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Abstract

We describe a method of constructing exact solutions of the equations of molecular dynamics in set-
tings out of equilibrium. These solutions correspond to some viscometric flows, and to certain analogs
of viscometric flows for fibers and membranes that have one or more dimensions of atomic scale. This
work generalizes the method of Objective Molecular Dynamics (OMD) [8]. It allows us to calculate
viscometric properties from a molecular-level simulation in the absence of a constitutive equation, and
to relate viscometric properties directly to molecular properties. The form of the solutions is partly in-
dependent of the form of the force laws between atoms, and therefore these solutions have implications
for coarse-grained theories. We show that there is an exact reduction of the Boltzmann equation corre-
sponding to one family of OMD solutions. This reduction includes most known exact solutions of the
equations of the moments for special kinds of molecules and gives the form of the molecular density
function corresponding to such flows. This and other consequences leads us to propose an addition to
the Principle of Material Frame Indifference, a cornerstone of nonlinear continuum mechanics. The
method is applied to the failure of carbon nanotubes at an imposed strain rate, using the Tersoff poten-
tial for carbon. A large set of simulations with various strain rates, initial conditions and two choices
of fundamental domain (unit cell) give the following unexpected results: Stone-Wales defects play no
role in the failure (though Stone-Wales partials are sometimes seen just prior to failure), a variety of
failure mechanisms is observed, and most simulations give a strain at failure of 15-20 %, except those
done with initial temperature above about 1200 K and at the lower strain rates. The latter have a strain
at failure of 1-2 %.

Keywords: A: Dynamic Fracture; B: Carbon Nanotubes, Rheology; C: Molecular Dynamics, Objective
Structures.

1 Introduction

Among the most important deformations in solid mechanics are the bending, twisting and extension of
beams. The most important flows in fluid mechanics are viscometric flows. In both cases these are
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the motions that, when compared with the corresponding experiments, are used to measure the material
constants. In the simplest cases, these are elastic constants, viscosities and normal stress differences.

In this paper we give a universal1 molecular interpretation of these motions. From this viewpoint, the
bending and twisting of a beam and the viscometric flow of a viscoelastic fluid, for example, are essentially
the same. They both have an interpretation at atomic level as

yg,k(t) = g(yk(t)), k = 1, . . . ,M, g ∈ G, (1.1)

where G is a discrete group of isometries in three dimensions, and the yk(t), k = 1, . . . ,M solve the
equations of molecular dynamics. Taking g = id, we have that yk(t) = yid,k(t). In the case of interest
in this paper the elements g ∈ G also have an explicit dependence on the time t. The group G typically
has certain free parameters. The time dependence is introduced by allowing some of those parameters to
depend on time in a particular way. Our main result is that, even though only y1(t), . . . ,yM(t) are assumed
to satisfy the equations of molecular dynamics, all the typically infinite number of atoms with positions
given by (1.1) necessarily satisfy those equations. Essentially, we identify a time-dependent invariant
manifold2 of these equations. The presence of this invariant manifold is a direct consequence of the frame-
indifference and permutation invariance of the potential energy. These conditions on the atomic forces
are satisfied quite generally, for example with a force on each nucleus given by the Hellmann-Feynman
formula based on full (nonrelativistic) quantum mechanics under the Born-Oppenheimer assumption.

This justifies a numerical method in which only M atoms are simulated but all the atoms satisfy the
equations of molecular dynamics. If the equations are exactly satisfied for the M atoms, then they are
exactly satisfied by all3 the atoms. The number M and the initial conditions on the simulated atoms can
be arbitrarily prescribed, independently of the group.

The case where the group elements do not depend explicitly on time has been studied in [8]. There it was
shown how the bending, twisting and extension of nanoscale beams could be simulated by this method,
and specific simulations were given for single-walled carbon nanotubes with atomic forces described by
multi-body Tersoff potentials [32]. Some interesting instabilities of the nanotubes were seen, including a
regular rippling of the inside of the tube in pure bending and a helical rippling in torsion. These phenomena
are very similar to those seen in experiment and captured by other methods, for example in the interesting
paper of Arroyo and Arias [1]. The present paper focuses on the case where the group elements have an
explicit dependence on time4. This corresponds to nanostructures that are out of equilibrium and, in the
case of other groups (Section 6), to some classical viscometric flows.

