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Abstract. The criteria in [4] (Cermelli and Gurtin, 2001, J. Mech. Phys. Solids, 49, 1539-1568) .
for choosing a geometric dislocation tensor in finite plasticity are reconsidered. It is shown that
physically reasonable alternate criteria could just as well be put forward to select other measures;
overall, the emphasis should be on the connections between various physically meaningful meas-
ures as is customary in continuern mechanics and geometry, rather than or criteria to select cne
or another specific measure. A more important question is kow the geometric dislocation tensor
should enter a continuum theory and it is shown that the inclusion of the dislocation density tensor
in the specific free energy function in addition to the elastic distortion tensor is not consistent with
the free energy content of a body as predicated by classical dislocation theory. Even in the case
when the specific free energy function is meant to represent some spatial average of the actual mi-
croscopic free energy content of the body, a dependence on the average dislocation density tensor
cannot be adequate.
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1 Is a Unique Geometric Dislocation Tensor Necessary?

With regard to the question of characterizing measures of dislocation/Burgers vec-
tor density (G} appropriate for a continuum theory, Cermelli and Gurtin (C&G) [4]
indicate that “the problem is not the absence of such a field, but rather the plethora
of fields that have appeared in the literature.” They then commit themselves to the
task of showing that “there is but a single measure of geometrically necessary dis-
locations consistent with physically motivated requirements.” Thus, the entire justi-
fication of this choice seems to rest on these “physically metivated requirements.”

‘We proceed now to explore these requirements and provide alternative points of
view to each of these requirements:

(C&G) (i) ~ G should measure the local Burgers vector in the microstructural con-
figuration, per unit area in that configuration;
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. Whil‘e in itself this is a reasonable physical requirement for the use of some meas-
ure, it appears unreasonable to use this to rule out other measures of dislocation
density. For instance, one could as well stipulate that the intended tensor should
measure local, undeformed Burgers vector, per unit area of the current config-
uration (this also being the only physically available configuration for measure-
me.nts). Under this definition, the C&G measure would not qualify but the two-
point tensor field [2, 9]

—curl B¢V, (cunl Y = e jma (1)
(with the ‘curl’ operation being with respect to the current configuration and
a transpose of the C&G definition and the minus sign relates to the definition
of the ‘true’ Burgers vector in the FS convention — see [9]) would, but such
stipulation is, of course, vacuous in spirit for the student of continuurm n’lechanics
Tf’ dta\lv an analogy, this is not unlike the situation with the Cauchy and thP;
First Piola—Kirchhoff siress tensors, the latter with respect to some (arbitrary)
reference configuration. The former measures forces acting on surface elemen)t/s
of the current configuration, measured per unit area of the same area elements;
the latter measures the same forces, measured pet unit area of the image aree;
element in the reference configuration. Both have clear physical meanings and
preference of one or the other based solely on these definitions is arbitrary.

(C&E) (ii) — G should, at any point, be expressible in terms of the field F# in a

nelghb.or}?ood of the point, since, by fiat, F” characterizes the defect structure near
the point in question;

. .It may be argued that there is no physically distinguished reference configuration
in the context of plasticity; in fact, as is well known, classical, finite deforma-
tlon,plasticity theory, whether of the single crystal variety or the ‘microstructure-
less’ type (e.g. J-2 plasticity theory) can all be formulated without reference to
the tensor F? under the additive strain rate decomposition (it can be shown that
el'ement.ary averaging procedures applied to a finite deformation field theory of
dislocation mechanics consistent with classical dislocation theory [2] naturally
lead -to the additive decomposition of the velocity gradient). Thus this second
requirement of C&G may be argued to be of dubious physical origi;}.

(C&G) (iii} - G should be invariant under superposed compatible elastic deforma-
tions and also under compatible local changes in reference configuration, since these

- being compatible — shouald not result in an intrinsic change in the distribution of
GNDs near any point,

. L1ke.(i), the invariance under superposed compatible elastic deformations is a
physically reasonable requirement, but not one that can be used to rule out other
measures of dislocation density. Being a measure of physical quantities per unit
area, it stands to reason that if this area changes under compatible, elastic deform-
ation, the per unit area, density measure should change. Considler, for example,

