over a layer extending from the surface to 50nm below the surface.
This results in the polarization near the surface reducing in magnitude and forming a depletion-like
layer near the surface, shown in Fig. 12(a). In (ii), we set the total compensating charge to be equal
to the bound surface charge p · n, but the charges are uniformly distributed over a layer extending
from the surface to 5nm above the surface. This results in distinct c+ and c− domains, shown in
Fig. 12(b). In (iii), we set the total compensating charge to be equal to 0.4p · n, distributed as
in (ii). Fig. 12(c) shows a domain pattern between complete closure and case (ii). In each case,
as the tip field is applied, the compensating charge is held fixed at the original values even as the
polarization at the free surface evolves in response to the applied field. This is reasonable because
space charge transport is typically much slower than the PFM cycling frequency.
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The tip displacement and tilt are shown in Fig. 13 for the 3 cases. The displacement curves almost
coincide in cases (i) and (iii), though the domain patterns at the surface are completely different
in these cases. However, model (ii) has much larger induced displacements at all points except
when the tip is directly above the 180◦ domain wall. When the tip is directly above the domain
wall, all models show almost no piezoresponse. This can be expected because the displacements
result primarily from the normal component of polarization at the surface due to the d33 effect. The
domain patterns for each model are shown in Figs. 14, 15 and 16 for various tip locations. At
location 1, the domain patterns in Fig. 15(a) for model (ii) indicate a larger displacement compared
to Figs. 14(a) and 16(a) for models (i) and (iii) respectively. On the other hand, at location 4, the
induced c− domain on top of the original c+ domain in Figs. 14(c) and 16(c) results in a smaller
induced negative displacement than Fig.15(c) for similar reasons to those described in Section. 5.

Physically, the reasons for the difference can be summarized thus: in model (i) with compensation
in the interior, the response is small because the compensation at the surface reduces the magnitude
of the polarization; in model (iii) with partial compensation in the exterior, the response is small
because a domains dominate; and in model (ii) with complete compensation in the exterior, the
response is large. Hence, though the physical mechanisms behind models (i) and (ii), and the
resulting closure domain patterns, are very different, they show similar PFM signatures though for
different reasons.

Fig. 13 also shows the tip tilt as a function of position. As expected there is not much tilting
directly above the c± domains, but we can see a clear signature of the domain wall. There is
extremely good qualitative agreement with corresponding experiments in [13], where they present
PFM tilt measurements of 180◦ walls in lithium niobate. Given that we are modeling barium
titanate, quantitative agreement is not expected. A particular feature that stands out is that in the
partially compensated case, model (iii), the a-domains play a significant role between locations 3
and 4, and cause the tilt angle to change sign from that expected in models (i) and (ii) with no
a-domains. Our calculations of tip displacement profile near the domain wall also match very well
with these experiments. In addition, the profiles also match well with simpler analytical approaches
[23], however, an important advantage is that we can directly examine the domain pattern as it is
influenced by the applied field, Figs. 14, 15 and 16.

8 Conclusion

We have presented a phase-field method to simulate the PFM signatures of various complex do-
main patterns. The method relies on a consistent use of a phase-field model as the only physical
input, combined with a real-space numerical technique based on boundary elements to account
accurately and efficiently for the external stray fields. This enables us to consider the complex ge-
ometry corresponding to an electric field applied through a PFM tip located outside the ferroelectric
specimen. Our method accounts for the tip-specimen interactions through the stray fields, while
simultaneously and consistently finding the induced domain patterns.

We apply the method to a number of situations of current interest to the use of PFM: (1) the effect of
crystal lattice orientation on the induced tip displacement and rotation; (2) PFM scanning of a 90-
degree domain wall that emerges at a free surface; (3) the effect of closure domain microstructure
on PFM response; (4) the effect of surface modulations on PFM response; and (5) the effect of

8



Real-Space Phase-Field Simulation of Piezoresponse Force Microscopy Accounting for Stray Electric Fields Lun Yang and Kaushik Dayal

surface charge compensation on PFM response.

