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Abstract 

A technique for setting up generalized continuum theories based on a balance law and nonlocal 
thermodynamics is suggested. The methodology does not require the introduction of gradients of the 
internal variable in the free energy while allowing for its possibility. Elements of a generalized (brittle) 
damage model with porosity as the internal variable are developed as an example. The notion of a flux of 
porosity arises, and we distinguish between the physical notion of a flux of voids (with underpinnings of 
corpuscular transport) and a flux of void volume that can arise merely due to void expansion. A 
hypothetical, local free energy function with classical limits for the damaged stress and modulus is 
constructed to show that the model admits a nonlinear diffusion-advection equation with positive 
diffusivity for the porosity as a governing equation. This equation is shown to be intimately related to 
Burgers equation of fluid dynamics, and an analytical solution of the corresponding constant-coefficient, 
semilinear equation without source term is solved by the Hopf-Cole transformation, that admits the Hopf-
Lax entropy weak solution for the associated Hamilton-Jacobi equation in the limit of vanishing diffusion. 
Constraints on the class of admissible porosity and strain-dependent free energy functions arising from 
the mathematical structure of the theory are deduced. This work may be thought of as providing a 
continuum thermodynamic formalism for the internal variable gradient models proposed by Aifantis 
(1984) in the context of local stress and free-energy functions.  However, the degree of diffusive 
smoothing is not found to be arbitrarily specifiable as mechanical coupling produces an ‘anti-diffusion’ 
effect, and the model also inextricably links propagation of regions of high gradients with their diffusive 
smoothing. 
 
1. Introduction 
 
In formulating generalized continuum theories with a gradient of an internal variable, use is often 
made of a postulated principle of virtual power (or an equivalently postulated microforce 
balance) and/or an inclusion of the gradient term in the free-energy with subsequent utilization  
of the Second Law. Depending upon taste, such postulation may or may not seem to be 
sufficiently physically motivated, at least in terms of operational definitions of the various 
microforces involved and their experimental observation/measurement. Less subjectively, the 
above techniques rely crucially on the explicit dependence of the free energy on the gradient 
term, and such an additional contribution to the free energy can be shown to be superfluous at 
least in one context, suggesting that some caution should be exercised in following this approach. 
In this article, I demonstrate the above superfluity through an explicit example related to 
dislocation mechanics. 

As an alternative strategy to formulating generalized theories, I suggest the choice of a 
physically clear kinematic variable (that could be a gradient of an internal variable) along with 
the discovery, or use of an already-existing, equally clear evolution statement in the form of a 
balance law  that is essentially kinematical before the introduction of constitutive statements for 
the flux and source terms. Second, a free energy function with a ‘correct’ dependence on the 
state variables, which may very well not include a dependence on the added kinematic (gradient) 
variable, is considered important. With these ingredients in hand and use of the Coleman-Noll-
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Gurtin Second Law apparatus, at least in spirit if not in details, a closed theory, up to details of 
constitutive dependencies on derived driving forces, can be developed. 

These ideas are demonstrated in the context of a generalized continuum theory for void volume 
fraction evolution in an otherwise elastic material. Interestingly, the model suggests that one may 
have a diffusive effect in damage evolution only if the strain energy function depends upon the 
void volume fraction more than linearly, thus raising the physical question of the appropriate 
dependence of the homogenized elastic modulus on void volume fraction at high void volume 
fraction. The development of nonlocal models of damage is an extensive field with many models 
as described in the excellent review section in Peerlings et al. (2004), beginning with the 
pioneering works of Bazant (1984) and Bazant and Pijaudier-Cabot (1988); in most cases, the 
introduction of the nonlocal terms in the constitutive structure do not translate to directly 
identifiable physical mechanisms that can then be a guide for experimental characterization or 
computation from homogenization. The addition to this huge literature with yet another model in 
this article may perhaps be excused due to its intended emphasis on physical transparency: the 
damage variable is the void volume fraction, a well identifiable quantity. Being a density, the 
evolution of this damage variable, of necessity, has to fit into the structure of a balance law. A 
material control volume has its content of void volume altered by voids/cracks entering into it 
through its bounding surface that may be interpreted as a flux of void volume; the extension of 
cracks and voids necessarily involve dissipation as at the atomistic level these are very dynamic 
events and thus the flux of void volume may be interpreted as dissipative in origin. And, finally, 
the free energy of a solid must necessarily depend upon the void volume content, as in the limit 
when the void volume fraction is unity there is no solid left and hence no corresponding stored 
energy, while for the unvoided material the solid has stored energy when strained due to 
deformation of atomic bonds – more convincingly, homogenization results for a solid containing 
a dilute concentration of voids always show at least a dependence of the elastic moduli on the 
void volume fraction (e.g. Nemat-Nasser and Horii, 1999). 

