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The effect of surface energy on the yield strength of nanoporous materials is investigated 

in this letter. The conventional micromechanics method is extended to consider the surface 

effect and expression of effective yield surface of nanoporous materials in complex stress 

state is derived. It is seen that surface energy has significant effect on the yield strength of 

nanoporous materials, and the smaller the nanosized void, the more significant the effect 

of surface energy. The yield strength of nanoporous materials has size-dependent effect. 
 

Investigation of the mechanical properties of solids with nanosized inhomogeneities 

(e.g. nanoparticle composites1, nanoporous materials2, etc.) is of great interest to materials 

science, solid state physics, nanotechnology, etc. Due to the increased ratio of surface to 

bulk volume, the effect of surface energy becomes significant at nanoscale and is 

attributed to the size-dependent properties of nanosized elements3, 4. Recently, the effect of 

surface energy on the elastic behavior of solids is extensively investigated, such as the 

elastic properties of nanoparticles, wires and films5, the elastic deformation near 

nanosized spherical and elliptical inhomogeneities6, 7, and the effective moduli of solids 

with nanoinclusions8, 9, etc. 

Until now, little attention is devoted to the surface effect on the elastic limit i.e. the 

yield strength of nanomaterials. In what follows, according to the usual practice in 

engineering, we name the elastic limit as yield strength. Yield strength is an important 

parameter of solids. Even for a material or a structure with high Young’s modulus, its 

application may be limited by its yield strength 10. If the applied stress is less than the 
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yield strength of materials, the deformation is elastic, otherwise, an irrecoverable plastic 

deformation and/or failure will occur. Up to now, the effect of surface energy on the yield 

strength of solids with nanosized inhomogeneities is not yet clear. Therefore, it is 

imperative to investigate the effect of surface energy on the yield strength of solids with 

nanosized inhomogeneities.  

We consider the case that the spherical nanovoids are identical in size and uniform 

distributed in the matrix. The nanoporous material as a whole is isotropic. The yield of 

porous material is because of the local equivalent stress in the matrix reaching its yield 

stress. When applying arbitrary load to the porous material, our aim is to find out the local 

equivalent stress in the matrix and judge if it reaches the critical yield stress. All the 

macroscopic stresses resulting in the local yield build up a surface in the stress space i.e. 

the yield surface or the yield locus of the porous material. In what follows we adopt the 

field fluctuation method proposed by Qiu and Weng 11 and Hu 12 to obtain the yield 

surface of the nanoporous material.  

To consider the surface energy of nanosized voids, the surface elasticity theory 

presented by Gurtin et al.13 is adopted, which is experimentally verified to agree well with 

directly atomic simulation 4, 14, 15. Here, we neglect the influence of residual stress field on 

the yield strength and only consider the influence of surface elasticity with an isotropic 

property. Its two-dimensional shear modulus and compression modulus are sµ  and sk  

respectively. In the matrix, the classical elasticity theory still holds. The shear modulus 

and bulk modulus of matrix are µ  and k  respectively. For a representative volume 

element (RVE) of nanoporous materials, the macroscopic stress Σ and strain E  can be 

calculated as 

( )1 d
V

S
V

Σ σ N x
∂

= ⋅ ⊗∫                                              (1) 

( )1 d
2 V

S
V

Ε N u u N
∂

= ⊗ + ⊗∫                                         (2) 

where σ  and u  are the microscopic stress and displacement, respectively, N  the unit 

normal vector on RVE surface, x  the position vector, and V and S the volume and 

surface area of the RVE, respectively. In this letter, all the bold characters are tensors or 
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vectors. 

From the above definitions of macroscopic stress and strain, we obtained the so-called 

Hill condition for the material with surface/interface energy, which is the basis of our 

analysis. For the nanoporous materials, the corresponding Hill condition is as follows: 

0

0
1 1

0

: : : dsV

ff S
V

Σ E σ ε τ ε
∂

= + ∫                                    (3) 

where τ  and sε  are the surface stress and strain, respectively, 1f  the volume fraction 

of matrix, 1⋅  volume average over the matrix, 0f  and 0V  the volume fraction and 

volume of the voids, respectively. Here, 1 0 1f f+ = . It should be pointed out that σ  and 

ε , τ  and sε  in Eq. (5) are not necessarily related by the constitutive equation. In fact, 

Hill’s condition is the principle of virtue work for the RVE. If σ  and ε  are the real 

stress and strain fields related by constitutive relation, Hill’s condition is the energy 

balance equation 

( )
0

0
1 1

0

2 : : : : : : dsV

fU f S
V

Σ Σ M Σ σ m σ τ m τ
∂

= = + ∫                   (4) 

where U is the stress energy of the RVE, M  and m  the macroscopic and microscopic 

compliance tensors of nanoporous material and matrix, respectively, sm  the surface 

compliance tensor.  