In (1), we calculate the induced tip displacement and rotation for various angles of crystal lattice
orientation, potentially providing a quantitative tool for deducing polarizations other than the ex-
treme a and c domains. In (2), we find that the signature of a 90◦ domain wall is both asymmetric
as well as sensitive to applied field strength. In (3), we examine the spatial characteristics of the
signature of a complex closure domain pattern. In (4), we calculate the differences from (3) if the
free surface is not flat but instead spatially modulated. Finally, in (5), we examine the effect of 3
different models of charge compensation on the PFM signature of a closure domain. One model
corresponding to intrinsic compensation, and the other two corresponding to partial and complete
extrinsic compensation respectively. We find that though the physical mechanisms and the do-
main patterns of intrinsic compensation and partial extrinsic compensation are very different, the
resulting PFM signatures are similar.
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Figures

Figure 1: Domain discretization and boundary conditions.

(a) Induced displacement (b) Induced angle

Figure 2: Induced displacement and angle for a single domain as a function of crystal lattice orientation θ.
The displacement and angle correspond to the distortion of the sample surface directly beneath the PFM tip.
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Figure 3: A 90◦ domain wall. The arrow shows the direction of PFM movement, and locations 1 and 2 are
examined in detail.

(a) Tip induced displacement (b) Tip induced angle

Figure 4: Induced displacement and angle for a single 90◦ domain wall for various applied field amplitude
σ. It is important to note that these and following figures are not plots of the shape of the free surface, but
plots of displacement directly beneath the tip for various tip positions.
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(a) σ = 0.4 (b) σ = 1.2

(c) σ = 0.4 (d) σ = 1.2

Figure 5: Domain patterns for different tip locations (shown by the triangle) and applied field amplitudes σ.

Figure 6: Closure domain patterns. Locations 1, 2, 3, 4 are examined in detail.
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Figure 7: Induced displacement for closure domains under various applied field strengths σ.
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(a) σ = 0.4 (b) σ = 1.2

(c) σ = 0.4 (d) σ = 1.2

(e) σ = 0.4 (f) σ = 1.2

Figure 8: Domain patterns for closure domains under various applied field strengths σ.
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Figure 9: Closure domain patterns at a modulated free surface. Locations 1, 2, 3, 4, 5 will be examined in
detail.

Figure 10: Induced displacement for closure domains with surface modulation with various applied field
strengths σ.
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(a) σ = 0.4 (b) σ = 1.2

(c) σ = 0.4 (d) σ = 1.2

(e) σ = 0.4 (f) σ = 1.2

Figure 11: Domain patterns under the PFM tip for closure domains with surface modulation for different σ.

18



Real-Space Phase-Field Simulation of Piezoresponse Force Microscopy Accounting for Stray Electric Fields Lun Yang and Kaushik Dayal

(a)

(b)

(c)

Figure 12: Closure domain patterns with different surface charge compensations. (a) Model (i): complete
surface charge compensation in the interior of the specimen. (b) Model (ii): complete surface charge com-
pensation in the exterior of the specimen (c) Model (iii): partial surface charge compensation in the exterior
of the specimen.
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(a) (b)

Figure 13: Induced displacements and slopes for the different surface charge compensation models.

(a) Tip position 1 (b) Tip position 2

(c) Tip position 4

Figure 14: Domain patterns with surface charge compensation using model (i) for different PFM tip posi-
tions.
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(a) Tip position 1 (b) Tip position 2

(c) Tip position 4

Figure 15: Domain patterns with surface charge compensation using model (ii) for different PFM tip posi-
tions.
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(a) Tip position 1 (b) Tip position 2

(c) Tip position 4

Figure 16: Domain patterns with surface charge compensation using model (iii) for different PFM tip
positions.
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