As for connections with prior work, the final outcome of the methodology suggested here is a 
special case of Gurtin’s generalized Cahn-Hilliard equations (1996), but without the use of a 
microforce balance. These latter equations are fourth-order diffusive PDE in the order parameter 
with a singular perturbation structure, related to the introduction of the gradient of the order 
parameter into the free energy function to provide stabilization to the ill-posed, backward heat 
equation that arises near a spinodal decomposition in phase transforming continua, as described 
in Cahn (1961). In contrast, the central hypothesis in this work relates to not necessarily 
including a gradient term in the free energy, and the second-order spatial differential operator 
that arises in our equations appears in a physically natural manner to be a stabilizing, diffusive 
effect. 

There are also stabilizing, second-order PDEs in the internal variable/order parameter field that 
arise in the framework of Ginzburg-Landau/Allen-Cahn equations in materials science. Gurtin’s 
(1996) work contains a generalization of these equations for coupling with deformation, in the 
framework of a microforce balance. Menzel and Steinmann’s (2000) work may be considered as 
an application to plasticity of such equations. Of course, the appearance of the stabilizing 
second-order spatial differential operator in these works hinges crucially on the presence of the 
gradient of the order parameter field in the free energy, and it is in this respect that the present 
work differs from the above. 

In summary, the general class of models presented here takes on an intermediate position 
between deformation-coupled Ginzburg-Landau/Allen-Cahn equations and the Cahn-Hilliard 



 
 
 
 

3 
 
 

equations. The framework produces second-order PDE in the order parameter/internal variable 
field without the presence of a gradient in the free energy function but due to the fact that the 
order parameter satisfies a balance law. 

A balance law for a field variable, before the introduction of constitutive quantities, is a 
tautological statement that arises from merely the physical definition of the variable. As such, it 
is to be satisfied as a necessary condition by that field regardless of whether its evolution is 
defined by the balance law itself or some other constitutive statement, and this fact poses 
restrictions on constitutive equations. While such an unequivocal statement cannot in general be 
made about a generic type of dependence of the specific free energy on the internal 
variable/order parameter, well-founded choices generalizing experience and homogenization 
theory for micromechanics can be made, and these two ingredients seem to suggest a pathway to 
defining reasonable models of inhomogeneous continuum response. 

 
2. Explicit dependence of specific free energy on internal variable is not always correct: 
elastic dislocation theory as an example 
 
The order parameter/internal variable in the elastic theory of dislocations is the Nye (1953) 
dislocation density tensor. However, it is a well-known standard result (see, e.g., Kröner, 1981, 
Sec. 4) that the strain energy density of a dislocation distribution (including individual discrete 
dislocations) depends only on the elastic strain that results from the dislocation density 
distribution and not on both the elastic strain and the dislocation density. Furthermore, this strain 
energy density function corresponds to the linear elastic stress and strain fields of the dislocation 
distribution involved, as the latter fields are understood in classical dislocation theory (e.g., 
Nabarro, 1987). In what follows in this section, this result is illustrated in the context of standard 
procedures for solving boundary value problems in continuum inelasticity theory, one goal being 
to demonstrate that such calculations may be performed without recourse to Green’s functions 
and infinite media and through equations ideally suited for numerical computation with the finite 
element method. 

