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8 Abstract In the present note, we suggest a single-

9 line equation estimate for adhesion between elastic

10 (hard) rough solids with Gaussian multiple scales of

11 roughness. It starts from the new observation that the

12 entire DMT solution for ‘‘hard’’ spheres (Tabor

13 parameter tending to zero) with the Maugis law of

14 attraction can be obtained using the Hertzian relation-

15 ship load-indentation and estimating the area of

16 attraction as the increase of the bearing area geomet-

17 rical intersection when the indentation is increased by

18 theMaugis range of attraction. The bearing area model

19 in fact results in a simpler and even more accurate

20 solution than DMT for intermediate Tabor parameters,

21 although it retains one of the assumptions of DMT,

22 that elastic deformations are not affected by attractive

23 forces. Therefore, a solution is obtained for random

24 rough surfaces combining Persson’s adhesiveless

25 asymptotic simple form solution with the bearing area

26 model, which is trivially computed for a Gaussian. A

27 comparison with recent data from extensive numerical

28 computations involving roughness with wavelength

29 from nano to micrometer scale shows that the

30 approximation is quite good for the pull-off in the

31 simulations, and it remarks the primary importance in

32 this regime of a single parameter, the macroscopic

33well-defined quantity (rms) amplitude of roughness,

34and small sensitiveness to rms slopes and curvatures.

35Keywords Roughness � Adhesion � DMT model �
36Persson’s theory

371 Introduction

38The classical theories suggest adhesion is usually

39destroyed very easily by the presence of small

40amplitudes of roughness, even in low modulus mate-

41rials like smooth rubber lenses against roughened

42surfaces [1]. Therefore, adhesion to rough surfaces is

43very difficult to achieve in a macroscopic sense,

44despite many tribological processes depend on adhe-

45sion at asperity scale like in the classical view of

46Bowden and Tabor [2]. After the introduction of the

47concepts of multiscale roughness [3, 4], we have

48recognized that the real area of contact is very loosely

49defined and it depends, together with some other

50physical quantities, on the small wavelength trunca-

51tion of roughness [5], perhaps at atomic scale. Debate

52between the classical asperity models [6] vs the more

53accurate Persson model [4], see eg. Putignano et al. [7]

54have not changed the substance of this: it remains still

55a problem that no reliable estimates can be made of

56quantities like real contact area, mean slope or mean

57curvature of surfaces: for example, advanced multi-

58scale models for example of friction in viscoelastic
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59 bodies [8] rely on these quantities which are difficult to

60 define.

61 This problem of sensitiveness to ‘‘small scale’’ trunca-

62 tion was not perceived 40 years ago, at the time of Fuller-

63 Tabor [1], although it is clear that the FT adhesion

64 stickiness parameter contains the radius of asperities. The

65 emphasis was however on the macroscopically well

66 defined rms amplitude of asperities heights hrms, which

67 indeed was found to critically affect pull-off in the

68 experiments, and no attempt was made to fit the

69 experiments with various possible choices of ‘‘trun-

70 cation’’ or different resolution measurement of the

71 asperity features. But it wasn’t until perhaps 40 years

72 later (Pastewka and Robbins [9], PR in the following)

73 that an attempt was made of a fully numerical

74 investigation of pull-off for a reasonably ‘‘multiscale’’

75 self-affine rough surfaces (still limited by computa-

76 tional capabilities to less than 3 orders of magnitude in

77 wavelengths from nano/atomic scale wavelengths to

78 microscale one). PR concluded that pull-off data decay

79 (Fig. S3) did not correlate well with classical Fuller-

80 Tabor [1] asperity model predictions by various orders

81 of magnitude. PR own attempt to define a stickiness

82 parameter (based on the slope of the area-load curve)

83 involves only slopes and curvature, and this was

84 suggested in strong contrast with asperity models

85 whose emphasis is on rms amplitude.1However, when

86 studying and re-elaborating in different form the

87 results of PR investigation, is become clear to the

88 present author that the pull-off data in PR indeed

89 mainly depend on rms amplitude of roughness, like in

90 a rigid model [10] where the finite realization of a real

91 Gaussian surface necessarily involve a highest point,

92 being it at 2 or 3 or 4 standard deviations, as it is

93 common experience.

94 Persson [11] and Persson and Tosatti [12] develop a

95 theory of adhesion of rough surfaces which is aimed at

96 the JKR regime, which surprisingly seems perfectly

97 reversible, and is not simple nor corroborated so far by

98 numerical or experimental results. Persson and

99 Scaraggi [13], attempts to solve the problem using

100 the DMT approximations originally developed for the

101 spherical problem [14], see also Maugis [15]). In

102 DMT, the contact is assumed to be split into ‘‘repul-

103 sive’’ contact areas and ‘‘attractive’’ contact areas, and

104 no effect of tensile tractions occurs within the

105repulsive contact area. Tensile tractions can therefore

106be estimated by convolution with the attractive forces

107if one knows the repulsive contact solution force vs

108mean separation which was estimated by Persson [16],

109and finally the entire distribution of separations [17].

