Modeling mixed-mode fracture propagation in 3D

Meng, C. and Pollard, D. D.

Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115 USA.

Copyright 2012 ARMA, American Rock Mechanics Association
This paper was prepared for presentation at the 46th US Rock Mechanics / Geomechanics Symposium held in Chicago, IL, USA, 24-27 June 2012.

This paper was selected for presentation at the symposium by an ARMA Technical Program Committee based on a technical and critical review of the paper by a minimum of two technical reviewers. The material, as presented, does not necessarily reflect any position of ARMA, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of ARMA is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgement of where and by whom the paper was presented.

ABSTRACT: A planar fracture when subjected to sufficient tensile and shear stresses will propagate off-plane, known as mixed-mode propagation. Predicting the fracture path relies on the propagation criteria. The criterion we present scales the propagation magnitude and direction with the near-tip tensile stress in form of vectors that originate from the fracture tip-line. Boundary element method (BEM) enables us to calculate the near-tip stress field of an arbitrary fracture. We feed the near-tip stress to the propagation criterion to determine the propagation vectors. We grow the BEM mesh by adding new tip-elements whose size and orientation are given by the propagation vectors. Then, we feed the new mesh back to BEM to calculate the new near-tip stress. By running BEM and the propagation criterion in a loop, we are able to model 3D fracture propagation. We use analytical Eshelby's solution that evaluates near-tip stress of an ellipsoidal fracture to validate the BEM results.

1. INTRODUCTION

A planar rock fracture under sufficient mixed-mode loading will develop into off-plane geometries, [1], [2], [3], [4] and [5]. Modeling such propagation poses great challenges because of the tip-line three dimensionality and resulting complex near-tip stress field.

Under mode I II loading, i.e. normal opening and shear in the direction of the tip-line advancing, the fracture front will kink from its initial propagation trajectory accommodating the local stress field, Figure 1A. If the shear is planar, the kink angle is then uniform and the tip-line integrity is preserved. Such kinked propagation can be modeled in 2D. [6], [7] and [8] determined the off-plane growth by linear elastic fracture mechanics (LEFM) theory. [9] and [10] used 2D Displacement Discontinuity Method (DDM) to model mode I II fracture propagation.

Under mode I III loading, i.e. normal opening and shear parallel to the tip-line, the fracture front will twist as in Fig. 1B and break into segments, [11]. Such off-plane growth has to be modeled in 3D. [5] modeled the twisted (echelon shaped) fracture propagation using a 3D phase field method where the surrounding media of the fracture had to be meshed. [12] modeled mixed mode fatigue crack growth using boundary element method (BEM), where only the fracture, as 3D surface, was meshed. However [12] did not allow the fracture tip-line to break into segment, so the complete mode III effect was not captured.

Figure 1 A, a mixed mode I II fracture starts to kink with angle \(\theta \) at \(n \)th step of propagation; B, a mixed mode I III fracture starts to twist and segment with angle \(\phi \) at \(n \)th step of propagation.

The numerical scheme we present handles both kinked and twisted (segmented) fracture growth with a unified...
approach. The numerical method used to compute the stress field in the vicinity of a fracture is 3D BEM, [13] and [14], based on angular dislocations, [15] and [16]. To validate the BEM results, we compare them to Eshelby’s solution, [17], [18] and [19], that analytically evaluates stress fields about an ellipsoidal fracture, [20] and [21]. Using the near-tip stresses as inputs, we apply fracture propagation criterion, [3] and [5], to predict the fracture front growth.

The modeled fracture propagates by adding new elements to the exiting fracture front [12]. Different than [12], we allow the tip-line to break into segments while twisting, which forms the echelon shaped new fracture tip.

2. NEAR-TIP STRESS EVALUATION: BEM VALIDATION USING ESHELBY’S SOLUTION

Boundary element method is implemented using the commercial software iBEM, formally known as Poly3D, [13] and [14]. iBEM solves for the displacement on each of the fracture faces and calculates the associated elastic fields (stress, strain and displacement) on some given observation grids. Eshelby’s solution is implemented using a Matlab™ code by [21]. Like the BEM it computes the elastic fields on given observation grids. We use a highly eccentric ellipsoid to emulate the flat geometry of an elliptical fracture. To compare the results, the BEM meshes the same ellipse.