Consider the following question: we are interested in determining the state of internal stress and 
the strain energy in a linear elastic body of given geometry, for a prescribed dislocation density 
field α . For definiteness, the prescribed dislocation density field can be thought of as 
representing a screw dislocation along a straight cylinder representing its core. While the main 
conclusion of this section applies at all instants of time in the deformation of a body, it suffices 
to demonstrate the idea at any one instant and we choose the initial instant for definiteness. Thus, 
the problem may be thought of as determining the initial condition on the plastic distortion field 
in a conventional elastoplasticity calculation, where the plastic distortion field, pU , has to satisfy 
 pcurl =−αU . (1) 
Thus, we need to solve the equations 

 
,

e

e p

e p

div

grad
curl curl

⎡ ⎤ =⎢ ⎥⎣ ⎦
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=− =α

CU 0

U U u
U U

 (2) 

and since we are talking about initial conditions (for an elastoplasticity calculation), the 
displacement ≡u 0  at the initial time so that e p=−U U  at this time. Here, C  is the possibly 
anisotropic linear elastic moduli with major and minor symmetries and eU  is the elastic 
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distortion. In classical elastoplasticity, (2) is appended with an evolution equation for pU  or its 
symmetric part. For this problem (2) at the initial time when the displacement is known, we 
consider statically consistent traction boundary conditions (possibly vanishing) to be specified. 
The paper of Willis (1967) shows that solving these equations amounts to solving the problem of 
internal stress in classical dislocation theory corresponding to the prescribed dislocation density 
field. The existence of a non-trivial initial dislocation density distribution in the body is an 
eminently physical statement; the associated possibility of a non-trivial, initial plastic distortion 
in any theory where the fundamental relation (1) is active reflects the physical fact that the 
instantaneous dislocation density distribution encodes information of some portion of the past 
history of dislocation motion/nucleation  in the body. 

To solve the problem in the format of continuum inelasticity, we first note that it can be shown 
that there is at most one solution to the problem of calculating the initial distribution of  stress, 

e= εT C , where eε  is the symmetric part of eU . Thus, as long as we can solve (2) and the 
associated boundary conditions by any procedure, the resulting solution would be the correct 
one. To find this solution, represent the plastic distortion as a sum of a gradient of a vector field 
and a tensor field whose curl  does not vanish as 
 :p grad=− +χU z  (3) 
so that 
 pcurl curl− = ⇒ =α χ αU . (4) 

In order to solve for χ  in a well-posed manner, we append the equations 

 
 on boundary

div =
=
χ

χ
0

n 0
 (5) 

to (4) to obtain a Poisson’s equation 
 div grad curl=−χ α  (6) 
for the components of the tensor χ  with Dirichlet boundary conditions; this problem may be 
solved by standard methods of potential theory. 

With a solution for χ  in hand, one solves the equilibrium equation 
 [ ] [ ]div grad div− = χC z C  (7) 
for the vector field z  with Neumann boundary conditions inferred from the prescribed traction 
boundary condition and the boundary values of the field χ . This is a standard problem in linear 
elasticity theory. The solution for grad z  is unique, and this is all that matters for the present 
purpose. 

The fields grad z  and χ  in conjunction with (3) and ≡u 0  now deliver the solution to (2) and 
thus the unique elastic strain and stress fields corresponding to the prescribed dislocation density 
field α , including arbitrary discrete dislocations in finite, anisotropic, linear elastic bodies. 

The corresponding elastic strain energy density distribution in the body, consistent with the 
classical elastic theory of dislocations, is given by 

 ( ) ( )1: :
2

e e eψ =ε C ε ε     ;    ( ):e e
symsym

grad= − + =ε χz U  (8) 

and, consequently, an assumption of the form  
 ( ) ( )ˆeψ ψ ψ= + αε  (9) 
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would be superfluous and physically inaccurate in this context where core effects are not taken 
into account. 
 