As an example of the time-dependent case, we present calculations of carbon nanotubes extended at a
constant strain rate (Section 8). A large set of simulations were done with various initial conditions,
corresponding to initial temperatures between 300 and 1500K, strain rates from 104 to 108 s−1, and with
two fundamental domains (unit cell) and their corresponding groups. We do not see any major differences

1Here, universal means independent of the material.
2In the present context a time-dependent invariant manifold is a manifold in R3MN that depends on time and evolves in an

prescribed way, independent of the solution. Under hypotheses of existence and uniqueness for the MD equations, a solution
that begins on this manifold stays on this manifold for all time.

3Typically, the isometry groups are infinite so there are infinitely many atoms altogether.
4Even when the group elements do not depend on time, there are some large scale dynamic motions possible with OMD.

For example, large scale coordinated radial vibrations of a carbon nanotube can be simulated with time-independent OMD.
Results of some such simulations are given in [8].
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between the results obtained with the two different fundamental domains. Several failure modes were
noted, including melting, fibrous fracture, cavitation and cross-sectional collapse, but not the expected
mechanism of the nucleation and glide of Stone-Wales defects. Occasionally, just prior to failure, we
saw the formation of what could be termed Stone-Wales partials, but these quickly healed5. We find that,
for both fundamental domains and for all strain rates and initial temperatures, the strain at failure was
in the range 15-20 % for simulations with initial temperatures below about 1200K. Near 1200K and at
the lower strain rates 104 to 106 s−1 there was a sharp drop of the strain at failure (to 1-2 %). The strain
rate had the unexpected effect of giving significantly higher elongation at higher rates. The failure at low
strains was preceded by a large amplitude vibrations of the cross-section at a frequency of about 100 GHz.

While these preliminary serial simulations reach experimentally accessible rates at the lower end (104 s−1),
we are currently implementing parallel simulations that we estimate will reach strain rates that can be
relatively easily imposed in experiments, permitting a direct comparison between predicted and measured
failure modes and viscoelastic properties. This kind of direct comparison is a rarity in molecular dynamic
simulations.

It is tempting to infer that these solutions for nanostructures have the same significance for the determina-
tion of molecular-level properties as viscometric flows do for bulk properties of fluids. Some solutions of
the equations of molecular dynamics given by (1.1) have direct continuum analogs. Conversely, there are
some well-studied viscometric flows in fluid mechanics, such as cone-and-plate flow, which are not given
by (1.1). The latter arises partly from invariance assumed for the stress tensor in continuum mechanics
that is not completely consistent with molecular dynamics.

Given a discrete isometry group, the construction of these solutions begins with the specification of the
number M of simulated atoms and their initial conditions. As noted above, M can be any positive integer
and the initial conditions are completely unrestricted. This raises the question of how many atoms are
sufficient to capture representative behavior (in some precise sense) and what initial conditions are realis-
tically permitted? In the case of periodic molecular dynamics, (which is a simple special case of OMD),
if the super cell (i.e., M ) is sufficiently large and the initial conditions are of sufficiently low total energy
and correspond to the lattice parameters of the material being simulated, it is generally believed that the
solutions obtained are in some sense statistically representative. In [8] the dependence of the solutions on
M and the initial conditions was also explored, and it was seen that different torsional instabilities could
be expressed by different choices.

Another way to explore how representative are the solutions is to look for analogs in other theories of ma-
terials that are between molecular dynamics and continuum mechanics. We do this for the kinetic theory
of gases. Based on special examples of the solutions found here, we develop an ansatz for the molecular
density function and we show that there is an exact reduction of the Maxwell-Boltzmann equation corre-
sponding to all these solutions. No assumptions on the atomic force laws are introduced. We also look at
the H-theorem for these solutions, which has an interesting simple form. A detailed study of solutions of
the reduced equation is given in a forthcoming paper [19].

The connection with the kinetic theory, and the fact that some aspects of these solutions are indepen-
dent of the nature of the atomic forces, suggests that analogs of these solutions should be universally
present in continuum theory. This assertion can be rephrased as a restriction on constitutive equations.