A Counterpoint to Cermelli and Gurtin’s Criteria 101

three dislocation lines threading an area patch (at the minimum scale of resolu-
tion) in the current configuration. Roughty speaking, if under further deformation
this area patch is stretched but it still contains only those three dislocation lines
that do not move with respect to the material (i.e. elastic deformation), then the
Burgers vector content per unit area of the patch should change; what should
remain invariant is the local (unstretched) Burgers vector content of the patch,
obtained by integrating the density measure over the area patch, as the patch de-
forms. The measure o = —curlFe ! satisfies this requirement and thus would
be a good enough measure of dislocation deasity under the physical definition
that it be the Burgers vector density, measured per unit area of the current config-
uration, just as the tensof G = det(F“’)(curlFe_l)Fe*T is, under the definition
of C&G.
In fact, the change in the o field in arbitrary material area patches under super-
posed elastic motions of the current configuration for which no dislocations are
qucleated in, or transported into, the patches can be made precise. One only need
consider 3
— aonda=10 (2)
dt Al
for any deforming, but material, surface paich A () and the answer is obtained
by setting the appropriate convected rate [2, 5] to zero;

@vve+e—oll =0 = & = oLl —(divv)a. (3)

Here, a superposed dot represents a material time derivative, v represents the
material velocity, L the velocity gradient, and the result may be referred to as a
transport theorem for areas. Clearly, if one wished to elevate the measure o t0 be
a unique measure, one could easily adjust the definition of the required measure
to include the result (3) stipulating changes in & in superposed elastic motions {it
should be clear that a static condition corresponding to (3) is also easily derived
involving the deformation between two elastically related configurations).

As for frame-indifference, the tensor & being a kinematical quantity (as opposed to a
constitutive response function), its definition itself suggests how it should transform
under a superposed rigid body motion and thus it trivially satisfies the rransforma-
tions expected of it under superposed rigid motions.

In summary, it is our opinion that while physically reasonable criteria can always
be specified o single out one measure of dislocation density or another, in essence,
such distinctions are superficial. In particular, the measure o = —curlF¢ 1 is an
equally physically—valid measure of Burgers vecior content as the G tensor of C&G,
as is the measure &* 1= Feo — alocal, elastically stretched Burgers vector pet unit
area measure in the current configuration — that arises naturally in thermodynamic
considerations leading to the definition of the finite deformation Peach—Koehler
force! [2]. Moreover, what is of fundamental importance is the non-vanishing ‘curl’

e —

| This energetic force {per unit volume) depends explicitly on the Cauchy stress in confrast the
object called by the same name in [6] that depends on the defect stress in that theory.
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of the inverse elastic tensor {or F? on the reference configuration, if one chooses to
work with this measure) characterizing the presence of defects in the neighborhood
of a point [3]. Knowing the elastic and plastic distortions, the relationships between
all the measures discussed by C&G are clearly established, and this is all that is
important at a kinematical level.

To draw an historical analogy, denying this fact would be, in essence, similar to
attributing fundamental importance to the discussion and controversy that plasticity
theory has seen in the past regarding the question of the choice of the ‘physic-
ally correct’ objective stress rate for posing rate-type constitutive equations for the
stress.?

2 Dependence of Stored Energy on the Dislocation Tensor; Is this
Necessary?

Field equations and a class of constitutive equations that allow the prediction of
stress fields of a prescribed dislocation density field (including individual disloca-
tions) on a given configuration are given by [1, 2, 9]:

curl F¢~! = —&
divT=0; T=TF). {4)

In this theory, that is consistent with classical dislocation theory, the tensor o plays
a fundamental role whereas under the C&G physical requirements it would be an
invalid measure.

It is also true that this theory (4), along with its counterpart for small deforma-
tions introduces a stored energy function that depends only on the elastic distortion
and no additional dependence on the dislocation density tensor is introduced. In
contrast, Gurtin's theory [6] {(and many other following works in the literature) de-
pends critically on the dependence of the stored energy function on the dislocation
tensor to produce non-classical effects.

Restricting the discussion to small deformations to make the essential point, it
is a well-known standard result (see, c.g., [7, sec. 4]) that the strain energy dens-
ity of a dislocation distribution {including individual discrete dislocations) depends
only on the elastic strain that results from the dislocation density distribution and
not on both the elastic strain and the dislocation density. Furthermore, this strain
energy density function corresponds to the linear elastic stress and strain fields of
the dislocation distribution involved, as the latter fields are understood in classical
dislocation theory (e.g., [8]). In what follows in this section, this result is illusirated

2 The important matter in this case is the determination of the physically correct rate response from
experiment or micromechanical theory which would naturally satisfy frame-indifference; once ac-
complished, it is a trivial matter to adjust this statement appropriately to pose it in terms of one
objective rate or another so that the rate response implied by the adjusted siatement is identical to
the mictomechanical/experimentally determined physically cortect rate response.
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in the context of standard procedures for solving boundary value problems n cot-
tinuum inelasticity theory.