110This state of not trivial calculation results in an

111apparent dependence of the results on the entire power

112spectrum of the surface, and Persson and Scaraggi do

113not show the dependence of pull-off on the simple

114parameters like rms amplitude, slopes and curvatures.

115Further, significant corrective factors are needed for

116Persson [16], see below, and therefore it is not clear the

117accuracy of Persson and Scaraggi [13].

1181.1 Outline of the present paper

119The present paper suggests a very simple approach,

120which is original:

121• first estimating the attractive area with a purely

122geometrical approach, as the difference between

123two bearing area estimates, irrespective of any

124elastic deformation (and using the Maugis attrac-

125tive force function which is constant to the

126theoretical strength rth up to a distance of the

127order of atomic spacing Dr)

128• then, using an adhesiveless theory for the relationship

129force with separation for the adhesiveless contact.

130This elementary derivation, in the case of the sphere,

131results very simply in the entire DMT solution (in the

132most meaningful form, given by Maugis [15]) and

133wasn’t noticed before. We sheare with a DMTmethod

134that the contact area is identified as the part in contact

135with purely repulsive (compressive) tractions. How-

136ever, while we find the contact area after adhesive

137tractions have been estimated, or independently any-

138way, a DMT model as attempted by Persson and

139Scaraggi [13] find attraction forces by integrating

140them outside the repulsive contact area: this requires a

141detailed knowledge of separation between the

142deformed bodies, for which Persson and Scaraggi

143use some elaborate approximate solutions [17] which

144instead we don’t attempt.

145After discussing this elementary result, and show-

146ing that the bearing area model is in fact both simpler

147and possibly similarly accurate than DMT (see also

148Ciavarella [18]), we then apply to the case of Gaussian

149random rough surfaces, using Persson’s solution [16]
1FL01 1 Further aspects of the PR criterion are discussed in Ciavarella

1FL02 (2016a, b, c, d, e and Ciavarella and Papangelo, 2016).
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150 for the force vs mean separation, but only in the

151 simplest, closed form, case—which we correct in the

152 multiplier. Finally, we compare this estimate with PR

153 numerical extensive set of results.

154 2 The basic case of the sphere

155 To show that the idea works in a simple case, we first

156 consider the case of the sphere of radius R, against a flat

157 rigid surface, as represented in Fig. 1a. We assume the

158 Maugis simplified attractive forces (Fig. 1b) in which

159 the tension r is constant to theoretical strength rth up

160 the gap equal to Dr, and w ¼ rthDr is the work of

161 adhesion.

162 We shall see that, very surprisingly2, the entireDMT

163 solution (Derjaguin et al. [14]), but in the most

164 commonly accepted form, that given by Maugis [15],

165 is obtained exactly when removing one approximation

166 with another one, which turns out also (as very rarely

167 happens) much simpler. Indeed, we do assume that for a

168 given separation, the repulsive component of the load

169 does not change from when there is no adhesion (Hertz

170 theory in this case), but we change the estimation of the

171 adhesive force secondwith a purely ‘‘geometrical’’ one,

172 based on the ‘‘bearing area’’ or ‘‘Abbott-Firestone

173 curve’’ concept (Johnson [19], par.13.3), having two

174 advantages, which not so often combine:

175 • 1) simplicity: we do not compute the contact area

176 and do not need to work out the complicate

177 expressions for gap outside a Hertzian contact.

178 This a fortiori is extremely more complex for

179 random rough surfaces.

180 • 2) better approximation, at least in theHertzian case.

181 In fact,weobtain theDMTsolutiongivenbyMaugis

182 [15], and not the much worse forms obtained by

183 ‘‘thermodynamic’’ or ‘‘force’’ methods, in the

184 original DMT solutions (see Ciavarella [18])

185 Consider the parabolic elastic solid in Fig. 1a of

186 equation y ¼ r2= 2Rð Þ. The bearing area at a given

187 indentation d is simply

A ¼ pr2 ¼ 2pRd ð1Þ

189189 Let’s assume the attractive area Aatt at any value of

190indentation to be given by the difference between the

191‘‘bearing area’’ at indentation dþ Dr, and the ‘‘bear-

192ing area’’ at indentation d, which are obviously

Aatt ¼ 2pR dþ Dr � dð Þ ¼ 2pRDr ð2Þ

194194and multiplying by the theoretical strength rth, results

195in the constant force of adhesion Patt ¼ 2pRrthDr ¼
1962pRw which holds also at pull-off. This is indeed the

197DMT solution as presented in (Maugis [15]), called

198also DMT-M, the sum of the adhesiveless force due to

199a Hertzian contribution at given indentation d, and a

200constant adhesion force Patt ¼ 2pRw.

