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Abstract

The relationship between dislocation theory and the difference of lin-
ear elastic solutions for two different sets of elastic moduli, derived by
Filon in two-dimensions, is generalised to three-dimensions. Essential fea-
tures are developed and illustrated by the examples of the edge and screw
dislocations. The inhomogeneity problem is discussed within the same
context, and related to Somigliana dislocations, and in the limit to the
interstitial atom.
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1 Introduction

This paper generalises to three-dimensions the relationship, or construct, estab-
lished by Filon [13] for two-dimensional isotropic linear elasticity, between dislo-
cation theory and the difference of linear elastic solutions to the same boundary
value problem but for two different sets of elastic moduli.The connexion be-
tween dislocations and linear isotropic thermoelasticity has been demonstrated
by Muskhelishvili [32] for the plane theory, and in [2] for three-dimensions. The
relation between three-dimensional thermoelasticity and a variation of Poisson’s
ratio is discussed in [17].
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Here, the principal aim is to explicitly describe, apparently for the first time,
the structure common to these three-dimensional theories facilititing the trans-
position of properties from one theory to another. Of course,the unifying concept
is that of residual or initial stress which creates the opportunity for other two-
and three- dimensional physical theories to be similarly interrelated. In this re-
spect, the heuristic operations of cutting and welding customarily employed to
explain the action and consequences of initial stress in principle are not restricted
to linear theories, so that Filon’s construct may be applicable to nonlinear the-
ories. The topic has been explored, for example, by Kondo [22]. To maintain
reasonable length, however, we prefer to confine attention to describing the
generalisation to three-dimensiosn of Filon’s original construct. The extension,
not entirely straightforward, is illustrated by simple well-known examples from
both linear elasticity and dislocation theory to best convey the approach’s main
structural elements. Accordingly, while the account is purposely introductory,
and is not intended to be either comprehensive or to solve any new problems,
its aim includes the provision of sufficient description to indicate prospects for
future development. Consequently, we omit discussion of such theories as plas-
ticity, magnetostriction, functionally graded materials, and linearised elasticity,
along with a study of Riemannian structure. Furthermore, we do not consider,
for instance, how arrays of discrete dislocations, dislocation dipoles, dislocation
loops, self-energies, interactive energies, and the Peach-Koehler formula may be
generated from known solutions to corresponding elastic problems. These also
are topics for possible later consideration.

As with most dislocation studies, we develop our investigation within the
context of linear elasticity, but for the nonhomogeneous anisotropic theory.
Specific examples, however, are chosen from known isotropic boundary value
problems. These applications illustrate both the advantages and limitations of
the Filon construct, at least as it applies to linear elasticity, and emphasise that
its effectiveness in homogeneous isotropic elasticity depends upon the presence
both of some kind of singularity, and of multiply-connected regions. Never-
theless, it must be stressed that Filon’s construct is not restricted to isotropic
elasticity, but is equally valid for the nonhomogeneous anisotropic theory and
probably under less restrictive conditions. Furthermore, another anticipated
chief benefit is the mutual enrichment of the constituent theories since known
features of one theory can be transferred to unknown properties in the other.
These possibilities are partially illustrated by the edge and screw dislocations
in isotropic elasticity. Filon’s extended construct is used to derive their well-
known discontinuous solutions on a multiply-connected region from the elastic
displacement due respectively to a uniform linear distribution of point-forces,
and to anti-plane shear. The latter connexion appears to be new.

Section 2 presents relevant parts of the linear theory of anisotropic elasticity,
and defines the boundary value problems to be considered. The incompatibility
tensor is introduced and some properties discussed. Section 3 derives equa-
tions governing the difference between the displacement, strain, and stress for
the same boundary value problem but for two different sets of elastic moduli.
Section 4.1 identifies that part of the difference strain that produces no extra
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stress when the moduli are varied, and provides a heuristic interpretation in
terms of cut-and-weld operations. The difference stress is similarly interpreted
. Section 4.2 treats the inhomogeneity problem by means of a variation in
the elastic moduli, and, in particular, obtains a complete solution, regardless
of the inhomogeneity’s shape, in isotropic elasticity when only Poisson’s ratio
varies. Section 5 introduces pertinent elements of dislocation theory, includ-
ing the Saint-Venant-Cesaro integral (cf, for example, [27]) and expressions for
the Burgers vector and incompatibility tensor. Filon’s construct, established in
Section 6, is achieved by simple comparison of the respective formulations, and
relates the total dislocation displacement, the plastic strain, and elastic stress
and strain to appropriate components belonging to the difference between so-
lutions obtained by varying the elastic moduli in the same nonhomogeneous
anisotropic elastic problem. Only the symmetric part of the dislocation density
can be similarly related. Expressions for the Burgers vector and incompati-
bility tensor are established for isotropic elasticity in terms respectively of the
strain and dilatation belonging to the elastic problem for a definite set of mod-
uli. Implications of Carlson’s conclusions [3, 4] with respect to homogeneous
isotropic elastic solutions independent of elastic moduli are briefly examined in
Section 7, while in Section 8 we generate, as already mentioned, the solution for
both an edge and screw dislocation from elastic solutions for a linear uniform
distribution of point-forces, and for anti-plane shear respectively. The con-
struct is employed in Section 9 to derive expressions for an array of dislocations
continuously distributed over a bounded region from the elastic inhomogeneity
problem. When the inhomogeneity is spherical, a connexion is demonstrated to
Somigliana dislocations distributed over the interface, and in the limit to the
interstitial atom.

Both an indicial and direct notation are used as convenient, with the stan-
dard conventions adopted of summation over repeated subscripts and a subscript
comma to denote partial differentiation. Latin subscripts range over [1, 2, 3]
while Greek indices assume the values 1, 2. In the direct notation, the gradient,
divergence, and rotation operators are denoted by ∇, Div, and ∇×, the trace
operator by tr, the identity tensor by I, and the scalar and tensor products
by their usual symbols. We assume the existence of a solution suitable to our
needs.

We deal only with equilibrium problems, but obviously the Filon construct
may be generalised to relate anisotropic linearised and linear elastodynamics to
dislocations in motion.

2 General theory

2.1 Linear anisotropic elasticity

We consider a nonhomogeneous anisotropic compressible linear elastic body
occupying a region Ω ⊆ R3 and in equilibrium subject to given body-force,
mass density, and specified (mixed) boundary conditions. The surface ∂Ω of Ω
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is continuously differentiable, with unit outward vector normal n. We consider
two different sets of suitably smooth elastic moduli whose components with
respect to a given Cartesian orthogonal coordinate system possess the major
and minor symmetries

c
(α)
ijkl(x) = c

(α)
jikl(x) = c

(α)
klij(x), x ∈ Ω, α = 1, 2. (2.1)

The elastic compliances C
(α)
ijkl(x) are the inverse of the elastic moduli, have

corresponding symmetries, and satisfy the relations

c
(α)
ijpqC

(α)
pqkl =

1

2
(δikδjl + δilδjk), (2.2)

where δij denotes the Kronecker delta.
For compressible isotropic elasticity, we have

c
(α)
ijkl = λ(α)δijδkl + µ(α)(δikδjl + δilδjk), (2.3)

C
(α)
ijkl =

1

4µ(α)
(δikδjl + δilδjk)− λ(α)

2µ(α)(3λ(α) + 2µ(α))
δijδkl, (2.4)

where λ(α) and µ(α) are the respective Lamé moduli related to Poisson’s ratio
ν(α) by

λ(α) =
2µ(α)ν(α)

(1− 2ν(α))
. (2.5)

Substitution of (2.5) in (2.4) gives the alternate expression

C
(α)
ijkl =

1

4µ(α)
(δikδjl + δilδjk)− ν(α)

2µ(α)(1 + ν(α))
δijδkl. (2.6)

In plane strain linear isotropic elasticity, the corresponding expressions are

c
(α)
αβγδ = λ(α)δαβδγδ + µ(α)(δαγδβδ + δαδδβγ), (2.7)

C
(α)
αβγδ =

1

4µ(α)
(δαγδβδ + δαδδβγ)− λ(α)

4µ(α)(λ(α) + µ(α))
δαβδγδ (2.8)

=
1

4µ(α)
(δαγδβδ + δαδδβγ)− ν(α)

2µ(α)
δαβδγδ. (2.9)

The Cartesian components of the symmetric linear strain tensor e(α) are de-
rived from the continuously differentible displacement vector field u(α) according
to

e
(α)
ij =

1

2

(
u

(α)
i,j + u

(α)
j,i

)
, (2.10)

and are compatible in the sense that for u(α) ∈ C3(Ω,R3) there holds

∇×∇× e(α) = 0, (2.11)
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or equivalently

eirsejpke
(α)
ks,pr = 0, (2.12)

where eijk is the usual alternating tensor.The compatibility condition (2.11),
necessary for the existence of a continuously differentiable displacement vector
field, is also sufficient provided that the region Ω is simply-connected. (See, for
example,[14, sect.14.2, p.40].)