2.1 Mode I near-tip stress comparisons

To compare the stress fields, we make cross-sectional observation grids cutting the fracture profile, Figure 2A. To compare the stress concentrations approaching the tip, we make circular observation grids around the tip, Figure 2B.

For an elliptical fracture a_y/a_x=0.5, we set a uni-axial tensile stress, σ_{zz}^\infty >0 and η=0 in Figure 3. The fracture is then under pure mode I loading.

We compare the normalized maximum tensile stress σ_{zz}/σ_{zz}^\infty produced by the BEM and Eshelby’s solution on the cross-section slice (x-o-z plane) that cuts the elliptical fracture in the middle. The comparison is given in Figure 4.

The comparison shows that BEM and Eshelby’s solution agree well. The stress concentrates near the fracture tips and reduces to zero on the fracture faces.

Figure 3 When remote tensile stress σ_{zz}^\infty rotates around y axis, the tip at ω=0 is in mixed mode I II; when stress σ_{zz}^\infty rotates around x axis by angle η, the tip at ω=0 is in mode I III.

Figure 2 A. An observation grid (dashed rectangle) cutting an ellipsoidal fracture on a cross-section (shadowed). B, a fracture cross-section (shadowed) with longitude angle ω and polar coordinates \((r,\beta)\) around the fracture tip at \(o\).
The BEM result has some scattered non-zero stress on the fracture faces behind the tip (x<a, y=z=0), whereas Eshelby's solution has zero stress on the faces.

Figure 5 Normalized maximum tensile stress by BEM (A) and by Eshelby's solution (B) under pure normal stress σ_{zz}∞ plotted about the tip at ω=0 on x-o-z plane.

Also, we compare the near-tip stress distributions on the polar coordinates (r,β) at longitude ω=0 and π/2 in Figure 6.

BEM has a higher order stress concentration than Eshelby's solution as r→0.

Both BEM and Eshelby's solution produce near-tip stress that has a bi-modal distribution in β for a given distance-to-tip r. The BEM result has some subtle changes at high β angle corresponding to the non-zero scatters on the fracture faces (see Figure 5A).
The stress magnitude is higher at $\omega=\pi/2$ ($x=0, y=0_a$) than at $\omega=0$ ($x=a_x, y=0$). Remember we have axial-ratio $a_y/a_x < 1$. This means that the fracture is likely to evolve into a circular shape by growing faster in y directions than in x directions as $a_y \rightarrow a_x$, see later sections.

Figure 6 Under uniaxial remote tension σ_{xx}, normalized maximum tensile stress as a function of near tip polar coordinate (r, β) at longitude angle $\omega=0, \pi/2$.

$\text{2.2 Mode I II near-tip stress comparisons}$

Previous researches [2, 3, 10] analytically formulated the kink θ and twist φ angles resulting from mode I II and mode I III loadings respective. The limitation was that the fracture tip-line has to be straight (1D). Both BEM and Eshelby's solution overcome this limitation, which enables one to investigate how the tip-line curvature would affect the kink and twist angels.

To have mode I II shear, we rotate the remote stress σ_{zz}^{∞} around y-axis by angle η. At longitude $\omega=0$ the fracture tip is under mode I II (see Figure 3).

Figure 7 Normalized maximum tensile stress by BEM (A) and by Eshelby's solution (B) under pure shear stress σ_{zz}^{∞} ($\eta=45^\circ$) plotted on x-o-z plane.

In Figure 8, we zoom in about the tip at $\omega=0$ to compare the near-tip stresses.

Discrepancy in both magnitude and distribution is noticeable, similar to Figure 5. Despite this, the results by the two models match well.
Figure 8 Normalized maximum tensile stress by BEM (A) and by Eshelby's solution (B) under pure shear stress \(\sigma_{xz}^\infty \) \((\eta=45^\circ) \) plotted about the tip at \(\omega=0 \) on \(x-o-z \) plane.