5These results do not imply that Stone-Wales defects would also be absent in simulations at lower strain rates. Dumitrică et
al. [7] have given persuasive arguments based on energetics and statistical mechanics that these are likely at lower rates.
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The restriction arises essentially from the frame-indifference – actually, just the translation and permu-
tation invariance – of the underlying potential energy. We argue in Section 7 that the present Principle
of Material Frame Indifference of nonlinear continuum mechanics should be modified by the inclusion
of these additional restrictions. All widely accepted constitutive equations satisfy the modified principle.
The modified principle has interesting implications for some mesoscale theories (Section 7).

Notation. The summation convention is used here. Z is the integers and Z3 is the set of triples of inte-
gers. Unless indicated otherwise, Greek letters are scalars and lower case Latin letters are vectors in R3.
Typically, uppercase Latin letters represent 3× 3 matrices. Ai denotes A multiplied by itself i times, if i
is a positive integer, or A−1 multiplied by itself |i| times if i is a negative integer. The letters Q and R,
subscripted or not, are reserved for matrices in O(3) = {R : RTR = I}; here, the superscript T indicates
the transpose, and I is the 3×3 identity matrix. Rθ ∈ SO(3) = {R ∈ O(3): detR = 1} denotes a rotation
of counterclockwise angle θ. Subscripts of vectors and matrices in this paper do not signify components;
they are labels for atoms (yi,k is the position vector of atom i, k.).

2 Isometry groups and objective structures

The method relies on the use of discrete groups of isometries in three dimensions. The derivation of these
groups is a classical topic [27]. Some of them are summarized in the International Tables of Crystal-
lography [13]. Of special interest for nanostructures are the subperiodic groups, that is, the groups that
do not contain three linearly independent translations. Volume E of the International Tables contains an
incomplete listing of the subperiodic groups. Another problem with the listings of these groups is that
only the abstract groups are listed, whereas for the present method the explicit isometries, and particularly
the allowed parameter dependence of these isometries, is needed. Motivated by these issues, we have
calculated from the basic definition the explicit forms of all subperiodic, discrete groups of isometries in
a forthcoming paper [5]. We summarize here only the groups used in this paper.

A discrete group G of isometries in 3-D is assumed to consist of elements of the form g = (Q|c), Q ∈
O(3) and c ∈ R3. Given g1 = (Q1|c1) and g2 = (Q2|c2), the rule for group multiplication is g1g2 =
(Q1Q2|Q1c2 + c1), and the rule for inverses is g−1 = (QT | − QTc). These rules come from thinking
about these isometries as acting on R3: g(x) = Qx + c. Then composition of mappings gives

g1(g2(x)) = Q1(Q2x + c2) + c1 = Q1Q2x + Q1c2 + c1 = g1g2(x), (2.1)

from which one can infer the rules for products and inverses given above. The identity is id = (I|0).

We shall often make use of the simplest isometry group, the 3-D translation group GT . GT is generated by
the three elements ti = (I|ei), i = 1, 2, 3 where e1, e2, e3 are linearly independent vectors (not necessarily
orthogonal). It is given by

GT = {tp1t
q
2t
r
3 : p, q, r ∈ Z} = {(I|pe1 + qe2 + re3) : p, q, r ∈ Z}. (2.2)

A general result from [5], that includes all other groups we shall use in this paper, is the following: if a
discrete group of isometries does not contain a translation and does not consist entirely of rotations, it is
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(a) G1: all atoms blue (b) G2: m = 1 red; m =
2 blue

(c) G3: n = 6; shading
proportional to q

(d) G4: n = 6; m = 1
green; m = 2 red/blue,
shading proportional to q

Figure 1: Illustration of the four groups given by (2.3). The pictures are obtained by applying each of the
groups to a single sphere. Coloring scheme is according to the powers of group elements, as noted. Group
parameters conveniently chosen.

expressible in one of the forms

G1 = {hp : p ∈ Z},
G2 = {hpfm : p ∈ Z, m = 1, 2},
G3 = {hpgq : p ∈ Z, q = 1, . . . , n},
G4 = {hpgqfm : p ∈ Z, q = 1, . . . , n, m = 1, 2}, (2.3)

where

1. h = (Rθ|τe + (Rθ − I)x0}, Rθe = e, |e| = 1, x0 · e = 0, e,x0 ∈ R3, τ 6= 0, and θ is an irrational
multiple of 2π.