P ¼ PH � Patt ¼
4

3
E�d3=2R1=2 � 2pRw ð3Þ

202202

2033 Corrective factors

204The DMT-M theory is the correct limit for extremely

205low Tabor parameter

(a)

(b)

Fig. 1 a A parabolic elastic body in adhesive contact with a

rigid plane; b Maugis forces of attraction (‘‘Maugis–Dugdale

potential’’)

2FL01 2 It is not known to the present authors that this fact has been

2FL02 noticed before in the Literature.
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l ¼ Rw2

E�2Dr3

� �1=3

¼ Rl2a
Dr3

� �1=3

! 0 ð4Þ

207207 where E� is plane strain modulus of the material

208 (la ¼ w=E� is an alternative way to measure adhesion

209 as a length scale).

210 Instead, we want in general to cover cases of

211 intermediate Tabor parameters. Indeed, we may

212 further improve the bearing area model and show the

213 transition between the DMT to the JKR solution, by

214 making a small correction to consider the dependence

215 on Tabor parameter. In Fig. 2 the load vs indentation

216 curves are plotted using the dimensionless notation

217 (bd ¼ d= lDrð Þ for indentation and bP ¼ P= pRwð Þ for

218 total load) for different values of the Tabor parameter

219 l: For l[ 1, the JKR solution (Johnson et al. [20]) is

220 more appropriate—and the curve is nearly parallel to

221 the DMT one. The ‘‘bearing area’’ model gives always

222 bP ¼ �2 at zero indentation, hence a simple correction

223 is to reduce the constant adhesive force using the value

224 of bP at bd ¼ 0 taken from the Maugis–Dugdale

225 solution. For example, when l[ 1 the JKR curve at

226 zero indentation as and attractive load of 1:35pRw,

227 thus we divide the adhesive contribution in the bearing

228 area model by a factor

b1 ¼ 2=1:35 ¼ 1:5 ð5Þ

230230 Moreover, the geometry of contacts in rough

231 contact is not spherical. Indeed, despite asperities per

232 se are not very elliptical, the description by asperities

233 fails even at modest indentations (Greenwood [21]),

234and the contacts form rather elongated shapes (PR [9]),

235having actually a nearly constant average character-

236istic diameter fixed only by the geometry (whereas in

237asperity models it is the average diameter of contacts

238which is constant).

239We should warn the reader that we shall not assume

240the contact to be consistent of spherical asperities: the

241‘‘bearing area’’ model is not a good approximation

242only for the spherical geometry. Let us consider the

243JKR solution for elliptical contacts (Johnson and

244Greenwood, 2005): from geometrical considerations,

245it is immediate to show that our bearing area model

246leads to

Patt ¼ 2pRew ð6Þ

248248where Re ¼
ffiffiffiffiffiffiffiffiffiffi
R1R2

p
is the geometric mean of the

249principal radii of the surfaces. We don’t know of a

250DMT solution for elliptical contacts, but Johnson and

251Greenwood [22] show in the JKR regime an approx-

252imate solution for which Patt ¼ 3
2
pRew is a good

253approximation, and an even better approximation is

Patt ¼
3

2
pRmw where

1

Rm

¼ 1

R
3=4
e

1

2

1

R1

þ 1

R2

� �� �1=4

ð7Þ

255255As a consequence of the fact that contact patches in

256rough contacts are very elongated (PR [9]), we may

257assume R1

R2
¼ 10� 100 which leads to a reduction of the

258order of Rm

Re
¼ 0:87� 0:6, and hence consider as mean

259value 0.75. This results in a total corrective factor for

260the adhesive force

k ¼ b1
Rm=Re

¼ 1:5

0:75
’ 2 ð8Þ

262262

2634 Application to random rough surfaces

264In applying the bearing area to a random rough

265surface, it will become evident the advantage of not

266having to estimate during the process the elastic

267contact area, nor the separations outside the contact

268area due to elastic deformations to integrate them as in

269the force method of DMT theory. Indeed, we estimate

270the attractive forces by a simple geometrical estimate

271which doesn’t consider elastic deformations at all,

Fig. 2 Solutions of JKR, DMT-M and Maugis intermediate

Tabor parameter range l ¼ 0; 0:05; 0:25; 1; 5. JKR is obtained

very closely at positive indentations for l ’ 1: Notice that the

proposed bearing area model correspons exactly with DMT-M

with no corrective factors
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272 although now this geometrical estimate will depend on

273 the actual level of mean separation between surfaces.

274 Persson [16] derives from elastic energy concepts

275 and with various approximations and corrections, a

276 mean repulsive pressure rrep vs mean separation u law

277 which, for the most practical case of self-affine

278 surfaces of low fractal dimension (Persson et al. [5]),

279 assumes the form valid for not too large rrep ([16]

280 Eq. 20)

rrep

E� ’ 3

8c
q0hrms exp

�u

chrms

� �
ð9Þ

282282 where c ’ 0:4, q0 is the smallest wavevector in the

283 self-affine process, and hrms is the rms amplitude of

284 roughness. The original theory fits the multiplier inside

285 the exponential with some FEM data, but doesn’t

286 provide a fit for the multiplier outside the exponential,

287 for whichwe find amuch better agreement in the present

288 form, with the factor c outside the exponential, with

289 detailed calculations reported elsewhere [23]. The

290 factor changes also weakly with the fine scale content

291 of roughness, and particularly for high fractal dimen-

292 sions, but as a first approximation we keep it constant.