Let σ(α) be the stress tensor, which for each α is related to the strain e(α)

by the constitutive assumptions

σ(α) = c(α)e(α), x ∈ Ω. (2.13)

The equilibrium equations and boundary conditions satisfied by the elastic
fields are

Div σ(α) + ρf = 0, x ∈ Ω, (2.14)

u(α) = g, x ∈ ∂Ω1, (2.15)

n.σ(α) = F, x ∈ ∂Ω2, (2.16)

where ∂Ω = ∂Ω1 ∪ ∂Ω2, and the mass density ρ, body force vector f per unit
mass, surface traction F , and surface displacement vector g are prescribed and
remain the same for both sets of moduli.

In what follows, we additionally assume in general that each set of elastic
moduli c(α) are positive-definite and therefore satisfy the well-known Kirchhoff
uniqueness condition. This assumption may be relaxed to admit moduli c(2),
say, that do not satisfy any definiteness conditions, but which are chosen to
simplify the boundary value problem. The second set c(1), however, usually is
selected to be within the range sufficient for uniqueness. Such ranges include
the Kirchhoff range for the displacement and traction boundary value problems,
although for the mixed boundary value problem the ranges coincide. (See [21]
and [36].)

2.2 Incompatible strains

We wish to investigate the implications when the compatibility condition (2.11)
is not satisfied and for this purpose we introduce both the antisymmetric linear
rotation tensor W , specified by

W =
1

2
(∇u− (∇u)T ) = −WT , (2.17)

and the axial vector ω defined by

ω =
1

2
∇× u. (2.18)

Assume that u ∈ C2(Ω,R3) and let e be the corresponding linear strain derived
according to (2.10). Then we have the identity ([14, Sect.14,p.39])

∇× e = ∇ω, (2.19)
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which in suffix notation becomes

eipkejk,p = ωi,j =
1

2
eipkWkp,j , (2.20)

where Wij are the Cartesian components of the tensor W .
Let [f ]AB denote the change in the function f along a given simple smooth

curve connecting the points A and B in the simply-connected region Ω. Then
we have

[ω]BA =

∫ B

A

∇ω .dx

=

∫ B

A

∇× e .dx, (2.21)

and consequently the jump in ω around the closed curve ∂Σ bounding the open
smooth surface Σ ⊂ Ω is by Stokes theorem

[ω]∂Σ =

∫
Σ

∇×∇× e.n dS (2.22)

= −
∫

Σ

η.n dS (2.23)

where the symmetric incompatability tensor η , defined by

η = −∇×∇× e, (2.24)

is further discussed in Section 5
Note that when Ω is a region where u ∈ C3(Ω), then η = 0 and the jump

in ω around ∂Σ is zero. Furthermore, when u ∈ C2(Ω), but the strain vanishes
identically, then by (2.19) the rotation vector ω is constant, and its jump again
vanishes. When u ∈ C(Ω), or less, these arguments must be formulated in a
suitably weak form. This aspect is not developed here.

3 Variation of elastic moduli

We derive equations for the differences between the quantities introduced in
Section 2.1 when the moduli are varied, but when the body force, mass density,
and boundary conditions remain unaltered. Accordingly, we define the difference
fields to be

u = u(1) − u(2), x ∈ Ω̄, (3.1)

e = e(1) − e(2), x ∈ Ω̄, (3.2)

σ = σ(1) − σ(2), x ∈ Ω̄, (3.3)

where Ω̄ denotes the closure of Ω.
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It follows by subtraction of the respective equilibrium equations and bound-
ary conditions (2.14)-(2.16) that the difference fields satisfy

Div σ = 0, x ∈ Ω, (3.4)

u = 0, x ∈ ∂Ω1, (3.5)

n.σ = 0, x ∈ ∂Ω2, (3.6)

while subtraction of the constitutive relations (2.13) leads to

σ = c(1)
{
e+ (I −D)e(2)

}
, (3.7)

where I is the identity tensor, the tensor D is given by

D = C(1)c(2), (3.8)

and C(1) is the elastic compliance tensor satisfying (2.2).
We remark that the “strain” De(2) is incompatible in the sense that in

general
∇×∇×De(2) 6= 0. (3.9)

The constitutive relations (3.7) enable the boundary value problem (3.4)-
(3.6) to be alternatively expressed as

Div c(1)
[
e+ (I −D) e(2)

]
= 0, x ∈ Ω, (3.10)

u = 0, x ∈ ∂Ω1, (3.11)

n.c(1)e = n. (D − I) e(2), x ∈ ∂Ω2, (3.12)

which corresponds to the standard (mixed) boundary value problem with non-
zero body force and surface traction, but homogeneous surface displacement.
Classical methods may be applied to solve this problem but generally offer no
advantage compared to the same methods applied to the constituent problems.
Certain simplications, however, might arise from judicious choice of one set of
moduli, say, c(2), and, moreover, the above formulation is employed in Sec-
tion 4.2 where elastic inhomogeneities are discussed.

We list for later reference, the indicial form of several of the expressions
introduced above. In three-dimensions, (3.7) is alternatively given by

σij = c
(1)
ijkl

{
ekl +

(
1

2
[δkpδlq + δkqδlp]−Dklpq

)
e(2)
pq

}
, (3.13)

while, in particular, for isotropic compressible linear elasticity, we use (2.3) and
(2.6) to express (3.8) as

Dijpq =
µ(2)(ν(2) − ν(1))

µ(1)(1 + ν(1))(1− 2ν(2))
δijδpq +

µ(2)

2µ(1)
(δipδjq + δiqδjp) , (3.14)
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so that (3.13) yields

σij =
[
λ(1)δijδrs + µ(1)(δirδjs + δisδjr)

] [
ers +

(µ(1) − µ(2))

µ(1)
e(2)
rs

+
(λ(1)µ(2) − λ(2)µ(1))

µ(1)(3λ(1) + 2µ(1))
e

(2)
kk δrs

]
(3.15)

=
[
λ(1)δijδrs + µ(1)(δirδjs + δisδjr)

] [
ers +

(µ(1) − µ(2)

µ(1)
e(2)
rs

+
µ(2)(ν(1) − ν(2))

µ(1)(1 + ν(1))(1− 2ν(2))
e

(2)
kk δrs

]
. (3.16)

The corresponding formulae in two-dimensions become

σαβ = c
(1)
αβγδ

[
eγδ +

{
1

2
(δγµδνδ + δγνδµδ)−Dγδνµ

}
e(2)
νµ

]
, (3.17)

which for isotropic compressible linear elasticity reduces to

σαβ =
[
λ(1)δαβδγδ + µ(1)(δαγδβδ + δαδδβγ)

]
×
[
eγδ +

(µ(1) − µ(2))

µ(1)
e

(2)
γδ +

(λ(1)µ(2) − λ(2)µ(1))

2µ(1)(λ(1) + µ(1))
e(2)
κκ δγδ

]
(3.18)

=
[
λ(1)δαβδγδ + µ(1)(δαγδβδ + δαδδβγ)

]
×
[
eγδ +

(µ(1) − µ(2))

µ(1)
e

(2)
γδ +

µ(2)(ν(1) − ν(2))

µ(1)(1− 2ν(2))
e(2)
κκ δγδ

]
. (3.19)

4 Selected properties of the difference field

We review properties relevant to the subsequent discussion.

4.1 Stress free strain and the difference stress

We partially analyse the structure of the difference elastic field, and demon-
strate that certain terms in the difference constitutive relation (3.7) produce no
stress. The following heuristic intrepretation differs from Eshelby’s treatment
[9, 12] of the inhomogeneity problem,which is more aligned to the discussion of
Section 4.2.

Let us set
σ = c(1)e∗, x ∈ Ω, (4.1)

where

e∗ = e+ (I −D)e(2) (4.2)

= e+ e∗∗, e∗∗ = (I −D)e(2) (4.3)
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and let us reformulate the constitutive relation for the unperturbed stress σ(2)

as

σ(2) = c(2)e(2) (4.4)

= c(1)De(2)

= c(1)(e(2) − e∗∗).

We conclude that the strain −e∗∗ produces no extra stress when the moduli are
varied from c(2) to c(1), and the strain e(2) is held fixed.

The last assertion is explained as follows. Suppose the linear elastic material
occupying the region Ω has elastic moduli c(2) and is in equilibrium subject to
zero body force and given mixed boundary conditions which create in Ω the
nonhomogeneous stress σ(2)(x) and strain e(2)(x), related by σ(2) = c(2)e(2), x ∈
Ω. The traction on the surface of an arbitrary subregion Ω∗∗

m of Ω is given

by t
(2)
m = σ(2)n = c(2)e(2)n. Now let a set of the closures of non-intersecting

subregions Ω∗∗
m ,m = 1, 2, . . . cover Ω. Detach each subregion Ω∗∗

m from the

others, alter its elastic moduli from c(2) to c(1), and apply the traction t
(2)
m to

its surface. Within the approximations assumed for the linear theory, the stress
distribution σ(2), while maintaining Ω∗∗

m in equilibrium, causes it to experience
a further deformation. Consequently, the corresponding strain is no longer e(2)

but e(2) − e∗∗, as shown by (4.4). In this sense, a variation of the moduli has
created an additional strain field −e∗∗ but has produced no extra stress beyond
the original stress distribution σ(2).