3. Elements of a nonlocal damage model based on thermodynamics and a necessary balance 
law of kinematical origin 
 
It has been well-understood for some time now that classical local theories of continuum 
mechanics are inadequate for dealing with stress-softening response and the prediction of 
associated length scale effects. Both these physical features are an essential ingredient of 
materials that have been damaged due to the production of microcavities in them. Bazant (1984) 
was the first to realize that a proper theoretical treatment of such effects would require 
consideration of some sort of non-local effects in material response. Thus, an integral/gradient 
measure of some effective strain or a ‘damage’ variable has been introduced in the elastic 
stiffness, strain energy, or the strength of the material (cf. Pijaudier Cabot and Bazant, 1988; 
Aifantis, 1984; Peerlings at al. 2004; Lorentz and Andrieux, 1999; Liebe et al. 2001). When the 
damage variable is identified with some representation of voids so that a spatial region with a 
high gradient in this variable may be grossly interpreted as a boundary between very differently 
voided region and, in the limit, as a microcavity surface, the inclusion of such gradient in the free 
energy may be justified as a continuum accounting of surface energy. Except for this case, it is 
perhaps fair to say that the other devices used for introducing a nonlocal effect in damage are left 
somewhat wanting in terms of physical justification of the means adopted to do so. 

In contrast, the model presented here is based on the four assumptions that follow: 
1. The physical body containing voids is thought of as a set of points, as is usual in 

continuum mechanics. Each point is endowed with a void volume fraction attribute, 
defined physically as the limit of the ratio of the volume of voids in a region to the  
volume of the region, as the volume of the region goes to zero. The void volume 
fraction field on the body naturally varies with time. This field is identified as the 
damage variable of the model, physically representative of a density of microcavity 
volume in the material. We denote it with the symbol [ ]0,1ϕ ∈ . 

2. The linear elastic moduli, and therefore the specific free energy, of the voided material 
depends on the void volume fraction. This is physically intuitive as well as supported by 
micromechanics studies (e.g. Nemat-Nasser and Horii, 1999). Thus, the specific free 
energy of the material depends, as a first approximation, only on elastic strain and the 
void volume fraction. In particular, the specific free energy of the material does not 
depend on a gradient of the damage  variable. 

3. The void volume fraction, defined as above, is a volumetric density. Therefore, its 
evolution, regardless of how it is specified, constitutively or otherwise, can necessarily 
be expressed as a balance law. For, if we focus on any arbitrarily fixed region in the 
body, it is a purely kinematic argument that the rate of change of the void volume 
contained in that region changes due to the production of new voids and due to the 
influx of void volume content from the ingress of microcracks/cavities into that volume 
from its exterior. It should be carefully noted that a flux of void volume through a 
surface is not necessarily to be identified with a transport of entire voids through the 
surface, each void considered as an entity. Instead the expansion/contraction of the 
voids causes the flux in void volume that is relevant for this discussion. In other words, 
void transport is sufficient for transport of void volume, but not necessary. Thus, the 
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flux of void volume may be linked to the transport of infinitesimal elements of void-
solid interface instead of entire voids. We make the usual assumption of continuum 
mechanics that given an oriented plane surface with normal n  through a point x  there 
exists a flux vector f  as a function of x  such that ⋅f n  equals the flux of void volume 
per unit area per unit time through the plane area at x  in the direction −n . Thus, in the 
situation when the point x  resides on the surface of a closed volume and n  is the 
outward unit normal at x  with respect to the closed volume, ⋅f n  characterizes the 
inward flow of void volume per unit area per unit time into the body at x . 

4. We assume that the dissipated mechanical energy characterized by the rate of working 
of the external loads less the rate of change of free energy and kinetic energy of the 
body is always non-negative in any physical process of the body: 

 ( )2 0
B B B

dda dv dv
dt

ψ ρ
∂

= ⋅ + ⋅ − + ≥∫ ∫ ∫t u b u uD  (10) 

Here, t  is the applied traction on the external surface of the body, u  is the displacement 
field, b  is the body force density, ψ  is the free energy density field and ρ  is the mass 
density. 