293 Therefore, we compute the difference of the

294 bearing area at separation uatt ¼ u� Dr, and u, and

295 the attractive pressure can be estimated in a single line

296 as

ratt

rth
¼ � 1

2k
Erfc

uattffiffiffi
2

p
hrms

� �
� Erfc

uffiffiffi
2

p
hrms

� �� �

ð10Þ

298298 where Erfc is the error complementary function, and

299 the factor k ’ 2 was described in (8).

300 Therefore, summing up repulsive (9) and attractive

301 (10) contributions,

r uð Þ
rth

’ 3

8c
q0hrms

E�

rth
exp

�u

chrms

� �
� 1

2k

� Erfc
u� Drffiffiffi
2

p
hrms

� �
� Erfc

uffiffiffi
2

p
hrms

� �� �

ð11Þ

303303 This is the single closed form approximate result for

304 the entire curve of pressure vs mean separation, which

305 obviously results in a pull off finding theminimum as a

306 function of u. The equation depends only on hrms; q0
307 and no other aspect of Power Spectrum, which may be

308 some relief for those hoping that results of physical

309 quantities do not depend too much on small scale

310details. In particular, notice that using the constant

311k ’ 2 comes at the expense of modelling the very low

312hrms as obviously the limit becomes
r uð Þ
rth

’ � 1
k
and not

313�1. However, as it will appear in the PR data below,

314we are talking in that case of a range where the

315amplitude of roughness is subatomic (!), and even if

316this made any sense with atomic roughness, the

317asymptotic version of Persson’s theory starts to be

318problematic (the pressure deviates from (9) at u
hrms
\1),

319and therefore the limit, as postulated, hardly makes

320any sense: either the surface is perfectly flat, or it has

321some atomic roughness.

3224.1 Area–load

323Persson’s original contact theory [4] has a prediction

324for the proportion of actual contact at a given nominal

325pressure which, after the corrective factor of Putig-

326nano et al. [7] has been included, reads

Arep

A0

¼ erf

ffiffiffi
p

p

2

rrep

rrough

� �
ð12Þ

328328where rrough ¼ E�h0rms=2 where h
0
rms is the rms slope of

329the surface, and rrep can be estimate as a function of

330u from (9). We can plot some results for our model

331prediction (11) assuming q0 ¼ 4096a0 with h
0
rms ¼ 0:1

332and la=a0 ¼ 0:05 (where la ¼ w=E� and a0 is atomic

333size, so this corresponds to the usual Lennard-Jones

334potential, Dr ’ a0 which has rth ’ 0:07E�) and

335therefore corresponding to some of the cases of

336Pastewka and Robbins [9] which we describe in more

337details later. We then choose various hrms=a0 ¼
3382; 3; . . .; 10; 15;1 (obviously, 1 corresponds to

339Persson’s adhesionless solution), see Fig. 3. The curve

340with hrms=a0 ¼ 10 has been drawn red to facilitate

341reading of the plot. It is clear that for any numerical

342solution, the assumption that the curves are always

343linear near the origin to compute a slope, as done in

344PR, is not quite the best way forward—as there will be

345a limit to the resolution, for example Arep=A0 ¼ 0:02

346as already quite optimistic. As one reviewer sug-

347gested, it makes a lot more sense to discuss adhesive

348tractions through the pull-off traction rather than

349through this slope.

350We predict the tangent near the origin to be very ill-

351defined near the threshold of stickiness, and the

352deviation from linearity a poor indication of pull-off

353decay, which follows an exponential trend with
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354 increasing amplitude of roughness as we will show in

355 the next paragraph. Our prediction also shows that the

356 repulsive contact area changes very little initially

357 when there is small value of pull-off—and is close to

358 the the value of the adhesionless Persson’s solution

359 (the last line in the plot of Fig. 3a, b for repulsive and

360 total contact area, respectively). Notice that this

361 implies that when we can happily use the standard

362 contact mechanics solution, when we have roughness

363 greater than few decades of atomic size.

364 It is clear also that in our model the ‘‘slope’’ of the

365 area-load will depend on hrms=a0, and h0rms, but not on

366 h00rms as in PR. Moreover, one could estimate the

367 ‘‘secant’’ at for example
Arep

A0
¼ 0:02 from (9, 12) and

368 get

u

chrms
¼ log

3
8
q0hrms

0:02h0rms

� �
ð13Þ

370370 The ‘‘secant’’ will be vertical when
r uð Þ
rth

¼ 0 in (11). As

371 we don’t believe this is a good indication of stickiness,

372 we shall not further pursue this, and rather rely on pull-

373 off as indication of stickiness.