2. g = (Rψ|(Rψ − I)x0), Rψe = e, is a proper rotation with angle ψ = 2π/n, n ∈ Z, n 6= 0.

3. f = (R| (R− I)x1), R = −I + 2e1 ⊗ e1, |e1| = 1, e · e1 = 0 and x1 = x0 + ξe, for some ξ ∈ R.

The isometries h, g, f having these forms necessarily satisfy gh = hg, fh = h−1f and fg = g−1f .
Conversely, if the elements h, g, f satisfy 1-3, then the sets given in (2.3) are discrete groups of isometries
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with no translation. If θ is instead chosen to be a rational multiple of 2π, but all else is the same, then (2.3)
also gives discrete groups of isometries, but these then contain a one-dimensional translational subgroup.
Our examples of Section 8 are of this latter type.

With appropriate choices of the parameters the group {hpgqfm : p ∈ Z, q = 1, . . . , n, m = 1, 2}, operat-
ing on a single point in R3, describes the structures of single walled carbon nanotubes of any chirality6.

In Section 8, as an illustration of the use of OMD for simulating the viscometry of nanostructures, we
use groups having the forms of G2 and G3 listed in (2.3). The detailed choice of parameters is given in
Section 8, but we here give an overview of how the groups and parameters were chosen. We first used
the group G4 = {hpgqfm : p ∈ Z, q = 1, . . . , n, m = 1, 2}, operating on an appropriate point z1 ∈ R3

to generate a static carbon nanotube with near the relaxed lattice parameter at zero temperature7, as done
schematically in Figure 1. In Section 8 this is chosen as a (6, 6) nanotube. Then we chose a pair of
integers p′, q′ with q′ dividing n with no remainder, and we defined h′ = hp

′
, g′ = gq

′ . The subgroup
G′ = {h′pg′q : p ∈ Z, q = 1, . . . , n/q′} generates exactly the same static nanotube, not when applied to a
single point in R3, but when applied to a certain set S of 2 p′ q′ points8. In fact this set of points is given
by S = {hpgqfm(z1) : p = 1, . . . , p′, q = 1, . . . , q′, m = 1, 2}. We chose S as the initial positions of our
M = 2 p′ q′ simulated atoms. This procedure works for nanotubes of any chirality and any subgroup: one
simply changes the values of parameters. The initial positions are those of the nominally relaxed nanotube
with that chirality and subgroup.

The initial velocities of these simulated atoms were chosen to give various initial temperatures, after
a transient. In preliminary simulations we found that the entire nanotube often spun rapidly about its
axis with approximately constant angular velocity. After that, and in all simulations reported, the initial
velocities were chosen to have total initial angular velocity zero. The method of simulation is described in
detail in the next section.

Objective structures as defined in [18] are molecular structures consisting of a set ofN identical molecules,
each having M atoms, in which corresponding atoms in each molecule see the same environment. That
is, the atomic environments of two corresponding atoms can be mapped into each other by an orthogonal
transformation. “Corresponding atoms” can be taken to be the ith atoms of each molecule, and these state-
ments are required to hold for every i ∈ {1, . . . ,M}. It is shown in [5] that, after possibly renumbering
the molecules, every discrete objective structure can be written as a discrete isometry group applied to the
positions of a single molecule. It is then seen that OMD is method of simulation for objective structures,
although the simulated atoms would rarely be chosen to represent an actual physical molecule.

