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Introduction
Saint-Venant’s Principle in elasticity (see [1,2])  has its over 100 year’s history. Boussinesq [3] and Love [4] announced general statements of Saint-Venant’s Principe. The early and important researches contributed to the principle are the articles [3-9]. Zanaboni “proved” a theorem [7]，trying to concern Saint-Venant’s Principle, but in the present paper we will prove that Zanaboni’s theorem is false.
1. Zanaboni Theorem and Zanaboni’s Proof

  In 1937, Zanaboni published a theorem dealing with energy decay of bodies of general shape [7]. The result played an influential role in the history  of research on Saint-Venant’s Principle, restoring confidence in formulating the principle (see [10] ). The theorem is described as follows (see [7,11] ): 

Let an elastic body of general shape be loaded in a small sphere 
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   by 
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 , an arbitrary system of self-equilibrated forces, otherwise the body is free. Let 
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 and 
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 be two arbitrary nonintersecting cross sections outside of 
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. Suppose that the body is cut into two parts at 
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 . The system of surface tractions acting on the surface 
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,  and  the total strain energy that would be induced in the two parts,  if they were loaded by 
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alone, is denoted by 
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for the case of the surface
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which would also imaginarily cut the body into two pieces (see Fig.1 ). Then, according to Zanaboni, 
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The proof of Zanaboni Theorem is (see [7] and pp 300-303 of [11]) :   

  Assume that the stresses in the enlarged body 
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 are constructed by the following stages (see Fig.2 ). First， 
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 is loaded by  
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. Second， each of the separate surfaces 
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 is loaded by a system of surface tractions 
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.  Suppose that 
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 is distributed in such a way that the deformed surfaces 
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 fit each other precisely, so that displacements and stresses are continuous across the joint of 
[image: image28.wmf]1

S

 and 
[image: image29.wmf]2

S

. Then 
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 are brought together and joined with 
[image: image32.wmf]S

 as an interface. The effect is the same if 
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  were linked in the unloaded state and then the combined body 
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.  Thus
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where 
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 is the strain energy stored in  
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,  
[image: image40.wmf]1

U

 is the work done by 
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 in the first stage,  
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 due to the displacements caused by  
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 in the second stage. 

  Now the minimum complementary energy theorem is used. All the actual forces  
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 are considered as varied by the ratio 
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, then the work  
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 respectively because the load and the deformation will be varied by a factor  
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 is not varied and the deformation is varied by a factor 
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will be changed to  
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The virtual increment of  
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For 
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to be a minimum, it is required from (1.4) that
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Substituting (1.5) into (1.2), he obtains
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By repeated use of (1.6) for 
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(see Fig.1), then
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Equating（1.7） with（1.8），he obtains
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It is from（1.9）that 

              
[image: image80.wmf])

3

2

(

'

1

'

+

+

R

R

U

U


[image: image81.wmf]>


[image: image82.wmf]3

'

'

)

2

1

(

'

'

R

R

U

U

+

+

                      （1.10）

because 
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 are essentially positive quantities . Eq.(1.10) is Eq.(1.1), on

writing 
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, etc. And Eq.(1.1) is proved.
However, Theorem (1.1) is wrong. Our argument  is as follows:
2. Zanaboni Theorem Is Not True 

2.1 In fact,   
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considering the continuity of tractions and displacements on 
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 . The distributions of the tractions of 
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 on the two sides of 
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 are oppositely directed, but the displacements on the two sides are identical, because of continuity, and so the work done by tractions on one side will be  negative  to the work done by tractions on the other side, and the algebraic sum of the two works will  vanish. And so (1.1) is not true. 

2.2 If (1.1) were correct and (2.1) were wrong, one could accumulate strain energy simply by increasing the “imaginary” cuts sectioning the elastic body. That would violate the law of conservation of energy because energy would be created from nothing only by imagination according to Zanaboni’s Theorem. 

3. The Proof of Zanaboni Theorem is Wrong
  Essentially, the invalidity of Zanaboni’s Theorem is obvious and needless to prove, but we have to discuss the problem of its proof  because Zanaboni “proved” it . 
 3.1 From the way of construction of the body 
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are the parts of the boundaries of 
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 for joining, or the opposite sides of the interface 
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 inside  the body 
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 . In the proof of Zanaboni, he treats  
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 in the latter way because stress-strain relation which is established inside elastic bodies has been used for the argument , that is, when 
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 is considered as varied by the ratio 
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,   the deformation is considered as varied by a factor  
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  Now we argue that when 
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are the opposite sides of the interface 
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 inside the body 
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, we will have      
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because of continuity of stress and displacement. Then (2.1) instead of (1.1) will be deduced from (3.1) . Thus prooving is finished or unnecessary. 
  3.2 In the proof of Zanaboni, a constraint condition that 
[image: image109.wmf]1

R

U

 and  
[image: image110.wmf]2

R

U

 are essentially positive quantities is suggested , which means 
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 We argue, however, that the suggestion that is in contradiction with the continuity equation (3.1) is invalid. From a wrong constraint condition, never will any reasonable theorem  come. 

3.3 The next error of Zanaboni’s proof is the confusion between energy and work. In fact, Eq. (1.2) should be 
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and Eq. (1.6) should be
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And then the use of (3.4) should result in (see Fig.1)
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Then Zanaboni’s theorem, which would be
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(see Eq.(1.1)), is not deducible from (3.4) and the two equations of (3.5) because of          
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4. Our Proof in This Paper 

To deal with Zanaboni’s problem by complementary energy theorem , our revised proof in the present paper should be :

Considering 
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, all the  forces  
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  respectively because only the  loads  will be varied by a factor  
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 respectively and the displacements on 
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 is fixed  and also the variations of deformation are forbidden.  Hence,  from the  complementary energy theorem 
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comes 
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  According to （4.2），if and only if    
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is satisfied, then                   
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Putting（4.3）into（1.2），we have the stationary value of the energy
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Equation（4.5）is obviously different from（1.6）which is equivalent to . 
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by using (1.5).
   We emphasize the equivalence or identity of  the condition of joining (4.3) and the continuity equation (3.1)，which is consistent with the way of the construction of the body  that 
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 for joining, and the opposite sides of the interface 
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 inside  the body 
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 as well .
5. Discussion 
5.1 The constraint condition suggested in our proof in Sec.4 is reasonable and tested by the the equivalence or identity of  the condition of joining (4.3) and the continuity equation (3.1). 
5.2 In Zanaboni’s proof 
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where 
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   Using the complementary energy theorem for（5.1）and supposing 
[image: image156.wmf]R

 to be varied by the ratio 
[image: image157.wmf])

1

(

:

1

e

+

, we obtain 

                    
[image: image158.wmf]0

2

1

2

1

=

-

-

-

+

RP

R

R

U

U

U

U

e

e

e

d

 .             (5.2) 

And the condition of stationary value of  
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according to (5.2). Putting（5.3） into （5.1）, the energy in the combined body 
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which is identical with（4.5）.  

   From the analysis above we realize that 
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  make contribution  together to the work, then to the energy stored in 
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