374 5 Comparison with Pastewka-Robbins results

375 PR use a self-affine surface with power law PSD

376 A qj j�2 1þHð Þ
for wavevectors qr\ qj j\qs (q ¼ 2p=k)

377 with roll off to a constant for q0\ qj j\qr (limited to

378 x ¼ q0=qr ¼ 1=2) and zero otherwise. The surfaces

379 have three values for the Hurst exponent

380 H ¼ 0:3; 0:5; 0:8, and magnification f ¼ q0=qs ¼
381 512; . . . 32 resulting from a fixed roll-off wavelength

382 qr ¼ 2048a0, where a0 is atomic spacing, and varying

383 small wavelength. The surfaces are generated in order

384 to have two values of h0rms ¼ 0:1; 0:3.

385 PR do not discuss their values of hrms as their entire

386 paper is devoted to showing the small scale feature of

387 surfaces are what count in adhesion. It turns out that

388 their hrms is very small, and indeed, despite their

389 method of numerical solution seems to involve atoms,

390 roughness is in fact introduced in the hard solid, and

391 the counterface is simulating a perfect crystal with no

392 deviation from flatness. Whether this is representative

393 of atomic roughness is unclear, since Luan and

394 Robbins [24] wrote a few years ago in a well known

395 paper that atomic-scale surface roughness ‘‘is always

396 produced by discrete atoms’’ and that it ‘‘leads to

397dramatic deviations from continuum theory’’. Hence,

398the fact that h0rms ¼ 0:1; 0:3 seems perhaps a choice

399motivated more by assuming realistic deformations.

400We shall see however that our result will seem to

401suggest an almost negligible effect of the small scale

402features, in contrast to what PR suggest, and this will

403be confirmed also by a reinterpretation of their own

404data.

405In Fig. S3 of PR, pull-off values are reported in a

406scale 4hrmsrmin=w which needs to be re-interpreted to

407extract rmin. From standard theory of Gaussian

408processes the moments of order n, can be computed

409as n ¼ 0; 2; 4, T nð Þ ¼ 2p; p; 3p=4,

mn ¼ AT nð Þkn�2H
r

1� xnþ2

nþ 2
þ fn�2H � 1

n� 2H

� �
ð14Þ

411411where f ¼ qs=qr[ [ 1 is the magnification, and

412knowing that hrms ¼
ffiffiffiffiffiffi
m0

p
, and h0rms ¼

ffiffiffiffiffiffiffiffi
2m2

p
, from the

413ratio of m0 and m2 we have

(a)

(b)

Fig. 3 Curves of a repulsive contact area Arep=A0 and b total

contact area Atot=A0 ¼ Arep þ Aatt

� �
=A0 as a function of mean

pressure r=rth. For our ‘‘bearing area’’ model, with h0rms ¼ 0:1
and la=a0 ¼ 0:05 and various hrms=a0 ¼ 2; 3; . . .; 10; 15;1
(Persson’s adhesionless solution) indicated by arrow. Also,

q0 ¼ 4096a0 therefore corresponding to some of the cases of

Pastewka and Robbins [9]
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hrms ’
h0rmsffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2Hð Þ 3

4
þ 1

H

� �s
qs

2p
fH ð15Þ

415415 which permits to estimate the rms amplitudes. In

416 particular, for qs=a0 increasing from 4 to 64 in powers

417 of 2 and h0rms ¼ 0:1, we obtain the values of hrms=a0 lay

418 in the ranges 0:7� 5½ � (one being subatomic, again of

419 uncertain significance in particular, in view of Luan

420 and Robbins [24]) , 1:7; 6:7½ � and 5:9; 10:3½ � for the
421 cases of H ¼ 0:3; 0:5, and 0.8, respectively. In other

422 words, the high fractal dimensions are very small in

423 amplitude, and this is very important in what we are

424 going to discuss, because Persson’s equation (9) was

425 also assumed to be more appropriate to low fractal

426 dimensions, and insensitive then on h0rms and higher

427 order moments which depend on the small wavelength

428 truncation. Obviously values are 3 times higher for

429 h0rms ¼ 0:3. Data are shown in PR paper with the same

430 symbols as they will be shown here, so h0rms ¼ 0:1; 0:3

431 (closed, open symbols), and for la=a0 ¼ 0:05; 0:005

432 (red, blue)—we omit the change in size of the symbols

433 since qs=a0 increasing from 4 to 64 also corresponds to

434 an increase of hrms which is easy to follow in the

435 diagram.3

436 We assume q0 ¼ 2qr ¼ 4096a0 (although the start

437 of self-affine behaviour is at qr) whereas
rth
E� ¼ 0:07 and

438 0.025 for Dr ¼ 1:1a0 and Dr ¼ 0:35a0, respectively

439 for PR choice of ‘‘truncated spline’’ potentials having

440 w= E�a0ð Þ ¼ la=a0 ¼ 0:05,0.005.