3 Objective molecular dynamics with time-dependent groups

Given a discrete group of isometries G = {g1, g2, . . . , gN}, g1 = id, let the simulated atoms be denoted as
above by yk(t), k = 1, . . . ,M with corresponding masses m1, . . .mM . Typically, we will have N = ∞

6as well as structures obtained by uniformly twisting or extending them.
7The precise value is not important, as the method allows for relaxation of lattice parameters. However, one should keep in

mind that the state of the nanotube, after the inevitable transient, may be axially stressed.
8This set of points belongs to the fundamental domain FD of the group G′, that is, a domain such that G′ acting on the FD

covers R3 and images of the FD under G′ do not overlap.
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but M is assumed to be finite. All other atoms of the structure will have positions given by

yi,k(t) = gi(yk(t)), gi ∈ G, i = 1, . . . , N, k = 1, . . . ,M. (3.1)

Keep in mind that we are interested in the case that the elements g ∈ G depend explicitly on time even
though this is suppressed in the notation. We will assume that for any i = 1, . . . , N the species of yi,k(t)
is the same as the species of yk(t), that is, that all atoms labelled i, k have mass mk and an atomic number
that depends only on k.

The force on atom i, k is denoted by the suggestive notation −∂ϕ/∂yi,k : R3MN → R3. We assume that
this function is smooth and frame-indifferent, i.e., for all Q ∈ O(3) and c ∈ R3,

Q
∂ϕ

∂yi,k
(. . . ,yi1,1, . . .yi1,M , . . . ,yi2,1, . . .yi2,M , . . . )

=
∂ϕ

∂yi,k
(. . . ,Qyi1,1 + c, . . .Qyi1,M + c, . . . ,Qyi2,1 + c, . . .Qyi2,M + c, . . . ), (3.2)

and also that it is permutation invariant,

∂ϕ

∂yΠ(i,k)

(. . . ,yi1,1, . . .yi1,M , . . . ,yi2,1, . . .yi2,M , . . . )

=
∂ϕ

∂yi,k
(. . . ,yΠ(i1,1), . . .yΠ(i1,M), . . . ,yΠ(i2,1), . . .yΠ(i2,M), . . . ), (3.3)

where Π is any permutation that preserves species. Here, preservation of species means that if (i, k) =
Π(j, `) then the species (i.e., atomic mass and number) of atom i, k is the same as the species of atom j, `.
These invariances are formally satisfied, for example, by the Hellmann-Feynman force formula based on
Born-Oppenheimer quantum mechanics.

The conditions (3.2), (3.3) can be found by formally differentiating the conditions of frame-indifference
and permutation invariance of the potential energy,

ϕ(. . . ,yi1,1, . . . ,yi1,M , . . . ,yi2,1, . . .yi2,M , . . . )

= ϕ(. . . ,yΠ(i1,1), . . .yΠ(i1,M), . . . ,yΠ(i2,1), . . . ,yΠ(i2,M), . . . )

= ϕ(. . . ,Qyi1,1 + c, . . .Qyi1,M + c, . . . ,Qyi2,1 + c, . . . ,Qyi2,M + c, . . . ) (3.4)

with respect to yi,k. However, in the present situation it is preferable to assume the invariance condition
at the level of the forces, as the potential energy is typically infinite when N = ∞, whereas the forces are
finite and satisfy the invariance conditions given above under mild conditions on the atomic positions.

Note that we use the full orthogonal group here, as this is the invariance group of Born-Oppenheimer
quantum mechanics. In continuum mechanics people often restrict invariance to proper rotations, but
this restriction arises essentially because continuum mechanics deals with relatively smooth families of
deformations rather than atomic positions.

In addition to the two invariances given above, we make the essential hypothesis that the time dependence
of every element in G is such that

d2yj,k(t)

dt2
=

d2

dt2
gj(yk(t)) = Qj

d2yk(t)

dt2
, gj = (Qj|cj) ∈ G, j = 1, . . . , N, k = 1, . . . ,M. (3.5)
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Now consider any particular isometry g = (Q|c) ∈ G. BecauseG is a group, if we apply g to the structure
defined by (3.1), i.e., we calculate g(yi,k(t)), i = 1, . . . , N, k = 1, . . . ,M , we recover exactly the same
structure back again. (Both g and gi here are evaluated also at time t.) Thus, there must be a permutation
Π, depending on the choice of g, such that

yΠ(i,k)(t) = g(yi,k(t)), i = 1, . . . , N, k = 1, . . . ,M. (3.6)