Similarly to Figure 6, we compare the stress on the polar coordinates \((r, \beta) \), given in Figure 9.

Compared to Figure 6, at \(\omega=0 \) the stress is not symmetric in \(\beta \) and this asymmetry leads to the kink. The bi-modal distribution shifts in the negative \(\beta \) direction, which is consistent with Figure 9. At \(\omega=\pi/2 \), no shift (kink) occurs since the tip is under mode I III.

Both stress magnitudes are less than in Figure 6. This suggests that the fracture is less likely to grow or will grow slower under the rotated remote stress.

Figure 9 When rotate the uni-axial tensile stress around \(y \)-axis for \(\eta=45^\circ \), normalized maximum tensile stress as a function of near tip polar coordinate \((r, \beta) \) at longitude angle \(\omega=0, \pi/2 \).

Also in Figure 10, we plot the kink angle \(\theta \) as a function of the axial-ratio \(a_y/a_x \) for different stress rotation angle \(\eta \) for \(\omega=0 \).

Figure 10 Kink angle \(\theta \) at longitude \(\omega=0 \) as a function of axial-ratio \(a_y/a_x \) for different stress rotation angle \(\eta \).
BEM and Eshelby's solution agree well. When \(a_s/a_x > 1 \) and \(\eta < 45^\circ \), BEM overshoots Eshelby's solution slightly. The numerical errors of BEM causes some fluctuations while Eshelby's solution always produces smooth curves.

When the stress rotation angle \(\eta < 45^\circ \), the kink angle \(\theta \) increases with \(a_s/a_x \), i.e. a blade shaped tip-line has larger kink angle than that of a finger shaped tip-line.

When \(a_s/a_x < 1 \) (at the end of a needle shaped fracture) the kink angle is equal to the stress rotation angle, \(\theta = \eta \). This suggests that if a fracture is too narrow, it can hardly affect the areas near the end of the needle tip in terms of kink angle. In those areas the stresses simply follow the remote stress.

2.1 Mode I III near-tip stress comparisons

In the foregoing example the fracture tip is in mode I III at \(\omega = \pi/2 \) (x=0, y=a_s). However the twist angle \(\phi \) cannot be demonstrated by the lower plot in Figure 9. Nevertheless we make a plot analogous to Figure 10, by rotating the uniaxial tension \(\sigma_{zz} \) around the x-axis (see Figure 3), for the same angle \(\eta \) and observe the twist angle \(\phi \) at \(\omega = 0 \) as a function of axial-ratio \(a_s/a_x \). The BEM and Eshelby's solution result comparisons are given in Figure 11.

![Figure 11](image)

Figure 11 Twist angle \(\phi \) at \(\omega = 0 \) as functions of axial-ratio \(a_s/a_x \) for different x-axis rotation angle \(\eta \).

The BEM and Eshelby's solution again agree well except for some fluctuations caused by the numerical errors of BEM. The twist angle \(\phi \) varies somewhat with the axial-ratio \(a_s/a_x \) but less than the kink angle (Figure 10). For large stress rotation angles, e.g. \(\eta > 30^\circ \), the twist angle under shoots the rotation angle, \(\phi < \eta \). For small rotation angles, e.g. \(\eta < 15^\circ \), the twist angle over shoots the rotation angle, \(\phi > \eta \). Similarly to Figure 10, when \(a_s/a_x < 1 \), the twist angle equals to the stress rotation angle, \(\phi = \eta \).

3. PROPAGATION MODELING WITH BEM

The stress comparisons in the foregoing section suggest that the BEM can precisely determine the near-tip stress in terms of both magnitude and orientation.

Eshelby's solution as mentioned has a limitation that the fracture has to be ellipsoidal. When the fracture grows into arbitrary geometries, Eshelby's solution will not apply. For this reason we discuss the fracture propagation modeling only in the context of BEM.