441 Results as a function of mean separation are shown

442 in Fig. 4, for la=a0 ¼ 0:05,0.005 respectively in

443 Fig. 4a, b. In each plot, increasing values of hrms=a0
444 are considered, and k ¼ 2 has been used. It is clear that

445 for shorter range of adhesion, there are fewer curves as

446 already for hrms=a0 ¼ 3, there is negligible adhesion.

447 The curves, in log scale, show that at very large

448 hrms=a0 there may be a small error in that the

449asymptotic becomes slightly compressive again. For

450an approximate model, this is a very minor defect,

451compared to what can happen with other approxima-

452tions, see Discussion.

453Figure 5 reports a summary of the pull-off values

454obtained with our simple estimate, which are excellent

455for the case la=a0 ¼ 0:05 except perhaps the high

456fractal dimension cases, and the same occurs for

457la=a0 ¼ 0:005, since the high fractal dimension cases

458have so high rms amplitude that are in fact absent from

459the figure, as correctly our model predicts. Consider-

460ing the simplicity of the approach, the results are

461clearly a very convenient solution. The improvements

462which could still be possible are for the high fractal

463dimension cases. In fact there is a single point at low

464fractal dimension (a red triangle) which is not well fit,

465but this is highly suspicious as it has a non-monotonic

466increase of pull-off with respect to its companion

467cases, and may be simply an error in the numerical

468results or in the reporting of them.

(a)

(b)

Fig. 4 The tensile part of traction (log scale) as a function of

mean separation from the bearing-area DMT model, for PR

cases with a la=a0 ¼ 0:05, b la=a0 ¼ 0:005

3FL01 3 Surprisingly, in Fig. S3 there are some blue closed symbols

3FL02 (h0rms ¼ 0:1 and la=a0 ¼ 0:005), which appear curious, as they

3FL03 appear as non-sticky in Fig. 4 of the paper. Also, the fractal

3FL04 dimension in Fig. S3 does not appear in correct order, as low

3FL05 H seem to have higher rms amplitude, whereas the opposite

3FL06 trend should occur. Probably there is an inversion of the data for

3FL07 H ¼ 0:3 and H ¼ 0:8, which is however irrelevant for the

3FL08 present scopes.

AQ2
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469 The cases which may require some correction if one

470 aims at a more quantitative estimate are those with

471 high fractal dimension which show lower adhesion—

472 but notice that from the data the indication is not so

473 clear: the low slope case for la=a0 ¼ 0:05 (closed red

474 circles) is still within our approximation, whereas the

475 case la=a0 ¼ 0:005 is not (closed blue circle). The

476 high slopes cases with la=a0 ¼ 0:005 are not in the

477 figure, in very good agreement with our expectation,

478 since they would have 3 times higher rms amplitude

479 than the h0rms ¼ 0:1 slopes.

480 This is therefore partly expected from our model

481 when we used Persson’s equation (9) in the form for

482 low fractal dimension. This is the case of practical

483 interest as the majority of natural surfaces so far

484 measured have indeed fractal dimension D\2:5 and

485 rather close to D ¼ 2:2 (see Persson et al. [5]).

486 Therefore, not only the additional corrective factors

487 which we would need (some estimates we have more

488 repulsive code suggest that they not be what Persson

489 [16] suggest) are more complicated, as they depend on

490 truncation wavelength, but are not really worth the

491 effort, as they would only serve to fit more accurately

492 the numerical results of academic interest. We are

493 happy enough to have found very good agreement for

494 all the case of low and intermediate fractal dimen-

495 sions, with our simple closed form result.

4966 Discussion

497It is clear that our theory shows no dependence at all of

498slopes and curvatures, and, we expect, this is especially

499true at low fractal dimensions, which is the case of

500practical interest, but anyway is in strong contrast with

501PR conclusions about the slope of the area-load

502equation: this indicates either that their criterion is

503purely on ‘‘loading’’ conditions, or else that they did not

504measure accurately the area-load near the origin where

505the load can indeed very small, but still significant. That

506their model supports the linearity of the area-load

507relationship suggests indeed this may be the case—they

508perhaps looked at this due to their use a DMT equation

509where the attractive area is further simplified by taking

510only the asymptotic expression for separation: if we

511were to use their estimates of the attractive area, see

512‘‘Appendix’’, we would end up with the quite paradox-

513ical result on the effect of amplitude of roughness, due to

514the fact that they looked at cases where the contact area

515is significant, and during loading.

516Naturally, we don’t expect our simple model can

517predict the effects of roughness in every possible regime,

518as we obtain a purely non-hysteretic behaviour and

519thereforeweprobably obtain a ‘‘lower bound’’ to pull-off.