Now fix j ∈ {1, . . . , N} and choose g = g−1
j = (QT

j |−QT
j cj). The corresponding permutation Π satisfies

Π(j, k) = (1, k), by (3.6) and (3.1). Now assume that y1(t), . . . ,yM(t) satisfy the equations of molecular
dynamics, i.e.,

mkÿk(t) = − ∂ϕ

∂y1,k

(. . . ,yi,1(t), . . . ,yi,M(t),yi+1,1(t), . . . ,yi+1,M(t), . . . )

= − ∂ϕ

∂y1,k

(. . . , gi(y1(t)), . . . , gi(yM(t)), gi+1(y1(t)), . . . , gi+1(yM(t)), . . . ). (3.7)

Together with initial conditions on the M simulated atoms,

yk(0) = y0
k, ẏk(0) = v0

k, k = 1, . . . ,M, (3.8)

this is an ordinary differential system in standard form. Using the full invariance (3.2), (3.3), the condition
Π(j, k) = (1, k), and the assumption (3.5), we have that,

mkÿj,k(t) = mkQjÿk(t) = −Qj
∂ϕ

∂y1,k

(. . . ,yi,1(t), . . . ,yi,M(t),yi+1,1(t), . . . ,yi+1,M(t), . . . )

= −Qj
∂ϕ

∂yΠ(j,k)

(. . . ,yi,1(t), . . . ,yi,M(t),yi+1,1(t), . . . ,yi+1,M(t), . . . )

= −Qj
∂ϕ

∂yj,k
(. . . ,yΠ(i,1)(t), . . . ,yΠ(i,M)(t), . . . ,yΠ(i+1,1)(t), . . . ,yΠ(i+1,M)(t), . . . )

= −Qj
∂ϕ

∂yj,k
(. . . , g−1

j (yi,1(t)), . . . , g
−1
j (yi,M(t)), g−1

j (yi+1,1(t)), . . . , g
−1
j (yi+1,M(t)), . . . )

= −Qj
∂ϕ

∂yj,k
(. . . ,QT

j yi,1(t)−QT
j cj, . . . ,Q

T
j yi,M(t)−QT

j cj,

QT
j yi+1,1(t)−QT

j cj, . . . ,Q
T
j yi+1,M(t)−QT

j cj, . . . )

= − ∂ϕ

∂yj,k
(. . . ,yi,1(t), . . . ,yi,M(t),yi+1,1(t), . . . ,yi+1,M(t), . . . ). (3.9)

This shows that all the other atoms also satisfy the equations of molecular dynamics.

In simulations, the atoms with positions y1, . . . ,yM will be simulated and other atoms will be forced to
go to locations determined by (3.1). The force on each of the atoms y1, . . . ,yM is calculated from all the
other atoms.
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4 Allowed time dependence of the group elements

Here we study the condition (3.5). Writing gj = (Qj|cj), Qj ∈ O(3), cj ∈ R3, we allow Qj, cj to depend
on t and we write (d/dt)Qj = QjWj (no sum), where Wj = −WT

j . Then the condition (3.5) is

d2

dt2
(Qjyk + cj) = Qj

d2yk(t)

dt2
, (4.1)

that is,
QjW

2
jyk + QjẆjyk + +2QjWjẏk + Qjÿk + c̈j = Qjÿk, (4.2)

or, equivalently,
c̈j = −Qj(W

2
jyk + Ẇjyk + 2Wjẏk). (4.3)

This condition is highly restrictive, since it must be satisfied for every every k = 1, . . . ,M and also
for every t > 0 (It is not sufficient that it be satisfied in a statistical or average sense). Unless the initial
conditions are extremely special, the values of yk and ẏk will fluctuate erratically; in addition,M is usually
larger than the number of unknowns (= 6) in (4.3). Thus, as a useful condition for molecular dynamics,
it only makes sense to solve (4.3) in the case that yk and ẏk are independently assignable vectors in R3 at
each t > 0. We have that (4.3) is satisfied for independent choices of yk, ẏk if and only if

c̈j = 0 and Wj = 0, t > 0. (4.4)

That is, Qj ∈ O(3) must be constant and cj = ajt + bj must be an affine function of t. In short, each
group element is a Galilean transformation. This condition does not imply that the entire collection of
atoms undergoes a Galilean transformation, and these conditions still lead to many interesting groups
corresponding to a variety of flowing structures.

