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Explicit expressions are presented for the critical breakdown electric field value as a function of
biaxial strain. Simplified results for uniaxial and for equi-biaxial stress provide further insight into
the findings of Zhao and Suo [1].
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The paper of Zhao and Suo [1] describes the first com-
plete electromechanical model for the phenomenon of
electrical breakdown in thin elastomers. The purpose of
this comment is to point out some analytical simplifica-
tions which provide further insight into their paper. The
results here stem from the observation that the determi-
nant of the Hessian H of eq. (4) in [1] may be factored,
leading to semi-explicit formulas for the critical values of
the electrical and mechanical parameters.
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where the nondimensional parameter z is new, and all
other notation follows that of [1]. It may be checked that
the determinant reduces to a quadratic in z,
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The roots are real and of opposite sign. The critical value
of z at which the Hessian is no longer positive definite is
therefore
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The critical value of the electrical field at breakdown and
the corresponding stresses are
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States of uniaxial and equi-biaxial stress are particu-
larly simple. Under equal biaxial stress we obtain
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These parameterize the critical electrical and mechanical
fields in terms of λ ≥ λc = 21/3 ≈ 1.26. The minimum

value of
√

ǫ
µEc is 1.038 and occurs at λ = 101/6 ≈ 1.47.

Under uniaxial stress, eq. (4b) with j = 2 and s2 = 0
yields the following relation between the stretches:
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Hence, we can parameterize the critical values in terms
of 1 < λ2 ≤ λc:
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In this case Ec is a monotonically decreasing function

of the stress s1, and
√

ǫ
µEc → 1 in the limit of large

uniaxial stress. Figure 3(b) in [1] indicates that this is
the smallest achievable value of the critical electric field
strength.
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