520Adhesion for ‘‘soft’’ bodies, under the so called

521JKR regime (Johnson et al. [20]), shows instabilities

522like in the simple case of a single sinusoid (Johnson

523[25]) which leads to very strong adhesion after a

524sufficiently high pressure has been applied, or even

525(for sufficiently high work of adhesion) to spontaneous

526full contact and strong adhesion. This effect is also

527seen clearly in numerical experiments assuming JKR

528conditions (for a 1D form of roughness) of Carbone

529et al. [26], and cannot be modelled with asperities, nor

530with any other present theory, except in rather special

531cases (Guduru [27]).

5327 Conclusion

533We have provided a very simple model for pull-off of

534hard elastic solids (presumably, for low Tabor param-

535eters, for which the DMT solution is approximately

536valid. We have given a very simple estimate from the

537bearing-area of the area of attraction, and this seems to

538give reasonable results.

Fig. 5 Pull-off estimates with eqt. (11) for PR data with (red

colour) la=a0 ¼ 0:05, (blue colour) la=a0 ¼ 0:005. Symbols are
like in the original PR Fig. S3, and hence correspond to different

short wavelength truncation, different H or fractal dimension,

and different h0rms ¼ 0:1 (closed symbols) and h0rms ¼ 0:3 (open

symbols). Some effect of h0rms may appear but is not marked, and

similarly, even if our DMT ‘‘bearing area model’’ is meant for

low fractal dimensions, no effect of fractal dimension appears

clear
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543 Appendix: The PR DMT-like approximation

544 We shall investigate what happens when estimating

545 the area of attraction with the simplified DMT

546 equations provided by PR [9]. They write Arep ¼
547 Pdrep=p where P is the perimeter of the contact which

548 grows proportionally to load, and Aatt ¼ Pdatt, so

549 thatdrep; datt are representative diameter of repulsive

550 region, and size of the lateral strip of attraction. As

551 they find by that drep ¼ 4h0rms=h
00
rms

datt

drep
¼ 3

4

Dr

h0rmsdrep

� �2=3

¼ 3

16

h00rmsDr

h02rms

� �2=3

ð16Þ

553553 then

Aatt ¼ p
3

16

h00rmsDr

h02rms

� �2=3

Arep ð17Þ

555555 which is their eqt.6. This is supported by some log-log

556 plots (the insets of Figs. 3 and 4) which however show

557 each quite significant deviations of factors larger than

558 2-3, so that the result in terms of actual Arep=Aatt could

559 change by an order of magnitude. As pull-off occurs at

560 large rms amplitudes for very small Arep, this may

561 explain the very large effect this approximation has.

562 Now we can use Arep from Persson’s solution (12),

563 and hence the tensile mean traction is

ratt

rth
¼ Aatt

A0

¼ p
3

16

h00rmsDr

h02rms

� �2=3
3

4
q0

hrms

h0rms
exp

�u

chrms

� �

ð18Þ

565565 Summing the repulsive and attractive contributions

566 leads to a single negative exponential dependence on

567 mean gap

r uð Þ
E� ’ 3

8c
q0hrms exp

�u

0:45hrms

� �

� 1� rth

E�
2p

h0rms

3

16

h00rmsDr

h02rms

� �2=3
" # ð19Þ

569569 and therefore there is no longer a threshold on hrms. If

570 the surfaces are such that

rth

E�
2p

h0rms

3

16

h00rmsDr

h02rms

� �2=3

[ 1

572572then there is (pull-off) stickiness, which is of course

573their result. However, clearly this result in the

574‘‘sticky’’ range is completely absurd: pull-off would

575then be obtained at very low values of u=hrms (in

576principle, for our asymptotic Persson’s equation, we

577would reach u ¼ 0) which is quite counterintuitive.:

578we could truncate at realistic values of u=hrms ¼ 0:1 as

579Persson [16] shows that the repulsive pressure

580increases there much more than his asymptotic

581solution. But the main effect of (19) would be quite

582paradoxical: a pull-off which actually increases with

583hrms! Now, as we can certainly not believe this

584paradox, and as we have already shown that their

585criterion doesn’t satisfy the values of pull-off obtained

586[28–30], we would also tend to think that their result

587has too many approximations and results from inac-

588curate fits in log-log plots which hide important

589deviations.

590

591References

5921. Fuller KNG, Tabor D (1975) The effect of surface rough-
593ness on the adhesion of elastic solids. Proc R Soc Lond A
594345(1642):327–342
5952. Bowden FP, Tabor D (1950) The friction and lubrication of
596solids, vol 1. Oxford University Press, Oxford
5973. Ciavarella M, Demelio G, Barber JR, Jang YH (2000)
598Linear elastic contact of the Weierstrass profile. Proc R Soc
599Lond A 456–1994:387–405
6004. Persson BN (2001) Theory of rubber friction and contact
601mechanics. J Chem Phys 115(8):3840–3861
6025. Persson BNJ, Albohr O, Tartaglino U, Volokitin AI, Tosatti
603E (2005) On the nature of surface roughness with applica-
604tion to contact mechanics, sealing, rubber friction and
605adhesion. J Phys Condens Matter 17:1–62
6066. Greenwood JA, Williamson JBP (1966) Contact of nomi-
607nally flat surfaces. Proc R Soc Lond A295:300–319
6087. Putignano C, Afferrante L, Carbone G, Demelio G (2012a)
609A new efficient numerical method for contact mechanics of
610rough surfaces. Int J Solids Struct 49(2):338–343
6118. Scaraggi M, Persson BNJ (2015) Friction and universal
612contact area law for randomly rough viscoelastic contacts.
613J Phys Condens Matter 27(10):105102
6149. Pastewka L, Robbins MO (2014) Contact between rough
615surfaces and a criterion for macroscopic adhesion. Proc Nat
616Acad Sci 111(9):3298–3303
61710. Ciavarella M, Afferrante L (2016) Adhesion of rigid rough
618contacts with bounded distribution of heights. Tribol Int
619100:18–23