A physical interpretation also may be provided for the difference stress σ.
Separate from the loaded region Ω the arbitrary regions Ω∗∗

m , as just defined,

vary the elastic moduli in each from c(2) to c(1), and apply tractions t
(2)
m to

the respective surfaces. Equilibrium requires that the strain be altered from
e(2) to e(2) − e∗∗, and this alteration deforms Ω∗∗

m into a new shape Ω∗∗∗
m which

does not exactly fit the space from which it was originally cut. A perfect fit

is achieved by applying additional surface tractions t
(3)
m to Ω∗∗∗

m in order to
return it to its original shape Ω∗∗

m . This operation generates a further stress
additional to σ(2). The resulting subregions Ω∗∗

m can now be fitted coherently
together and cemented in place to recover the region Ω. There is continuity
of the displacement across the interfaces ∂Ω∗∗

m over which now is distributed

a surface layer of body force due to the additional traction t
(3)
m . Remove the

surface traction t
(3)
m while retaining the bonding at the interface ∂Ω∗∗. This

relaxation causes each Ω∗∗
m to undergo an additional strain e∗ which produces

the additional stress σ, so that finally we have

σ(2) + σ = c(1)
(
e(2) − e∗∗ + e∗

)
, (4.5)

from which we conclude that the additional stress σ is given by (4.1). The
sequence of operations outlined above is schematically described in Figure 1.

When the displacement is specified on part Σm of the surface ∂Ω∗∗
m of the

subregion Ω∗∗
m , we may repeat the previous cut-and-weld operations. The stress
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Figure 1: Cut and weld operations corresponding to variation of moduli argu-
ment.

σ(2) corresponds to the surface traction t
(2)
m on all parts of ∂Ω∗∗

m which after the
moduli are altered to c(1) requires additional strain to maintain the stress σ(2),
which changes the shape of Ω∗∗

m to Ω∗∗∗
m . To recover Ω∗∗

m , the surface tractions

t
(3)
m that are applied to ∂Ω∗∗∗

m must ensure that the part deformed from Σm
returns to the originally specified displacement.The argument now proceeds as
before.

The strain −e∗∗ is analogous to the strain produced in a self-stressed body
and provides a relation between various elastic theories in which initial or resid-
ual stress can be identified. Eshelby [11, 9] has generally treated systems con-
taining this type of strain and presented examples in dislocation theory and
inhomogeneities in stressed bodies. By means of a different approach based
upon the variation of elastic moduli, we provide in Section 4.2 an alternative
discussion of this interpretation with respect to the inhomogeneity problem,
while in Section 6 we consider in detail the relationship with dislocations.

4.2 Elastic inhomogeneities

In this section, we derive certain solutions to simple elastic inhomogeneity prob-
lems that are used subsequently to discuss arrays of continuous dislocations. The
treatment, which may easily be extended to less simple problems, is based on
[18] and [19] and complements the analysis by Eshelby [9, 10, 12], and by Kröner
[23], amongst others.

We consider a bounded or unbounded three-dimensional region Ω that con-
tains a region Γ whose surface ∂Γ is supposed closed and smooth. Linear elastic
solids of different elastic moduli occupy the regions Ω\Γ̄ and Γ, and are bonded
together across the interfacial surface ∂Γ. That is, under prescribed loads and
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boundary displacement, the traction and displacement are continuous across
∂Γ(the problem in which either bonding or slippage of the displacement oc-
curs on the interface is treated in [27], while general discontinuity relations are
discussed in [16]). The elastic moduli, of course, are discontinuous across the
interface, but otherwise are supposed continuously differentiable. Several such
closed surfaces of discontinuity may be included, but for convenience attention
is confined to a single surface. The region Γ is called the inclusion, while the
complement Ω\Γ̄ is called the matrix.

Let Ω be in equilibrium subject to specified body force f , mass density ρ, sur-
face tractions F on ∂Ω2 and displacement g on the remainder, ∂Ω1. To facilitate
the calculations of this Section, it is convenient to reverse the role of the moduli
adopted in Section 4.1. Accordingly, we consider the unperturbed problem in
which the moduli c(1) are continuously differentiable everywhere in Ω and de-
note the corresponding stress, strain, and displacement by (σ(1), e(1), u(1)). For
the perturbed problem, with elastic field (σ(2), e(2), u(2)), under the same loads
and surface displacement, we suppose that the moduli inside the inhomogeneity
Γ are c(2), while those outside remain unaltered and are c(1).

We use the notation (3.1)-(3.3), and as before, subtract the respective equi-
librium and boundary conditions to obtain

σ = c(1)
[
e+ (I −D)e(2)

]
, x ∈ Γ, (4.6)

σ = c(1)e, x ∈ Ω\Γ̄, (4.7)

Div σ = 0, x ∈ Ω, (4.8)

u = 0, x ∈ ∂Ω1, (4.9)

nσ = 0, x ∈ ∂Ω2, (4.10)

[nσ]∂Γ = [u]∂Γ = 0. (4.11)

In (4.11), square brackets denote the jump across the interface ∂Γ in the
sense, for example, given by

[u(α)]∂Γ = u(α)(inclusion)− u(α)(matrix), (4.12)

where the unit normal n on ∂Γ is taken outward from Γ.
The particular stress distribution, defined everywhere in Ω by

σ̄ = c(1)e, x ∈ Ω, (4.13)

is maintained in equilibrium under zero (mixed) boundary conditions on ∂Ω,
unit mass density, body force given by

X̄ = Div
{

(c(1) − c(2))e(2)
}
, x ∈ Γ, (4.14)

= 0, x ∈ Ω\Γ̄, (4.15)

and a layer of distributed surface force in the interface ∂Γ of amount −n(c(1) −
c(2))e(2) per unit surface area.
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The solution to this problem may be expressed in terms of Green’s function,
which for linear homogeneous anisotropic elasticity is determined, for example,
in [37]. For convenience of presentation, however, we confine attention to ho-
mogeneous isotropic elasticity, assume that Ω occupies the whole space R3, and
for the next stage of the argument employ indicial notation. Accordingly, the

Green’s function G
(1)
ij (x, y) is given by

G
(1)
ij (x, y) =

1

4πµ(1)

δij
R(x, y)

− 1

16πµ(1)(1− ν(1))

∂2

∂xi∂xj
R(x, y), (4.16)

where
R2 = (xi − yi)(xi − yi), (4.17)

A standard procedure, that includes integration by parts, leads to the rep-
resentation

ui(x) =
1

4πµ(1)

∂

∂xj

∫
Γ

ρij(y)

R(x, y)
dy (4.18)

− 1

16πµ(1)(1− ν(1))

∂2

∂xi∂xk

∫
Γ

R(x, y)ρkj(y) dy,

where

ρij(y) = ρji(y) =
(
λ(1) − λ(2)

)
e

(2)
kk (y)δij + 2

(
µ(1) − µ(2)

)
e

(2)
ij (y). (4.19)

Expression (4.18), differently derived by Eshelby [9, 10, 12] (see also Kupradze[24]),
leads easily to the corresponding difference strain components. We obtain

eij(x) =
1

8πµ(1)

[
∂2

∂xk∂xj

∫
Γ

ρik(y)

R(x, y)
dy+ (4.20)

+
∂2

∂xk∂xi

∫
Γ

ρjk(y)

R(x, y)
dy

]
− 1

8πµ(1)(1− ν(1))

∂4

∂xi∂xj∂xr∂xs

∫
Γ

ρrs(y)R(x, y) dy,

and the difference dilatation becomes

eii(x) =
1

4π(λ(1) + 2µ(1))

∂2

∂xi∂xi

∫
Γ

ρij(y)

R(x, y)
dy. (4.21)

These integrals are not readily evaluated in closed form for the general prob-
lem of an arbitrary inhomogeneity Γ, but a solution is possible for a single
ellipsoidal inhomogeneity perturbing a stress field uniform at infinity.(See, for
example, [9, 10, 12], and [19].)

An exact solution, however, is possible for homogeneous isotropic elasticity
provided only that Poisson’s ratio is varied ([18]). Then, by standard results in
potential theory, we conclude that (4.21) reduces to

eii = −
(
λ(1) − λ(2)

λ(1) + 2µ

)
e

(2)
ii , x ∈ Γ, (4.22)
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in the inhomogeneity, while for the matrix we have

eii = 0, x ∈ Ω\Γ̄. (4.23)

Consequently, we have within the inhomogeneity

e
(2)
ii =

(
λ(1) + 2µ

λ(2) + 2µ

)
e

(1)
ii , x ∈ Γ, (4.24)

while for the matrix
e

(2)
ii = e

(1)
ii , x ∈ Ω\Γ̄, (4.25)

where e
(1)
ii , possibly non-constant, is known from the unperturbed problem in

which linear elastic material of constant moduli λ(1), µ occupies the whole space
R3. In fact, the same result holds ([18]) for nonhomogeneous isotropic linear
elasticity provided µ is constant and the Poisson’s ratios ν(1) and ν(2) are con-
tinuously differentiable everywhere in R3 and Γ respectively.