Using standard arguments of continuum mechanics involving localizing integral statements of 
balance, Assumption 3 above implies that the void volume fraction field satisfies 
 div sϕ = +f  (11) 
where s  is a nucleation rate of void volume fraction. Assumption 2 above implies a free energy 
function of the form 
 ( ),ψ ψ ϕ= ε , (12) 
where ε  is the strain tensor given by the symmetric part of the displacement gradient. 
Assumption 4 along with balance of linear momentum implies that 
 : 0

B B
dv dvψ= − ≥∫ ∫εTD , (13) 

where T  is the stress tensor, and assuming elastic behavior in the absence of void evolution, i.e. 

 ψ∂
=

∂ε
T , (14) 

we have 

 0
B

dvψ ϕ
ϕ

∂
= − ≥

∂∫D . (15) 

For simplicity we assume that no voids are introduced into the body through its external 
boundaries. Then, substituting (11) in (15) exposes the driving forces for the flux and the source 
terms as the multipliers of the terms f  and s  in 

 [ ]
B

grad Y Ys dv= − ⋅ +∫ fD ,  :Y ψ
ϕ

∂
=−

∂
, (16) 

in the sense that in the absence of these driving forces absence the physical mechanisms of the 
void volume fraction flux and nucleation could occur without any dissipation of energy, a clearly 
unphysical statement as at the atomic level, crack/microcavity propagation or nucleation are 
dynamic events that result in energy transfer into incoherent atomic vibrations that cannot be 
represented at coarser time and length scales by the continuum displacement field. 

The driving force Y  for void volume fraction nucleation is standard from the thermodynamics 
of local damage models. It is instructive to write the driving force for the flux in the form 
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2 2

2 :grad Y grad gradψ ψϕ
ϕ ϕ

∂ ∂
− = +

∂ ∂ ∂
ε

ε
 (17) 

and note that this model implies that there cannot be a thermodynamic force for void flux unless 
the free energy depends upon the void volume fraction more than linearly. Assuming the 
simplest possible linear, isotropic constitutive response for the flux of the form 
 ( )B grad Y= −f ,   0B ≥ ,    (18) 
where B  is a material parameter required on dimensional grounds, we obtain a ‘diffusive’ 
evolution equation of the form 

 
2 2

2 :div B grad div B grad sψ ψϕ ϕ
ϕ ϕ

⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟= + +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠
ε

ε
, (19) 

with s  characterized by  a local constitutive equation ensuring 0Ys ≥ . For stable response it is 
necessary that 
 2 2 0ψ ϕ∂ ∂ > , (20) 
implying a decrease in driving force for cavity nucleation with increase in porosity.  

It is also important to note that a physical length-scale enters the problem through the material 
parameter B . Of course, as stated the model would be rate dependent due to the time-
dependence of the diffusion term, but it is a straightforward matter to make appropriate 
modifications for empirically postulated rate-independent response as well as more complicated 
constitutive rules. Due to the clear meaning of the diffusive flux term, it may be expected that the 
constant B  could be determined from experiments measuring work done in damage evolution. It 
is clear from (19) that this generalized model of damage provides a diffusive stabilization 
opposing a localization of damage on to a surface of discontinuity. Apart from this diffusive 
effect, the model implies that the evolution of void volume fraction is dependent on the 
Laplacian as well as the first gradient of the strain tensor field, spatially ‘nonlocal’ effects that 
are absent in local damage models. 

It is interesting to expand (19) in the form 
 ( )

Laplacian

B div grad B grad gradϕϕ ϕϕϕ
ϕ

ϕ ψ ϕ ψ ϕ ϕ= ∂ + ∂ ⋅ +  (21) 

and note that, for 0ϕϕϕψ∂ ≠ , the model admits traveling wave solutions for the void volume 
fraction (at least in the linearized setting), reflecting the motion of smoothed interfaces between 
void and solid. 
 