Meccanica

123

Journal : Medium 11012 Dispatch : 22-5-2017 Pages : 10

Article No. : 701 h LE h TYPESET

MS Code : MECC-D-16-00838 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

620 11. Persson BNJ (2002) Adhesion between an elastic body and a
621 randomly rough hard surface. Eur Phys J E Soft Matter Biol
622 Phys 8(4):385–401
623 12. Persson BNJ, Tosatti E (2001) The effect of surface
624 roughness on the adhesion of elastic solids. J Chem Phys
625 115(12):5597–5610
626 13. Persson BN, Scaraggi M (2014) Theory of adhesion: role of
627 surface roughness. J Chem Phys 141(12):124701
628 14. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of
629 contact deformations on the adhesion of particles. J Colloid
630 Interf Sci 53:314–325
631 15. Maugis D (2000) Contact, adhesion and rupture of elastic
632 solids, vol 130. Springer, New York
633 16. Persson BNJ (2007) Relation between interfacial separation
634 and load: a general theory of contact mechanics. Phys Rev
635 Lett 99(12):125502
636 17. Almqvist A, Campana C, Prodanov N, Persson BNJ (2011)
637 Interfacial separation between elastic solids with randomly
638 rough surfaces: comparison between theory and numerical
639 techniques. J Mech Phys Solids 59(11):2355–2369
640 18. Ciavarella M (2017) On the use of DMT approximations in
641 adhesive contacts, with remarks on random rough contacts,
642 accepted, Trib Int arXiv preprint arXiv:1701.04300
643 19. Johnson KL (1985) Contact mechanics. Cambridge
644 University Press, Cambridge, p 407. ISBN 0-521-34796-3
645 20. Johnson KL, Kendall K, Roberts AD (1971) Surface energy
646 and the contact of elastic solids. Proc R Soc Lond A
647 324:1558

64821. Greenwood JA (2007) A note on Nayak’s third paper. Wear
649262(1):225–227
65022. Greenwood JA, Johnson KL (1998) An alternative to the
651Maugis model of adhesion between elastic spheres. J Phys D
652Appl Phys 31(22):3279
65323. Papangelo A, Hoffmann N, Ciavarella M Load–separation
654curves for the contact of self-affine rough surfaces,
655submitted
65624. Luan B, Robbins MO (2005) The breakdown of continuum
657models for mechanical contacts. Nature 435(7044):929–932
65825. Johnson KL (1995) The adhesion of two elastic bodies with
659slightly wavy surfaces. Int J Solids Struct 32(3/4):423–430
66026. Carbone G, Pierro E, Recchia G (2015) Loading-unloading
661hysteresis loop of randomly rough adhesive contacts. Phys
662Rev E 92(6):062404
66327. Guduru PR (2007) Detachment of a rigid solid from an
664elastic wavy surface: theory. J Mech Phys Solids 55:473–
665488
66628. Ciavarella M (2017) On Pastewka and Robbins’ criterion
667for macroscopic adhesion of rough surfaces. J Tribol
668139(3):031404
66929. Ciavarella M (2016) On a recent stickiness criterion using a
670very simple generalization of DMT theory of adhesion.
671J Adhes Sci Technol 30(24):2725–2735
67230. Ciavarella M, Papangelo A (2017) A modified form of
673Pastewka–Robbins criterion for adhesion. J Adhes 1-11

674

Meccanica

123

Journal : Medium 11012 Dispatch : 22-5-2017 Pages : 10

Article No. : 701 h LE h TYPESET

MS Code : MECC-D-16-00838 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f

http://arxiv.org/abs/1701.04300


Journal : 11012

Article : 701 123
the language of science

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form

along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof

carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid

or in the ‘Author’s response’ area provided below

Query Details Required Author’s Response

AQ1 Please check and confirm the organization division and organization name are correctly
identified and amend if necessary.

AQ2 As per the information provided by the publisher, Fig. 5 will be black and white in print;
hence, please confirm whether we can add colour figure online to the caption.

A
u

th
o

r
 P

r
o

o
f

View publication statsView publication stats

https://www.researchgate.net/publication/317106082