The material therefore experiences no change in its dilatation in the matrix,
while in the inhomogeneity the change is (4.22). Substitution of (4.24) in (4.19)
and (4.18) enables the perturbed displacement to be derived in the form

u
(2)
i (x) = − (λ(1) − λ(2))

4π(λ(2) + 2µ)

∂

∂xi

∫
Γ

e
(1)
ii (y)

R(x, y)
dy + u

(1)
i (x), x ∈ R3, y ∈ Γ.

(4.26)
The integration just outlined is essentially the Somigliana procedure. See,

for instance, [26].
We observe from (4.26) that the difference displacement u = u(1) − u(2)

may be regarded as the gravitational attraction due to a potential distribution

of density e
(1)
kk over the inhomogeneity Γ. For loads that produce a uniform

unperturbed dilatation, the appropriate gravitational attraction is known for
several different regions Γ. In particular, when Γ is a hollow ellipsoid, the
attraction is zero within the hollow. Moreover, by standard potential theory,
the displacement u is harmomic in the matrix, and accordingly, each component
achieves its maximum and minimum value on the interface ∂Γ. The solution to
(4.26) is also known for several non-constant densities.

To illustrate the method, we consider the simple example of a spherical
inhomogeneity of radius a in an infinite medium that perturbs a uniform hy-
drostatic pressure P . We let the origin of coordinates be located at the centre
of the sphere. The unperturbed dilatation is

e
(1)
kk = −3A, A =

P

(3λ(1) + 2µ)
, (4.27)

and from (4.26), the difference displacement becomes

ui(x) = −3A
(λ(1) − λ(2))

4π(λ(2) + 2µ)

∂

∂xi

∫
Γ

1

R(x, y)
dy. (4.28)
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The integral in (4.28) is the potential of a homogeneous sphere of unit den-
sity. Consequently, we have within the inhomogeneity,

ui(x) =
(λ(1) − λ(2))

(λ(2) + 2µ)
Axi, x ∈ Γ, (4.29)

and within the matrix

ui(x) = a3 (λ(1) − λ(2))

(λ(2) + 2µ)

Axi
R3(x, 0)

, x ∈ R3\Γ̄. (4.30)

The corresponding difference stress from (3.15),(4.24), and (4.25) becomes for
the inhomogeneity

σij(x) = −4µ(λ(1) − λ(2))

(λ(2) + 2µ)
Aδij , x ∈ Γ, (4.31)

and for the matrix

σij(x) = 2µAa3 (λ(1) − λ(2))

(λ(2) + 2µ)

(
δij

R3(x, 0)
− 3xixj
R5(x, 0)

)
, x ∈ R3\Γ̄. (4.32)

We note that the difference stress does not vanish identically in the matrix.
On letting a→ 0 and P increase such that a3P remains constant, we recover

from (4.29)-(4.32) the displacement and stress for a centre of dilatation.
Clearly, when more than one inhomogeneity is present, the above treatment

holds but with the region of integration extended over all inhomogeneities.

5 Dislocation theory

Let β(E) ∈ C2(Ω,R3 × R3) denote an “elastic” distortion tensor that does not
necessarily correspond to either a deformation, or displacement, gradient, and
therefore whose symmetric part E(E) may be incompatible.

Let Σ ⊂ Ω denote any open smooth surface bounded by the closed smooth
curve ∂Σ described in a right-handed sense with respect to the unit outward
normal on Σ. Define the Burgers vector for ∂Σ by

b = −
∮
∂Σ

βE .dx, (5.1)

which by Stokes Theorem becomes equivalently

b = −
∫

Σ

(∇× β(E))T .n dS (5.2)

=

∫
Σ

αT .n dS, (5.3)

where the second order tensor α, termed the dislocation (line) density, is defined
by

α = −∇× β(E), (5.4)

14



Figure 2: Saint-Venant/Cesaro set-up for Burgers vector calculation

and in consequence
Div α = 0. (5.5)

On taking the surface Σ to be infinitesimally small and threaded by a single
dislocation line with continuously distributed core, we conclude that

α = l ⊗ b, (5.6)

where l is the unit vector tangent to the dislocation line. The first subscript
of the component αij in the representation (5.6) provides the direction of the
dislocation line, while the second gives the direction of the Burgers vector.

Remark 5.1 Specific assumptions
Let u(E) be a displacement vector defined on Ω whose singularities are dis-

tributed within subregions Ωi ⊂ Ω, i = 1, 2, . . . . For example, Ωi can be the
site of discrete dislocation lines, or a continuous distribution of dislocations.
We suppose that the subregions Ωi are such that the multiply-connected region
Ω∗ = Ω\ (∪iΩi) can be reduced to a simply-connected region Ω̃ by the introduc-
tion of appropriate cuts. Motivated by the property that the potential for an
irrotational vector field on a multiply-connected region is generally discontinu-
ous, we assume that u(E) may be discontinuous across the cuts Ω∗\Ω̃ and that
u(E) ∈ C2(Ω̃). Furthermore, we assume that β(E) is the gradient of u(E) in Ω̃.
Consider a simple closed curve C drawn in Ω∗ to cross one and only one cut at
the point x̃. Let x̃+ and x̃− be points on either side of the cut immediately ad-
jacent to x̃, and denote by C(x̃−, x̃+) that part of the curve C that starts at the
point x̃− and ends at x̃+ without crossing the cut; that is, the curve C(x̃−, x̃+)
is traversed entirely in Ω̃. See Figure 2.

Subject to these assumptions, we seek to obtain an alternative expression for
the Burgers vector using the classic argument due to Saint-Venant and Cesaro
(see, e.g., [17,21,22]).
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Let E(E),W (E) be the symmetric and anti-symmetric parts of β(E) respec-
tively, and set y(x) = x− x̃− so that y(x̃+) = y(x̃−) = 0. Then

b = −
∫
C(x̃−,x̃+)

∇u(E).dx

= −
∫
C(x̃−,x̃+)

E(E).dx−
∫
C(x̃−,x̃+)

W (E).dy

= −
∫
C(x̃−,x̃+)

E(E).dx+

∫
C(x̃−,x̃+)

(dx.∇)W (E)y −
[
W (E).y

]x̃+

x̃−
, (5.7)

where we have integrated by parts. The last term on the right of (5.7) vanishes
since y = 0 at both endpoints. Moreover, by virtue of (2.19), in an obvious
notation, we have for x ∈ Ω̃,

∇W (E)y = ∇ω(E) × y
= −y × (∇× E(E)),

and in consequence (5.7) may be expressed as

b = −
∮
∂Σ

U.dx, (5.8)

where the non-symmetric second order tensor U is given by

U = E(E) + y × (∇× E(E)). (5.9)

This expression is used later to determine the Burgers vector for the edge and
screw dislocations.

Remark 5.2 The representations (5.1) and (5.8) deliver the same value of
Burgers vector only under assumptions stipulated in Remark 5.1. For exam-
ple, suppose β(E) is the gradient of a sufficiently smooth displacement vector
whose symmetric part vanishes, but whose anti-symmetric part is non-zero:
E(E) = 0,W (E) 6= 0 on Ω̃. Then from (5.8) we have b = 0. This conclu-
sion is consistent with (5.1) when it is recalled that (2.19) and (2.20) imply that
W (E) is constant and hence that the integral (5.1) vanishes when the curves C
and ∂Σ coincide. Of course, when β(E) is not the gradient of a vector field, no
comparison is possible between (5.1) and (5.8).

Remark 5.3 The last comment is further illustrated by examples discussed in
[34] in which the elastic strain but not the elastic distorsion vanish and conse-
quently the Burgers vector and dislocation density are non-zero. These examples
explicitly demonstrate conditions under which (5.1) and (5.8) are not equivalent.

Remark 5.4 On appealing to the constitutive relation (5.17) for the elastic
stress, we conclude that under the assumptions of Remark 5.1, when β(E) =
∇u(E), with u(E) ∈ C2(Ω̃), the conditions E(E) = 0,W (E) 6= 0 imply not only
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Figure 3: Example where Burgers vector cannot be computed from elastic strain
field.

that b = 0 but also that the stress vanishes. Furthermore, as mentioned in
Remark 5.2, W (E) is constant on Ω̃ and consequently u(E) is there a rigid body
displacement. This conclusion is not surprising since Ω̃ is supposed simply-
connected. Perhaps of greater significance is the implication that in order to
have non-uniform W (E) or b 6= 0 for at least one closed curve in Ω∗, we must
exclude those Ωi of the type where Ω∗ can be rendered simply-connected by the
introduction of cuts. See Figure 3.