4. A 1-d Example 
 
In this section we derive the governing equation for the extension of an elastic bar with damage. 
Since the backward heat equation (i.e. with negative coefficient of the Laplacian) can be entirely 
unstable, a primary goal is to see whether a free energy function that yields classical expressions 
for the stress and the elastic modulus is at least mathematically possible for which one obtains a 
forward diffusion operator in the porosity evolution in the governing equations of the model.  

Consider a 1-d elastic bar under tension capable of developing damage through the 
development of a porosity distribution. The axis of the bar is aligned with the x  coordinate 
direction. Let the free energy function be ( ),ψ ε ϕ  where u xε =∂ ∂ , and u  is the axial 
displacement. Static equilibrium requires 
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 ( ), 0,
x

ψ ε ϕ
ε

⎡ ⎤∂ ∂
⎢ ⎥ =
⎢ ⎥∂ ∂⎣ ⎦

 (22) 

 where the axial stress is ψ ε∂ ∂ . Thus, (22) implies 

 
2

2 2x x
ε ψ ε ϕ ϕ

ψ ε

⎛ ⎞∂ ∂ ∂ ∂ ∂⎟⎜ ⎟=−⎜ ⎟⎜ ⎟⎜∂ ∂ ∂ ∂⎝ ⎠
 . (23) 

Substituting (23) in the 1-d form of (19), one obtains 

 
( )222

2 2 2 .B s
x x

ψ ε ϕψ ϕϕ
ϕ ψ ε

⎡ ⎤⎧ ⎫⎪ ⎪∂ ∂ ∂⎪ ⎪⎢ ⎥∂ ∂ ∂⎪ ⎪= − +⎢ ⎥⎨ ⎬⎪ ⎪⎢ ⎥∂ ∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

 (24) 

Consider a (hypothetical) free energy function of the form 

 ( )

( )

( )( ) ( ) ( ) ( )( )

( )

2
0 0

2

2
0 0

1 1     for 1  or 1
2

, 1 ln 1 1 ln 1 ln 1

1 1      for   and  ,
2

m m m m

E

E

E

ε ϕ ε ε ϕ ϕ

ψ ε ϕ ε ϕ ϕ ϕ ϕ ϕ ϕ

ε ϕ ε ε ϕ ϕ

⎧⎪⎪ − < <⎪⎪⎪⎪⎪ ⎡ ⎤= − − + − − − + −⎨ ⎢ ⎥⎣ ⎦⎪⎪⎪⎪⎪+ − ≥ ≥⎪⎪⎩

 (25) 

 
where E  is the Young’s modulus, 0 00 1, 1ε ϕ<  are small thresholds below which the 
conventional local theory is assumed valid and in this regime we consider 0B ≡ . 0, 0m mε ϕ> >  
are two other parameters indicative of the maximum achievable strain and maximum achievable 
porosity. The free energy function is discontinuous at the physically insignificant small values of 
strain and porosity where the generalized damage model is not required. Nevertheless, the 
limiting values, from either side of these boundaries in ε ϕ−  space, of the stress, the modulus 
and the derivative of the stress with respect to porosity coincide. Also, the expressions for the 
stress and the elastic modulus corresponding to this free energy function are classical and the 
damage driving force 0ψ ϕ−∂ ∂ > . 

Substituting this choice (25) of the free energy function in (24) and using (23), one obtains the 
following governing equations: 

 

( )

( )
( )

( )

2 22
2 2 2

22

1 0

3 .
1 31

m
m

uE
x x

BE BE s
x x

ϕ

εϕ ϕϕ ε ε ε
ϕ ϕ

⎛ ⎞∂ ∂ ⎟⎜ − =⎟⎜ ⎟⎜⎝ ⎠∂ ∂
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎟⎜ ⎟ ⎟⎜ ⎟⎜⎜= − + − +⎟ ⎟⎟⎜ ⎜⎜ ⎟ ⎟⎟⎜⎟⎜⎜ ⎝ ⎠− ∂ ⎝ ⎠ ∂⎟⎜− ⎝ ⎠