According to the field fluctuation method 12, for a constant macroscopic load applied 

to the RVE, the variation of microscopic compliance tensor δ m will result in the 

variation of the microscopic stresses δσ  and δ τ , and then the variation of average 

stored energy Uδ  and the macroscopic compliance tensor δ M  of the nanoporous 

material, then we have 

0
1 11 1

0

: : : : 2 : : 2 : : d
i

sV

ff f S
V

δ δ δ δ
∂

= + + ∫Σ M Σ σ m σ σ m σ τ m τ            (5) 

The last two terms at the right-hand side of Eq. (5) correspond to the virtue work of the 

RVE under fixed boundary condition and the variation of macroscopic stress is equal to 

zero. Considering Eq.(3), the last two terms are equal to zero. Then we obtain 
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1 1: : : :fδ δ=Σ M Σ σ m σ                                           (6) 

Let only shear modulus of matrix undergoes a small variation, we then obtain from Eq. (6) 

' ' ' ' 2
1 1

1 1 1
2 2ij ij ij ij mf

G K
σ σ δ Σ Σ δ Σ δ

µ
     = +     

    
                           (7) 

where '
ij ij m ijσ σ σ δ= −  is the microscopic deviator stress tensor with 1

3 trm ijσ σ=  being 

the microscopic hydrostatic stress in the matrix, '
ij ij m ijΣ Σ Σ δ= −  and 1

3 trm ijΣ Σ=  the 

macroscopic deviator stress tensor and hydrostatic stress of the nanoporous material, 

respectively, µ  the shear modulus of the matrix, and G  and K  the macroscopic shear 

modulus and bulk modulus, respectively. Einstein’s summation convention is adopted all 

repeated indices and i,j=1, 2, 3, respectively. Form Eq.(12) we obtain the relationship 

between the macroscopic and microscopic stresses, 
2 2

' ' ' ' 2
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µ µ

σ σ Σ Σ Σ
µ µ

 ∂ ∂    = +    ∂ ∂     
                        (8) 

It should be pointed out that there is essentially difference between eqs.(6)-(8) and those 

of Hu 12 although they have the same forms apparently, because the surface effect has 

been included in the effective moduli G  and K  at the present work. 

From Eq.(8), we know that once the macroscopic effective moduli K  and G  

including the surface/interface effect are obtained, the local stress in the matrix can be 

obtained. There are several methods to obtain the effective moduli. Here we use the 

results of Duan et al.8. The expressions of effective moduli are very complex and will not 

be presented here. In most cases, for porous materials, the bulk deformation of matrix is 

neglectable compared with the shear deformation. To simplify the problem considered 

here, we neglect the bulk deformation of matrix i.e. k → +∞ . We obtain the following 

simplified expressions of the effective moduli of nanoporous materials, 

0
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where r
s sk k Rµ=  and r

s s Rµ µ µ= , R  is the radius of voids.  

Substituting Eqs (9) and (10) into Eq.(8), we obtain the effective Mises stress 
2 2

2
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e A B
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σ = +                                                 (11) 

where 
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1 6 6 4 2 ,r r r r
s s s sk kς µ µ= + + +  

( )2 3 2 2 ,r r r r
s s s sk kς µ µ= − + − +  

( ) ( )2 2

3 6 2 1 ,r r
s skς µ= + −  

( ) ( ) ( )2 2
4 4 6 2 69 30 14 ,r r r r r r r

s s s s s s sk kς µ µ µ µ µ= − − + + + −  

( )2

5 4 2 3 3 .r r r r
s s s sk kς µ µ= − + + +  

Here the matrix obeys Mises yield criterion, i.e. when eσ = 0yσ  with 0yσ  being the 

yield strengths of matix, the nanoporous material yields. Thus, the macroscopic yield 

condition of nanoporous materials can be expressed as 

( )
2 2

2 2 2 2
0 0

, 1 0e m
e m

y y

F
A B

Σ Σ
Σ Σ

σ σ
= + − =                                    (12) 

If ( ), 0e mF Σ Σ < , deformation of nanoporous material is elastic. If ( ), 0e mF Σ Σ > , 

irrecoverable plastic deformation and yield failure of the material occurs. In the case of 

uniaxial stress state, when applying the macroscopic stress Σ , the macroscopic Mises 

stress eΣ Σ= and the macroscopic hydrostatic stress 1 3mΣ Σ= . Then, from Eq. (12) we 

obtain the uniaxial yield strength 0yΣ  of nanoporous material 
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It is seen from Eqs. (12) and (13) that the macroscopic yield strength of nanoporous 

material is affected by the surface energy through parameters r
sk and r

sµ , which are 

size-dependent. If 0,r
sk =  0r

sµ = , Eqs (12) and (13) reduce to the yield surface and 

uniaixal yield strength of porous material without surface effect, respectively. 