To continue this brief description of dislocation theory, we introduce the
second order tensor β(P ) such that the sum

β = β(E) + β(P ) (5.10)

corresponds to the gradient of a continuously differentiable displacement vector
field u. We let the symmetric and anti-symmetric parts of β and β(P ) be denoted
respectively by E,W and E(P ),W (P ). We have ∇× β = 0, and consequently

α = ∇× β(P ) = −∇× β(E). (5.11)

We may operate on (5.11) to obtain

(∇× α)T = −(∇×∇× β(E))T

= −∇×∇× (β(E))T ,

which leads to

(∇× α) + (∇× α)T = −∇×∇× (β(E) + (β(E))T )

= −2∇×∇× E(E). (5.12)

The strain E(E) by hypothesis may be incompatible so that the incompati-
bility tensor, given by

η = −∇×∇× E(E) (5.13)

= ∇×∇× E(P ), (5.14)
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is in general non-zero, and by (5.12) alternatively may be expressed in terms of
the dislocation density as

η =
1

2

(
∇× α+ (∇× α)T

)
. (5.15)

Although (5.13) may be solved for E(E) in terms of given η (see [11, p.92]),
the solution can be used to determine the Burgers vector only by appeal to
relation (5.8), subject to its validity, and not directly from (5.1).

We immediately infer from (5.15) that

α = 0 ⇒ η = 0, (5.16)

but the reverse implication is not necessarily true. The symmetric part of β(P )

may be zero but its anti-symmetric part non-zero, and then by (5.14) and (5.11)
we have η = 0, but α 6= 0.

The (incompatible) elastic strain E(E) in a linear elastic body of elastic
moduli c generates a stress σ according to the constitutive relation

σ = cE(E) (5.17)

= c (E − E(P )). (5.18)

In the absence of body force and surface traction, and for homogeneous dis-
placement on ∂Ω1, the stress σ in equilibrium satisfies

Div c(E − E(P )) = 0, x ∈ Ω, (5.19)

u = 0, x ∈ ∂Ω1, (5.20)

n.c(E − E(P )) = 0, x ∈ ∂Ω\∂Ω1. (5.21)

Kröner [23] solves the boundary value problem (5.19)-(5.21) for the disloca-
tion stress in terms of stress functions derived from the incompatibility tensor
and the biharmonic Green’s function. The method could be employed in the
present treatment, but we prefer, however, the alternative procedure already
adopted in Section 4.2 that involves the elastic Green’s function. Willis [40]
also employs the elastic Green’s function to calculate the dislocation stress in
terms of the dislocation density.

6 Relation between dislocations and variation of
elastic moduli

The various analogies and relationships discussed in this Section are three-
dimensional generalisations of results which in two dimensions were established
by Filon [13] (see also [6]), [32], and the recent review [20]).
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6.1 Basic derivation

Inspection of the respective boundary value problems formulated in Sections 3
and 5 indicates that they are analogous. To be precise, let us retain the same
notation for the tensors σ and E that appear in both Sections, and set c = c(1)

together with

E(P ) = − (I −D) e(2), (6.1)

E(E) = e+ (I −D)e(2). (6.2)

Such substitution renders the boundary value problem (3.4)-(3.7)
(or (3.10)-(3.12)) identical to the dislocation boundary value problem (5.17)-
(5.21). Consequently, we have extended Filon’s construct from two- to three-
dimensions.

Before developing other implications, we make two observations. First, let
us note that the construct may be employed to generate anisotropic solutions
for both discrete and continuous distributions of dislocations subject to ap-
propriate conditions introduced later, especially for the isotropic theory. The
second observation concerns the application of the construct to the conclusions
of Section 4.1 for stress- free strains. In terms of the respective notations, upon
setting

E(P ) = −e∗∗, E(E) = e∗, E = e, (6.3)

we infer from the arguments presented in Section 4.1 that the plastic strain
does not produce stress irrespective of the boundary conditions imposed on
the surface ∂Ω. The equivalences defined in (6.3) enable the plastic, elastic,
and total strains to be interpreted in the light of the cut-and-weld operations
described in Section 4.1.

The plastic strain is not arbitrary but subject to a condition obtained by
inversion of (6.1). For this purpose, we suppose that (I −D) is invertible, and
then it follows from the compatibility of the strain e(2) that

∇×∇× (I −D)−1E(P ) = 0, (6.4)

which restricts the plastic strains produced by the Filon construct.
Since only strains appear in the construct, the dislocation density defined in

(5.11) can only partially be determined, and indeed from (5.12) we have

(∇× α) + (∇× α)T = 2∇×∇× E(P ) (6.5)

= 2∇×∇×De(2), (6.6)

by virtue of (6.1) and the compatibility of e(2). In consequence, the incompati-
bility tensor (5.15) becomes

η = ∇×∇×De(2). (6.7)

Furthermore, for a simple closed curve ∂Σ drawn through a region in which β(E)

is the gradient of a continuously differentiable displacement, the Burgers vector
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may be obtained from (5.8) in which the tensor U from (5.9) becomes

U = E(E) + y × (∇× E(E)) (6.8)

= E − E(P ) − y × (∇× E(P )). (6.9)

But by hypothesis, E is derived from a continuously differentiable displacement
vector, u, and consequently may be omitted from the integral (5.8). The ex-
pression for the Burgers vector then simplifies to

b =

∮
∂Σ

(
E(P ) + y × (∇× E(P ))

)
.dx (6.10)

=

∮
∂Σ

(
De(2) − y × (∇× [e(2) −De(2)])

)
.dx, (6.11)

where we have substituted from (6.1).
In contrast, the dislocation density depends on the plastic distorsion and not

only on its symmetric part, and therefore may be non-zero even for zero plastic
strain. Its explicit representation is given by

α = ∇× E(P ) +
1

2
∇× (β(P ) − (β(P ))T ) (6.12)

= −∇× (I −D)e(2) +
1

2
∇× (β(P ) − (β(P ))T ). (6.13)

Mean values of the dislocation solution are easily calculated. In the dis-
placement boundary value problem when u = 0 on ∂Ω, we have from (5.10)
that ∫

Ω

E(E) dx = −
∫

Ω

E(P ) dx. (6.14)

On the other hand, in the traction boundary value problem, when nσ = 0
on ∂Ω, for zero body force and fixed number k, we have by integration of the
identity

xkDiv σ = 0, (6.15)

that the mean value of the stress is∫
Ω

σ dx = 0. (6.16)

The last result holds irrespective of the particular constitutive relation sat-
isfied by the stress.

It is convenient to specialise several of the above general relationships to
isotropic linear elasticity. On adopting an indicial notation, we conclude from
(3.16) that

E
(P )
ij = −

[
(µ(1) − µ(2))

µ(1)
e

(2)
ij +

µ(2)(ν(1) − ν(2))

µ(1)(1 + ν(1))(1− 2ν(2))
e

(2)
kk δij

]
, (6.17)
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while in two-dimensions we have from (3.19)

E
(P )
αβ = −

[
(µ(1) − µ(2))

µ(1)
e

(2)
αβ +

µ(2)(ν(1) − ν(2))

µ(1)(1− 2ν(2))
e(2)
κκ δαβ

]
. (6.18)

We use these expressions to calculate the corresponding incompatibility ten-
sor for the plastic strain, for which purpose we further specialise to homogeneous
isotropic linear elasticity. In three-dimensions, we substitute (6.17) in (5.14) and

after recalling that e
(2)
ij is compatible and that e

(2)
kk is harmonic on the simply-

connected region Ω or multiply-connected region Ω∗ that excludes singularities
present in the elastic fields, we obtain

ηij = γ
µ(1)

µ(2)
e

(2)
kk,ij , x ∈ Ω∗, (6.19)

where γ is given by

γ =
(ν(1) − ν(2))

(1 + ν(1))(1− 2ν(2))
. (6.20)

For plane strain elastic problems in which e
(α)
κκ depends on the variables

x1, x2, the only possible non-zero component of the incompatibility tensor is
η33, which now reduces to

η33 = −τe(2)
κκ,δδ, x ∈ Ω∗, (6.21)

where
τ = (1 + ν(1))γ. (6.22)

The plane strain dilatation eκκ is harmonic on those regions where it is de-
fined. In particular, it is defined on multiply-connected regions Ω∗ that exclude
singularities. Accordingly, on such regions the incompatibility tensor vanishes,
and the plane elastic strain E(E) is derivable from a discontinuous displacement
vector defined on Ω∗.

In the next section, we discuss for isotropic linear elasticity the solution
generated from the construct when either the shear modulus or Poisson’s ratio
separately vary.

7 Moduli independent fields

We investigate the stress and strain associated with dislocations derived from
linear elastic equilibrium problems with zero body force whose displacement or
stress are independent of the moduli.(Necessary and sufficient conditions for the
stress to be independent of Poisson’s ratio are shown in [28] to follow from a
Cosserat spectral decomposition, which is also employed to discuss the traction
boundary value problem with divergences free body force. Other properties of
the Cosserat spectrum are derived in [27].) For present purposes, however, it
suffices to confine attention to the problems in homogeneous isotropic elasticity
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studied by Carlson [3, 4] who requires the displacement to be twice continu-
ously differentiable on the simply -connected bounded region Ω. As expected,
the corresponding incompatibility tensor and dislocation density tensor, deter-
mined respectively from (6.19) and (6.13), are zero. Thus, the plastic and elastic
strains in the dislocation problem are compatible and derivable from continuous
displacements, from which we conclude that the corresponding Burgers vector
vanishes. Under the same conditions, however, the dislocation stress σ van-
ishes only for homogeneous tractions everywhere on the boundary, confirming
conditions derived by Mura [31] that ensure “impotent stress” ( or “zero-stress
everywhere”) for continuous dislocation distributions; see also [15, p.597]. We
examine conditions for the displacement, mixed, and traction boundary value
problems. These implications lose their validity once the region Ω becomes
multiply-connected, or the fields (u(α), σ(α)) contain singularities. Further ex-
amples are considered when inhomogeneities are discussed.