Consider the following question: we are interested in determining the state of
internal stress and the strain energy in a linear elastic body of given geometry, for
a prescribed dislocation density field e, For definiteness, the prescribed dislocation
density field can be thought of as representing a screw dislocation along a straight
cylinder representing its core. While the main conclusion of this section applies at
all instants of time in the deformation of a body, it suffices to demonstrate the idea at
any one instant and we choose the initial instant for definiteness. Thus, the problem
may be thought of as determining the initial condition on the plastic distortion field
in a conventional elastoplasticity calculation, where the plastic distortion field, U”,
has to satisfy

curl U? = —a. (&)

Thus, we need to solve the equations
div [CU*] =0
U¢ + UP = gradu
curl U¢ = —curl U” = a, (6}

and since we are talking about initial conditions (for an elastoplasticity calculation),
the displacement u = 0 at the initial time so that ¢ = —UP at this time. Here, C is
the possibly anisotropic linear elastic moduli with major and minor symmetries and
U¥ is the elastic distortion. In classical elastoplasticity, (6) is appended with an evol-
ution equation for U? or its symmetric part. For this problem (6) at the initial time
when the displacement is known, we consider statically consistent traction boundary
conditions (possibly vanishing) to be specified. The paper of [9] shows that solving
these equations amounts to solving the problem of internal stress in classical disloca-
tion theory corresponding to the prescribed dislocation density field. The existence
of a non-trivial initial dislocation density distribution in the body is an eminently
physical statement; the associated possibility of a non-trivial, initial plastic distor-
tion in any theory where the fundamental relation (5) is active reflects the physical
fact that the instantaneous dislocation density distribution encodes information of
some portion of the past history of dislocation motion/nucleation in the body.

To solve the problem in the format of continuum inelasticity, we first note that
it can be shown that there is at most one solution to the problem of calculating the
initial distribution of stress, T = Ce?, where &€ is the symmetric part of V¢, Thus, as
long as we can solve (6) and the associated boundary conditions by any procedure,
the resulting solution would be the correct one. To find this solution, represent the
plastic distortion as a sum of a gradient of a vector field and a tensor field whose
‘curl’ does not vanish as

UP = —x +gradz {N

50 that
—curl U7 = o = curl y = «. €3]



104 A, Acharya
In order to solve for x in a well-posed manner, we append the equations

divy =90

xn =10 on boundary 9
to (8) to obtain a Poisson’s equation

divgrad y = —curle (1M

for the components of the tensor x with Dirichlet boundary conditions; this problem
may be solved by standard methods of potential theory.
With a solution for x in hand, one solves the equilibrium equation

div [—C gradz] = div[Cx] (11)

for the vector field z with Neumann boundary conditions inferred from the pre-
scribed traction boundary condition and the boundary values of the field x. This is
a standard problem in linear elasticity theory. The solution for grad z is unique, and
this is all that matters for the present purpose.

The fields gradz and yx in conjunction with (7) and u = 0 now deliver the solu-
tion to (6) and thus the unique elastic strain and stress fields corresponding to the
prescribed dislocation density field e, including arbitrary discrete dislocations in
finite, anisotropic, linear elastic bodies.

The corresponding elastic strain energy density distribution in the body, consist-
ent with the classical elastic theory of dislocations, is given by

- I
¥(e%) := E(C e%) e &% i= (—gradz -+ X)sym = Ugym (12
and, conseguently, an assumption of the form

¥ =9 () + ¥ (@) (13)

would be superfluous and physically inaccurate in this context where core effects
are not taken into account.

Of course, it may be argued that a continuum theory of the type proposed in
[6] is meant to be a model of dislocation plasticity at scales of resolution much
coarser than where every dislocation is well-resolved, so the appropriate form of
a stored energy function for such a situation becomes an issue. But even here, if
the coarse free energy function is meant to represent the spatially averaged free
energy content in a representative volume element for the coarse-scale model, then
an added dependence on the average dislocation density tensor cannot be adequate.
For it is well understood that for two different spatial distributions of microscopic
dislocation density a; and o within an averaging volume with identical averages
&1 = @y, the averaged free-energy content is, in general, different, i.e. ¥ % ¥,
where y represents the microscopic (specific) free energy. But a model that proposes
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1o account for the added strain energy of dislocations at the coarse-scale by a unique
functional dependence on &, say R (&), alone is bound to fail since the evaluation
of such a function for the two cases would have to be identical:

R(@) = R(@) but v # ¥r. (14
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