In what follows, examples of the effect of surface energy on the yield surface in 

complex stress state and the uniaxial yield strength of nanoporous aluminum are presented, 

respectively. The shear modulus µ  and yield strength 0yσ  of bulk aluminum are 23GPa 

and 250MPa, respectively, which are obtained from14. The volume fraction 0f  of 

nanosized voids is assumed to be 10%. We consider two cases of material constants: case 

1, 12.932sk = N/m and 0.3755sµ = − N/m; case 2, 5.457sk = − N/m and 

6.2178sµ = − N/m. 
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Fig.1. Effect of surface energy on the uniaxial yield strength of nanoporous 

aluminum with void fraction 0 10%f = . 

Effect of surface energy on the uniaxial yield strength of the nanoporous aluminum is 
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shown in Fig.1. It is readily seen that surface energy has significant effect on the yield 

strength of nanoporous materials. For case 1, the nanoporous material has higher value of 

yield strength than conventional porous material without surface effect, and the yield 

strength decreases with the increase of the radius of void, particularly when R <10nm. 

For case 2, the nanoporous material has lower value of yield strength than conventional 

porous material without surface effect, and the yield strength increases quickly with 

increase of the radius of void, particularly when R <10nm. This indicates that the yield 

strength of nanoporous materials is size-dependent. 

Effect of surface energy on the yield surface of the nanoporous aluminum in complex 

stress state is shown in Fig.2. For case 1, nanoporous material has larger yield surface than 

the conventional porous material without surface effect, and the smaller the radius of 

nanosized void, the larger the yield surface, particularly when R <10nm. For case 2, the 

yield surface of nanoporous material is smaller than that of conventional porous material 

without surface effect. With the decrease of void radius, the yield surface becomes more 

and more small. The surface effect is significant when R <10nm and not so clear when 

R >10nm. For both cases, the yield surface of nanoporous material finally approaches to 

that of conventional porous material with the increase of void radius.  
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Fig.2. Effect of surface energy on the effective yield surface of nanoporous aluminum 

with void fraction 0 10%f = . 
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In summary, we have extended the conventional micromechanics method14, 15 to 

consider the effect of surface energy. The expressions of macroscopic yield surface of 

nanoporous materials with surface effect are obtained. It can be concluded that the surface 

energy has significant effect on the yield strength or elastic limit of nanoporous materials 

when the radius of nanosized void is less than 10nm, and the surface effect becomes 

neglectable when the radius of nanosized void is greater than 10 nm. The yield strength of 

nanoporous materials has size-dependent effect. 
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Appendix： 

The surface stress τ  and surface strain sε  satisfies a linear constitutive equation 

( ) ( )22 trs s
s sµ λτ ε ε I= +  (1) 

Where sµ  and sλ  are the modulus of void surface, ( )2I  is the second-order unit tensor 

in two-dimensional space. Here all the bold letter are tensor or vector. 

The equilibrium and constitutive equations of the matrix is as follows  

0∇ ⋅ =σ                          (2) 

( )1
2

ε u u= ∇ ⊗ + ⊗ ∇                (3) 

( ) ( )3tr 2λ µσ ε I ε= +                  (4) 

where λ and µ  are modulus of matrix, ( )3I  is the second-order unit tensor in 

three-dimensional space. u , ε  and σ  is the displacement, strain tensor and stress 

tensor of matrix. 

The mechanical equilibrium of the void surface satisfies the generalized Young-Laplace 

equations for solids 

[ ]
[ ]

:

s

n σ n τ κ

P σ n τ

⋅ ⋅ = −

⋅ ⋅ = −∇ ⋅
                         (5) 

where ( )3P I n n= − ⊗ , n  is the unit normal vector on the void surface which positive 

direction is from the void to the matrix.  s τ∇ ⋅  is the surface divergence of the surface 

stress τ  and κ  is the curvature tensor . [ ]σ  is the stress jump across the surface from 

the void to the matrix. 
 