7.1 Variation of the shear modulus alone

In homogeneous isotropic linear elasticity, when the shear modulus alone is
varied and Poisson’s ratio is fixed, (6.20) shows that the constant γ vanishes,
and consequently by (6.19) that the incompatibility tensor is zero. The plastic
strain, which by (6.17) reduces to

E(P ) =
(µ(2) − µ(1))

µ(1)
e(2), (7.1)

is compatible and corresponds to a continuous displacement u(P ) given by

u(P ) =
(µ(2) − µ(1))

µ(1)
u(2) + f + x× d, (7.2)

for constant vectors f, d. We may then determine the plastic distorsion β(P )

as the gradient of u(P ), and conclude from (5.11) that the dislocation density
tensor α vanishes. The vanishing of η also implies that the elastic strain E(E)

is compatible and derivable from a continuous displacement u(E). But since Ω
is supposed simply-connected, (5.1) and (5.8) are consistent and independently
lead to a zero Burgers vector.

The stress in the dislocation problem from either (3.16) or (5.18) and (6.17)
becomes

σ =
(µ(1) − µ2)

µ(2)
σ(2) + λ(1) I tr e+ 2µ(1)e, (7.3)

and vanishes only subject to additional conditions.
We now apply Carlson’s results [4] and examine specific conditions under

which either the displacement or stress are independent of the shear modulus.
We let the body-force vanish, and keep fixed Poisson’s ratio and the boundary
conditions.

In the displacement boundary value problem, the displacement does not alter
[4], and consequently we have
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u = 0, (7.4)

e = E = 0, (7.5)

E(E) = −E(P )

=

(
µ(1) − µ(2)

)
µ(1)

e(2), (7.6)

σ =
(µ(1) − µ(2))

µ(2)
σ(2). (7.7)

In the traction boundary value problem, the stress does not depend upon
the shear modulus, so that for fixed body force and Poisson’s ratio we have
σ = 0, x ∈ Ω̄. This is the unique solution to the homogeneous traction boundary
problem provided −1 < ν < 1, µ(1) 6= 0 ([36]). Consequently, by (2.6) the
stress-elastic strain relations may be inverted to give E(E) = 0, and therefore
E = E(P ), where the compatible plastic strain E(P ) remains given by (7.6).

In the mixed boundary value problem, with zero body-force and homogeneous
boundary traction specified on ∂Ω2, the displacement is independent of the shear
modulus so that u = e = E = 0. The compatible plastic strain is again given by
(7.6), while the dislocation stress σ remains given by (7.7). It does not vanish
provided σ(2) is the non-trivial solution to the given mixed boundary problem
for µ(2).

We now consider the problem in which the shear modulus is fixed and Pois-
son’s ratio alone varies. It is immediately apparent from (6.19) that the incom-
patibility tensor in general does vanish.

7.2 Variation of Poisson’s ratio alone

Carlson [3] considers dependence upon Poisson’s ratio for fixed body force and
shear modulus. It is supposed that the elastic moduli λ(1), µ lie in the range
sufficient for uniqueness, and that both sets of moduli are constant.

For the displacement boundary value problem, a uniformly constant dilata-
tion θ̄ for one value of Poisson’s ratio ν(2) implies that the displacement is
independent of Poisson’s ratio. (For example, when ν(2) = 1, then u(2) =
(x− d)×∇φ+∇ψ, where d is a constant vector, φ(x) is harmonic, and ψ(x) is
an arbitrary function.) Thus, we have that u = e = E = 0, E(E) = −E(P ), and
from (6.17) that

E(P ) = −γθ̄I, (7.8)

where γ is defined by (6.20). Accordingly, η = 0, and the elastic and plastic
strains are compatible, with the plastic displacement given by

u(P ) = −γθ̄
3
x+ f + x× d, (7.9)

from which we deduce that α = 0 and b = 0. The dislocation stress, however,
is not zero but

σ = γθ̄(3λ(1) + 2µ)I. (7.10)
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In the traction boundary value problem, when for one value of Poisson’s ratio,
say ν(2), the dilatation is linear so that

tr e(2) = a.(x− c) + q, (7.11)

where a, c ∈ R3, q ∈ R are constant, the stress is independent of Poisson’s ratio.
In consequence, σ = 0, and provided Poisson’s ratio ν(1) lies in the uniqueness
range −1 < ν(1) < 1, µ 6= 0, then E(E) = 0, and E = E(P ). The plastic strain
is compatible and by (6.17) becomes

E(P ) = −γ (a.(x− c) + q) I. (7.12)

The continuous displacement u(P ) is easily derived to be

u(P ) = −γ {(a.(x− c) + q)(x− c)− (1/2)a(x− c).(x− c)}+ f + x× d, (7.13)

where f, d ∈ R3 are constants.
We deduce directly from (5.11) and (7.12) that α = 0, so that (5.1) and (5.8)

are consistent and give b = 0.
In the mixed boundary value problem, the vanishing of the dilatation for

one value of Poisson’s ratio implies that both the displacement and stress are
independent of Poisson’s ratio. Consequently, let us suppose that the Poissons’s
ratio ν(2) can be found such that tr e(2) = 0 (for example, set ν(2) 6= 1, u(2) =
∇φ, where φ is harmonic). We conclude that u = e = E = σ = 0, E(E) =
−E(P ) and by (6.17) that E(P ) = 0, so that η = 0. The plastic strain is
compatible and corresponds to a rigid body displacement, which implies that
α = 0. Therefore, subject to the stated assumptions, the generalised Filon
construct for mixed boundary value problems on simply-connected regions fails
to generate dislocations in the sense that the Burgers vector derived from (5.1)
or (5.8) vanishes.

7.3 Comments

The examples discussed in Sections 7.1 and 7.2 involve non-trivial but com-
patible plastic strains leading to zero dislocation density and Burgers vector.
The dislocation stress does not always vanish in each case. Nevertheless, our
discussion indicates that for the standard boundary value problems of linear
homogeneous isotropic elasticity on simply-connected regions Ω and for twice
continuously differentiable displacements, the Filon construct does not gener-
ate dislocations and indeed leads to the vacuous result that b = η = α = 0.
Furthermore, it is only in the traction boundary value problem that the disloca-
tion stress vanishes. In the displacement and mixed boundary value problems,
the difference, or dislocation, stress is tacitly non-zero on the part ∂Ω1 of the
boundary , and the condition of homogeneous boundary tractions required for
Mura’s impotent stress is not satisfied. Consequently, displacement and mixed
boundary conditions are consistent with non-zero dislocation stress.

Filon’s construct consequently possesses limitations, certainly in regard to
its application to linear homogeneous isotropic elasticity as considered in this
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paper. In order to generate meaningful results that admit incompatibilities,
some or all of the assumptions of Sections 7.1 and 7.2 must be abandoned. For
example, the next section applies Filon’s construct to the fundamental examples
of the edge and screw dislocations, obtained from elastic solutions possessing
certain singularities. Both η and α become singular at the origin which therefore
is excluded from Ω causing it to become multiply-connected. Equally important
is the assumption of homogeneous isotropic linear elasticity. As remarked in Sec-
tion 1, Filon’s construct remains valid for nonhomogeneous anisotropic elastic
solutions, and leads to solutions for continuous distributions of dislocations in
simply-connected regions, generated even from regular elastic solutions.

In the final section, we consider the inhomogeneity problem. This is excluded
from Carlson’s analysis precisely because the displacement does not satisfy the
differentiability assumptions on the interface of the inclusion.

8 Special examples

We derive solutions for an edge and a screw dislocation by means of Filon’s
construct, and show how a singular elastic solution yields a discontinuous dis-
placement in the corresponding dislocation problem. Other elastic problems
may be similarly employed to generate dislocation solutions (e.g., dislocation
loops) that combine the basic edge and screw dislocations. An account is post-
poned to elswhere.