We assume a linear relation between the near-tip maximum tensile stress and the fracture tip advancing pace, e.g. from \(n \) to \(n+1 \) in Figure 12.

For the \(i \)th edge element on the tip-line, we calculate a propagation vector \(v_i \) whose length is proportional to the local maximum tensile stress \(\sigma_i \) and direction is determined by the kink angle \(\theta \) and twist angle \(\phi \). As demonstrated in Figure 12, we place the origin of the vectors \(v_i \) at the center of each associated edge element. By connecting the end of each vector with adjacent two nodes on the associated edge element, a set of new triangular element is created. By connecting the ends of neighboring vectors, a complete ring of new edge elements is then created. This mesh growing method is adopted from [12].

![Figure 12](image)

Figure 12 new fracture tip-line formed by alignment of the propagation vector \(v_i \) ends; new elements belt formed by connecting the boundary nodes and the propagation vector ends.

3.1 Mode I propagation

We set the elliptical fracture in x-o-y plane with \(a_s/a_x = 0.5 \) and apply uniaxial remote stress \(\sigma_{zz} > 0 \), such that the fracture is in pure mode I.
Figure 13 shows the mesh evolution up to 10 steps. We scale the step length to the maximum near-tip tensile stress normalized by its average value, σ_3/σ_3^{avg}, instead of by the remote tensile stress, $\sigma_3/\sigma_3^{\infty}$. In this way we can prevent the fracture from growing faster each step, so the element size is not enlarged. This means however the fracture growth is somehow pictured in a *slowing down* time sequence, which allows us to observe the detailed geometry of the evolutionary path.

We take only the kink angle θ into account in calculating the propagation vector v_i and keep the tip-line integrity during mesh evolution, i.e. no segmentation is allowed. The mesh evolution is shown in Figure 14.

![Figure 14](image_url) Rotated tensile stress $\eta=45^\circ$, mesh evolution when only mod II (kink motion) is considered.

Similar to [12], the tip sections at $\omega=0,\pi$ kink away from x-o-y plane to accommodate the rotated stress while at $\omega=\pi/2, 3\pi/4$ the tip sections almost stay in the x-o-y plane.

3.3. Mode I II III propagation

To model the mode III motion, *twist* and *segmentation*, some care must be taken. We first decide the segment lengths. Within a segment we adjust the kink angle θ of each propagation vector to achieve an effective twist angle ϕ. The neighboring vectors that are severed by segmentation will not be connected when forming the ring of new edge elements. In this way the tip-line will develop into a twisted and segmented (echelon) shape.

After the desirable twist angle is achieved by each segment, the fracture then propagates without the mode III effect except the gaps between different segment will not be bridged.
The mesh evolution for the same model set-up as in the forgoing example is shown in Figure 15.

![Mesh Evolution](image)

Figure 15 Under rotated tensile stress $\eta=45^\circ$, mesh evolution when mod II (kink) and mode III (twist and segmentation) are considered.

The result looks very different compared to the mode I II example even though the mode III effect only applies to a number of initial steps.

One noticeable feature of such propagation is that the growth at the segment joins are constricted by the segment interactions. Because of this the tip-line extensions are curved, which makes the segments have petal shaped geometries that are not depicted in Figure 1B.

4. CONCLUSION AND DISCUSSION

The BEM enables one to calculate a fracture's near-tip stress field precisely. The results are consistent with the analytical Eshelby's solution for elliptical fractures.

The numerical scheme can effectively model mixed mode fracture propagation by running BEM and a propagation criterion in a loop.

The model is capable of capturing both mode II (kink) and mode III (twist) off-plane features. The results suggest that mode III effect has great impact on the resulting fracture shapes.

To model the tip segmentation for different materials, e.g. rock, we need to specify a typical segment length which could be dependent on the loading stress, initial fracture shape and material properties. Experimental work is required to characterize the segmentation in each special case.

REFERENCES

13. Thomas, A., POLY3D: A Three-Dimensional, Polygonal Element, Displacement Discontinuity Boundary Element Computer Program with Applications to Fractures, Faults, and Cavities in