 (26) 

An adequate minimal requirement of the source is that it be a positive function with the sign of 
( )ψ ϕ−∂ ∂ . For the constitutive choice (25), this sign is always positive. A choice following 
linear kinetics for the model (25) would be 

 
( )

( )

2
0

02 2

1 2     for  
   for  1ln 1 2

1m
m

D E
s

DE

ε ϕ ϕ

ϕ ϕϕε ε
ϕ

⎧⎪ <⎪⎪⎪ ⎛ ⎞⎛ ⎞= ≥⎨ − ⎟⎜ ⎟⎜⎪ ⎟⎟⎜ +⎜ ⎟⎪ ⎟⎜ ⎜ ⎟⎟⎜⎪ ⎟⎜ −⎝ ⎠⎝ ⎠⎪⎩

 (27) 

where 0D>  is a material parameter. 
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For 2Dl B , where l  is a characteristic length in the problem (say, the length of the bar), the 
source term would dominate and the gradient terms would constitute singular perturbations in 
(26). Interestingly, the linearization of (26) suggests that the mechanical coupling provides a 
destabilizing influence through the diffusion term of (26) 2  but a void-closure effect through the 
nonlinear advection term. However, this linearized void-closing effect (i.e. porosity decrease at a 
fixed spatial location through which the void-solid interface passes) would have to compete with 
the more powerful positive source term thus resulting in a net increase in porosity (at fixed 
location).  

When the source term is dropped in (26) 2  and the equation considered to be one with constant 
coefficients of the form 

 
2 2

2t x x
ϕ ϕ ϕν∂ ∂ ∂⎛ ⎞− =⎜ ⎟∂ ∂ ∂⎝ ⎠

,   0ν > , (28) 

an analytical solution becomes immediately available through the Hopf-Cole transformation for 
Burgers equation 

 
2 2

2

u u u
t x x

ν∂ ∂ ∂
− =

∂ ∂ ∂
  ;  x uϕ =  (29) 

given by 
 log wϕ ν= , (30) 
that reduces (28) to the linear heat equation 

 
2

2

w w
t x

ν∂ ∂
=

∂ ∂
. (31) 

The solution to (28) on the entire real line, when appended with the initial condition 
( ) ( )0,0x xϕ ϕ= , is given by 

 ( ) ( )( ) ( )20 41, log
2

y x y tx t e e dy
t

ϕ ν νϕ ν
πν

∞ − −

−∞

⎡ ⎤= ⎢ ⎥⎣ ⎦∫ , (32) 

utilizing the fundamental solution of the linear heat equation (cf. Strang, 1986). The solution (32) 
makes clear the role of 0ν >  even in this semilinear setting. 

Interestingly, for free energy functions for which the constant-coefficient version of (24) 
(without source) may be stated as (28) with 1ν , the asymptotics of (32) can be explicitly 
evaluated for 0ν → , coinciding with the remarkable Hopf-Lax solution formula (Lax, 1973) for 
the entropy-weak solution of the corresponding Hamilton-Jacobi equation (i.e. (28) with 0ν = ): 

 ( ) ( ) ( )2

0, max
4y

x y
x t y

t
ϕ ϕ

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦
. (33) 

For the initial condition 

 ( ) ( )
0 0

,0
1 0

x
x H x

x
ϕ

<⎧
= = ⎨ >⎩

 (34) 

The solution is given by 

 ( ) ( )
( )

( )2
2

 01
0 0

, max 1 4 2 0
1 0 4

0 2
y

x
y x y

x t x t t x
y t

x t

ϕ

>⎧⎡ ⎤≤ − ⎪= − = − − < <⎢ ⎥ ⎨>⎢ ⎥ ⎪⎣ ⎦ < −⎩

. (35) 
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The initial condition may be thought of as a semi-infinite ‘crack in 1-d’ and the time evolution, 
represented by the schematic in Figure 1, represents the development of damage zone ahead of 

the ‘crack’ tip developing into a full-crack at long times. In the presence of the source term, this 
transition to a fully-voided state at fixed location may be expected to be much more rapid. 
 