8.1 Edge dislocation and point forces

The stress and strain for the edge dislocation are obtained from the homogeneous
isotropic linear elastic solution for a linear uniform distribution of point forces
in the whole space. A complex variable treatment is presented in [20]. Suppose
the edge dislocation is aligned along the infinite x3- axis and consider the plane
strain elastic field due a point force X1 uniformly distributed along the x3- axis
in the whole space R3 and directed along the positive x1- axis. The continuous
displacement in the elastic problem (see, e.g., [25, p.209]) for shear modulus
µ(α) and Poisson’s ratio ν(α) is given by

u
(α)
1 = − X1

8πµ(α)

(3− 4ν(α))

(1− ν(α))
ln r − X1

8πµ(α)(1− ν(α))

x2
2

r2
,

u
(α)
2 =

X1

8πµ(α)(1− ν(α))

x1x2

r2
,

where r2 = x2
1 + x2

2 6= 0 and x ∈ Ω∗ = R3\{x : x1 = x2 = 0}.
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We deduce that

e(α)
αα = − x1X1

4πµ(α)r2

(1− 2ν(α))

(1− ν(α))
, (8.1)

e
(α)
11 = − x1X1

8πµ(α)(1− ν(α))r2

(
(3− 4ν(α))− 2x2

2

r2

)
, (8.2)

e
(α)
22 =

x1X1(x2
1 − x2

2)

8πµ(α)(1− ν)r4
, (8.3)

e
(α)
12 = − x2X1

8πµ(α)(1− ν(α))r2

(
(1− 2ν(α)) +

2x2
1

r2

)
. (8.4)

Now let the shear modulus remain fixed at the value µ and consider the
difference in the strains (8.2)-(8.4) for a variation in Poisson’s ratio from ν(2) to
ν(1).

The corresponding elastic strain E(E), obtained from (6.2), becomes

E
(E)
αβ = eαβ +

(ν(1) − ν(2))

(1− 2ν(2))
e(2)
κκ δαβ , (8.5)

which by (8.2)-(8.4) yields

E
(E)
11 = B

(
x1(x2

1 + 3x2
2)

4πr4(1− ν(1))
− x1

2πr2

)
, (8.6)

E
(E)
22 = B

(
x1(x2

1 − x2
2)

4πr4(1− ν(1))
− x1

2πr2

)
, (8.7)

E
(E)
12 = −B x2(x2

2 − x2
1)

4πr4(1− ν(1))
, (8.8)

where

B =
(ν(1) − ν(2))X1

2µ(1− ν(2))
. (8.9)

We either may show that the elastic strain (8.6)-(8.8) is compatible on Ω∗

by appealing to either (5.13) or (6.7), or we may directly prove the elastic
discontinuous displacement for x ∈ Ω∗ ([33, p.57]) to be

u
(E)
1 =

B

4π(1− ν(1))

(
x2

1

r2
− (1− 2ν(1)) log

r

b

)
, (8.10)

u
(E)
2 = B

(
x1x2

4πr2(1− ν(1))
− 1

2π
tan−1 x2

x1

)
. (8.11)

But the existence of the elastic displacement u(E) means that either (5.1) or
(5.8) can be employed to derive a consistent value of the Burgers vector, provided
the relevant curve C is drawn in the cut region Ω̃. It is simpler, however, to
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employ the expression (6.10) and the plastic strain which from (6.18) beomes

E(P ) = − (ν(1) − ν(2))

(1− 2ν(2))
I tr e(2)

=
(ν(1) − ν(2))x1X1

4πµ(1− ν(2))r2
I (8.12)

= B
x1

2πr2
I.

Insertion of (8.12) into (6.10) followed by integration around a plane circle ∂Σ
of fixed radius a centre the origin leads to the expression for the corresponding
Burgers vector. On taking C to be the plane circle ∂Σ of fixed radius a and
centre at the origin, we obtain from (5.8) the expressions

2B−1bα =

∮
∂Σ

(
x1

a2
− yγ

(x1

r2

)
,γ

)
dxα

+

∮
∂Σ

(x1

r2

)
,α
yβ dxβ

=

∮
∂Σ

(
2x1

a2
+
x̄1

a2
− 2x1xγ x̄γ

a4

)
dxα

−
∮
∂Σ

(
δ1α
a2
− 2x1xα

a4

)
x̄γ dxγ ,

since on the circle ∂Σ we have

yγ dxγ = −x̄γ dxγ , yγ = xγ − x̄γ .

Evaluation of the respective integrals leads to

b1 = 0, (8.13)

b2 = B =
(ν(1) − ν(2))X1

2µ(1− ν(2))
. (8.14)

On substituting the value of B from (8.14) in (8.6)-(8.8), we recover the
well-known expressions for the elastic strain belonging to an edge dislocation
along the x3-axis (see [33]).

Let us also remark that the continuous displacement u = u(1) − u(2) corre-
sponds to the total strain E = e(1) − e(2), which is compatible on Ω∗.

Expressions for the general edge dislocation may be derived by introduc-
tion of the point force (X1, X2) uniformly distributed along the x3-axis. The
derivation follows the same pattern as just described.

8.2 Screw Dislocation and anti-plane shear

We recover the displacement and strain for a single screw dislocation from the
problem in homogeneous isotropic linear elasticity of anti-plane shear with sin-
gularity at the origin. Let θ = tan−1(x2/x1), x1 6= 0. Then the displacement
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and strain components are

u
(α)
1 (x) = u

(α)
2 (x) = 0, x ∈ R3, (8.15)

u
(α)
3 = u

(α)
3 (x1, x2) = θ, x ∈ Ω∗, (8.16)

e
(α)
13 = (1/2)u

(α)
3,1 = − x2

2r2
. x ∈ Ω∗, (8.17)

e
(α)
23 = (1/2)u

(α)
3,2 =

x1

2r2
, x ∈ Ω∗, (8.18)

with the remaining strain components all identically zero. The non-zero stress
components are given by

σ
(α)
13 = 2µ(α)e

(α)
13 = −µ(α)x2

r2
, (8.19)

σ
(α)
23 = 2µ(α)e

(α)
23 = µ(α)x1

r2
, (8.20)

where, as before, r2 = xαxα 6= 0, and Ω∗ = R3\{x : x1 = x2 = 0}.
We now determine the dislocation generated from the difference in the anti-

plane shear fields (8.15)-(8.20) for two distinct values of the shear modulus. The
difference displacement is u = u(1) − u(2) ≡ 0, as the constituent displacements
are independent of the shear modulus. Consequently, the total elastic strain, E,
is identically zero, while from (8.17),(8.18), and (6.1) we have

E
(P )
α3 = − (µ(1) − µ(2))

2µ(1)
θ,α (8.21)

E
(P )
αβ = E

(P )
33 = 0. (8.22)

We take ∂Σ to be a circle of radius a centre the origin in the x1x2-plane. The
Burgers vector from (6.10) or (6.11) then has components b1 = b2 = 0, and

b3 =
(µ(1) − µ(2))

µ(1)

∮
∂Σ

θ,α dxα

= 2π
(µ(1) − µ(2))

µ(1)
, (8.23)

so that the corresponding non-zero “plastic” strains are

E
(P )
α3 = − b3

4π
θ,α. (8.24)

The non-zero components of elastic strain and stress appropriate for a screw

dislocation in an infinite medium: ([33, p.57]) are then E
(E)
α3 = −E(P )

α3 and

σ13 = −µ
(1)b3
2π

x2

r2
, (8.25)

σ23 =
µ(1)b3

2π

x1

r2
, (8.26)
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where as before r2 = xαxα 6= 0.
We note that the circuit ∂Σ is drawn to enclose the coordinate origin and

therefore does not intercept but encircles the single screw dislocation located at
the origin.

As a further illustration, we may apply Filon’s construct to derive the solu-
tion when a screw dislocation is located along the axis of a circular cylinder of
radius R with lateral free boundary. The anti-plane distribution now is augu-
mented by that for torsion. The analysis is straightforward and leads to E = 0,
and to non-zero components of the elastic dislocation strain and stress given by

E
(E)
13 =

b3
4π

(
2x2

R2
− x2

r2

)
, (8.27)

E
(E)
23 =

b3
4π

(
−2x1

R2
+
x1

r2

)
, (8.28)

σ13 = µ(1) b3
2π

(
2x2

R2
− x2

r2

)
, (8.29)

σ23 = µ(1) b3
2π

(
−2x1

R2
+
x1

r2

)
, (8.30)

where R2 = r2+x2
3. The corresponding elastic dislocation displacement becomes

u
(E)
1 =

b3x2

πR2
, u

(E)
2 = −b3x1

πR2
, u

(E)
3 =

b3θ

2π
.

The torsion of the cylinder represented by the distributions (8.27)-(8.30) is
observed in long thin whiskers containing a screw dislocation ([11]).

9 Inhomogeneities and (Somigliana) dislocations

It is clear from the relationships identified in Section 6 that the inhomogeneity
problem introduced in Section 4.2 is analogous to an elastic body containing an
array of dislocations continuously distributed over the region Γ of the inhomo-
geneity. The inhomogeneity problem is also related to the Somigliana dislocation
in which the displacement exhibits a discontinuity across a surface.

A comprehensive examination of the relation between Volterra and Somigliana
dislocations and the inhomogeneity problem as defined in Section 4.2 is con-
ducted in [12, §5] for a bonded interface. Expressions for the displacement,
derived in the latter article mainly from heuristic cut-and-weld operations, are
recovered here using the relationship with the variation of moduli. The problem
when interfacial slipping is allowed is analysed in [27].