5. Discussion 
 
It is an easy observation of some consequence that standard thermodynamic formalism with the 
free energy of the form (12) but without the balance law (11) yields only a local evolution 
equation. Even when augmented by a surface energy term, the two formalisms (with and without 
the balance law) yield different PDE for void volume fraction evolution. That such balance laws 
are not always available for any internal variable one can think of is appreciated by considering 
the case of plastic slip. While in the general nonlinear setting plastic distortion does enter the free 
energy function more than linearly, it is not immediately obvious as to how one could interpret 
slip as a (volume, areal) density so as to be able to write a corresponding balance law for it. 
However, it is possible to interpret the Nye dislocation density tensor as an areal density and 
therefore write a balance law for it. Of course, in this case one has to be careful in prescribing the 
dependence of the free energy on the dislocation density, as discussed in Sec. 2. 

There remains much work to be done on identifying proper constitutive equations/parameters 
for this generalized model of damage. For instance, porosity spreads in highly anisotropic 
fashion in most real materials; this may necessitate the parameter B  to be a non-hydrostatic 
second order tensor. As well, homogenization questions of the governing PDE are important for 
understanding macroscopic, nonlocal/generalized models of damage evolution.  

In the present context, the most important physical question remains as the establishment of 
accurate free energy functions as a function of porosity (that may be accessible numerically 
through computational homogenization), for the entire range of admissible porosity values. If for 
physically rigorous free energy functions the term 

Slope =  

t=0, solid 

t

x

ϕ
1

2x t=−

1
t t=0,‘crack’

Figure 1. Schematic of solution (35) representing the development of a damage zone. 
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12 2 2 2

2 : :ψ ψ ψ ψ
ϕ ϕ ϕ

−⎛ ⎞∂ ∂ ∂ ∂⎟⎜ ⎟− ⎜ ⎟⎜ ⎟⎜∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ε ε ε ε
 (36) 

fails to remain non-negative, then a surface energy modification has to be introduced into the 
free energy resulting in a fourth-order Cahn-Hilliard equation coupled to the deformation for the 
evolution of porosity. 

In view of (36)/(24), a precise question may be phrased for determining the class of 
mathematically admissible free energy functions, members of which can then be subjected to 
elimination based on physical grounds. Explicitly (and writing the condition in the 1-d setting for 
simplicity), one asks for all possible appropriately smooth solutions ( ),ψ ε ϕ  to the interesting 
nonlinear, 2nd-order, partial differential inequality, 

 
( )
( )

222

2 2 2
0

ψ ε ϕψ
ϕ ψ ε

∂ ∂ ∂∂
− ≥

∂ ∂ ∂
 (37) 

on the domain ( ),ε ϕ  belonging to [ ] [ ], 0,1m mε ε− ×  subject to the constraints 

 

( )

( )
( )

( )

2

2

2

2

1, 0 ,
2

, 1 0,

0, 0,

, 0   (modulus is positive),

0    (damage is coupled to stress).

Eψ ε ϕ ε

ψ ε ϕ

ψ ε ϕ

ψ ε ϕ
ε
ψ

ε ϕ

= =

= =

= =

∂
>

∂
∂

≠
∂ ∂

 (38) 

Finally, the question of what balance equation adequately represents balance of mass in this 
model needs to be considered in detail since the mass content of a fixed set of particles forming a 
subpart of the body in this model, in contrast to standard continuum mechanics, does not remain 
fixed in time. However, the model conceptually allows the consideration of continuous motion of 
a ‘body’ a subpart of which may have no mass as a limiting situation, and this has the potential 
of relieving some of the technical difficulties of classical continuum mechanics at the 
kinematical level in dealing with the topology change associated with material voiding/cracking. 
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