Throughout this section, we adopt the notation of Section 4.2, for which
superscripts (1) and (2) refer respectively to unperturbed and perturbed fields.
We compare the constitutive relations (5.18) and (3.7) to obtain

E(P ) = (1/2)
(
β(P ) + (β(P ))T

)
,
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and consequently

E(P ) =

{
−(I −D)e(2), x ∈ Γ,
0, x ∈ Ω\Γ̄. (9.1)

The elastic moduli in the undislocated region,or matrix, Ω\Γ̄, are c = c(1),
and correspond to those in the unperturbed problem. Note also that E = e.

We obtain the total dislocation displacement u and strain E once we know
either the plastic distorsion tensor β(P ) or the solution to the inhomogeneity
problem. Let us suppose the latter, so that the plastic strain E(P ) is given by
(9.1).By analogy with (4.18), the total dislocation displacement is

ui(x) =
∂

∂xj

∫
Γ

c
(1)
kjpqE

(P )
pq G

(1)
ik (x, y) dy. (9.2)

When the plastic distorsion tensor is known, the previous integral gives the
difference displacement in the inhomogeneity problem which, when added to the
displacement in the unperturbed problem, leads to the perturbed displacement
everywhere in Ω. The perturbed strain in the inhomogeneity from (9.1) is

e(2) = −(I −D)−1E(P ), x ∈ Γ.

We examine the various relationships for homogeneous isotropic linear elas-
ticity. We have shown that the corresponding incompatibility tensor is inde-
pendent of a variation in the shear modulus and accordingly we consider only
variations in Poisson’s ratio. We denote the common shear modulus by µ.

The expression (9.1) simplifies and the plastic strain becomes

E(P ) =

{
−γtr e(2)I, x ∈ Γ,
0, x ∈ Ω\Γ̄, (9.3)

where γ is given by (6.20). The plastic strain tensor is therefore polar.
On recalling (4.24) and (4.25), we may alternatively write these expressions

as

E(P ) =

{
−γ1tr e

(1)I, x ∈ Γ,
0, x ∈ Ω\Γ̄, (9.4)

where

γ1 = γ
(λ(1) + 2µ)

(λ(2) + 2µ)
=

(ν(1) − ν(2))(1− ν(1))

(1 + ν(1))(1− ν(2))(1− 2ν(1))
. (9.5)

It follows from (6.19) that the incompatibility tensor reduces to

ηij = γ1e
(1)
kk,ij , (9.6)

and therefore in general does not vanish, so that both E(E) and E(P ) are in-
compatible.
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The integral (9.2) determines the total dislocation (or difference) displace-
ment and hence the total strain E. We have

ui(x) = −γ1
1

4π

∂

∂xi

∫
Γ

e
(1)
kk (y)

R(x, y)
dy, x ∈ Ω, (9.7)

Eij(x) = −γ1
1

4π

∂2

∂xi∂xj

∫
Γ

e
(1)
kk (y)

R(x, y)
dy, x ∈ Ω, (9.8)

which enables the elastic dislocation strain E(E) to be calculated from

E(E) = E − E(P ) (9.9)

= E + γ1tr e
(1)I, x ∈ Ω. (9.10)

Thus, in principle, we may obtain the total dislocation displacement and
corresponding strain for an array of continuous dislocations derived from the
unperturbed dilatation in the whole space subject to various loadings. The
practical determination of the dislocation quantities depends upon the exact
evaluation of the attraction in (9.7). As already stated, this is known for several
non-uniform densities, and also for uniform densities contained in an ellipsoid.
In particular, for a dislocation array uniformly distributed in an ellipsoidal shell,
the total dislocation displacement vanishes inside the shell, and achieves its
maximum and minimum value at points on the shell’s outer surface.

As a simple illustration of the approach, let us return to the example of the
spherical inhomogeneity Γ of radius a in an infinite medium subject to uniform
hydrostatic pressure P at infinity. From the solution derived in Section 4.2, we
have that the plastic strain is uniform and is given by

E(P )(x) =

{
QI, x ∈ Γ,
0, x ∈ R3\Γ̄, (9.11)

where

Q = 3γ1A, (9.12)

γ1 = γ
(λ(1) + 2µ)

(λ(2) + 2µ)
, (9.13)

A =
P

(3λ(1) + 2µ)
, (9.14)

on recalling previously introduced notation.
On further appealing to the results established in Section 4.2, we conclude

that the total displacement in terms of Q within the dislocated region Γ is
expressed as

u(x) =
Q

3

(3λ(1) + 2µ)

(λ(1) + 2µ)
x, x ∈ Γ, (9.15)

and in the undislocated region as

u(x) =
a3Q

3

(3λ(1) + 2µ)

(λ(1) + 2µ)

x

R3(x, 0)
, x ∈ R3\Γ̄. (9.16)
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We proceed slightly differently to the treatment in Section 4.2 of the corre-
sponding inhomogeneity problem to obtain the elastic stress. The total strain
from (9.15) in the dislocated region becomes

E(x) =
Q

3

(3λ(1) + 2µ)

(λ(1) + 2µ)
I, x ∈ Γ, (9.17)

while from (9.16) in the undislocated region, the total strain is

E(x) =
a3Q

3

(
3λ(1) + 2µ

λ(1) + 2µ

)[
I

R3(x, 0)
− 3x⊗ x
R5(x, 0)

]
, x ∈ R3\Γ̄, (9.18)

which by (9.9) gives the elastic strain in the respective regions as

E(E)(x) = − 4µQ

3(λ(1) + 2µ)
I, x ∈ Γ, (9.19)

and

E(E)(x) =
a3Q

3

(
3λ(1) + 2µ

λ(1) + 2µ

)[
I

R3(x, 0)
− 3x⊗ x
R5(x, 0)

]
, x ∈ R3\Γ̄, (9.20)

while the elastic stress is

σ(x) = −4µQ

3

(
3λ(1) + 2µ

λ(1) + 2µ

)
I, x ∈ Γ, (9.21)

and

σ(x) =
2µa3Q

3

(
3λ(1) + 2µ

λ(1) + 2µ

)[
I

R3(x, 0)
− 3x⊗ x
R5(x, 0)

]
, x ∈ R3\Γ̄, (9.22)

which from (9.12) are the stresses (4.31) and (4.32) otherwise obtained.
The incompatibility tensor associated with either E(P ) or E(E), and from

(5.4), the dislocation density, vanish everywhere except on ∂Γ. Indeed, the
elastic strain is derivable from the elastic displacement which in the respective
regions is given by

u(E)(x) = − 4µQ

3(λ(1) + 2µ)
x, x ∈ Γ,

and

u(E)(x) =
a3Q

3

(3λ(1) + 2µ)

(λ(1) + 2µ)

x

R3(x, 0)
, x ∈ R3\Γ̄.

By inspection u(E)(x) suffers the discontinuity across ∂Γ given by[
u(E)

]
∂Γ

= −Qx, (9.23)

equivalent to a non-uniform array of Somigliana dislocations distributed over
∂Γ.
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Remark 9.1 We note that had the incompatibility tensor vanished everywhere,
then the present example would have contradicted [15, Thm.2], because the elas-
tic stress (9.21) and (9.22) is non-zero in the regions Γ and R3\Γ̄ and vanishes
at infinity. But singularities in the dislocation density and incompatibility tensor
fail to satisfy the conditions of [15, Thm.2], and consequently no contradiction
occurs.

Finally, on letting a → 0 and Q → ∞ such that a3Q remains constant, the
displacement (9.16), and stress (9.22), are those for an interstitial atom at the
origin. (See, for example, [11].)
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C.R.Acad.Sci. Paris (1898) 126, 1129-1132.

[6] Coker, E. G. and Filon,L.N.G. A Treatise on Photo-Elasticity. (Revised by
H.T.Jessop).University Press. Cambridge (1957)

[7] Dundurs, J. Load and self-stress in an elastic body. J. Elast.,(1972) 2(3) ,
211-213.

[8] Dundurs, J. and Markenscoff, X. Invariance of stresses under a change of
elastic compliances. Proc. R. Soc. Lond. (1993), 443,289-300.

[9] Eshelby, J D. The determination of the elastic field of an ellipsoidal inclu-
sion, and related problems. Proc.Roy.Soc.(1957) A241, 376-396.

[10] Eshelby, J.D. The elastic field outside an ellipsoidal inclusion. Proc.Roy.Soc.
(1959) 252, 561-569.

[11] Eshelby, J. D. The Continuum Theory of Lattice Defects. In: Progress in
Solid State Physics (Eds F.Seitz and D. Turnbull) (1956), 3, 79-144.New
York Academic Press.

[12] Eshelby, J.D. Elastic Inclusions and Inhomogeneities. Progress in Solid Me-
chanics. (Ed. by I.N.Sneddon and R.Hill) 2,89-140. Amsterdam: North-
Holland Publ. Co. (1961).

33



[13] Filon, L.N.G. On stresses in multiply-connected plates. Report of the
Eighty-Ninth Meeting of the British Association for the Advancement of
Science (1921). London (1922).

[14] Gurtin, M.E. The Linear Theory of Elasticity. Handbuch der Physik
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