A simple but important observation is that the rules for multiplication and inversion of isometries given
in Section 2 have the property that if two isometries have affine dependence of their translation on t, then
so do their product and inverses. Hence, necessary and sufficient conditions for a group of isometries to
consist of elements whose translations are affine in t is that the translations of the generators of that group
have affine dependence on t.

For the groups used in OMD simulations of carbon nanotubes (see Sections 2, 8) the affine dependence on
t is introduced by allowing τ in the generator h defined after (2.3) to be given as τ = τ0(1+ ε̇ t). With this
choice a typical evolution is shown in Figure 2. Here τ0 is chosen to correspond to the relaxed nanotube
as described at the end of Section 2, and ε̇ has the direct interpretation as the imposed axial strain rate.

5 Simplest case corresponding to the translation group

5.1 Description of the method

This is the simplest case of the method, and the case that relates directly with viscometric flows of (typi-
cally, non-Newtonian) fluids. The positions of all the atoms are given by

yν,k(t), ν ∈ Z3, k = 1, . . . ,M, t > 0. (5.1)
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(a) t1 = 20 ps (b) t2 = 1730 ps (c) t3 = 2240 ps

Figure 2: Illustration of an OMD simulation of a carbon nanotube pulled at constant strain rate. The red
atoms are simulated and lie in the fundamental domain. The corresponding group is G1 in (2.3). Values
of the parameters are given in Section 8.

where Z3 denotes all triples of integers. For convenience, and in view of (2.2), we now index the group
elements by triples of integers ν = (ν1, ν2, ν3) with the identity element associated to (0, 0, 0). The
simulated atoms will undergo motions given by yk(t) = y(0,0,0),k(t), k = 1, . . . ,M . The group is GT

given by (2.2) except that we replace ei by ei + tẽi, so as to be consistent with the conclusions of the last
section. To make comparisons with continuum and kinetic theories easier, we write ẽi = Aei, i = 1, 2, 3,
for some linear transformation A, without loss of generality. It is then immediately seen that all elements
of GT have affine time-dependence, so the theorem of the preceding section holds. The atoms that are not
simulated will be forced to adopt positions given in terms of the simulated atoms by

yµ,k(t) = gµ(yk(t)) = yk(t) + µiei + µitAei = yk(t) + (I + tA)(µiei), (5.2)

where {e1, e2, e3} are three linearly independent vectors, A is a linear transformation and µ ∈ Z3. The
quantities A and the linearly independent e1, e2, e3 are assignable, but they cannot depend on the time t,
so that the only time dependence is that shown explicitly on the right hand side of (5.2). The atom (µ, k)
is also assumed to be of the same species as the simulated atom ((0, 0, 0), k).

5.2 Viscometry in fluid mechanics

The relation with fluid mechanics is the following. Typically the linearly independent vectors e1, e2, e3 will
be chosen as small multiples of molecular dimensions, say, roughly 1–100 times the size of a molecule.

10
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For suitable choices of the integers (µ1, µ2, µ3), a given vector in R3 can then be approximated by µiei
up to an error of molecular dimensions. We can think of a continuum Lagrangian variable x as being
well approximated by µiei for some choice of µ ∈ Z3. Without loss of generality we can assume that the
simulated atoms yi(t) belong to the unit cell U(t) = {λi(I + tA)ei : 0 ≤ λi < 1, i = 1, 2, 3} attached to
the origin. Occasionally it may happen that a simulated atom leaves U(t) (which causes no problem). At
the same instant an atom of the same species enters U(t) with a different velocity from the one that left,
according to (5.2). If one wishes one can occasionally redefine the simulated atoms to lie in U(t). We thus
see that (5.2) is analogous to the Lagrangian description of the motion

y(x, t) = (I + tA)x. (5.3)

These are affine motions. The subsections above give a molecular level interpretation of these flows for
any choice of the matrix A. The relation to viscometric flows of Navier-Stokes or non-Newtonian fluids
is the following. The constitutive theory of both kinds of fluids can be subsumed under the theory of
incompressible simple fluids. These are materials governed by a constitutive equation for the Cauchy
stress of the general form

σ(y, t) = −pI + Σ(Ft(y, ·)), (5.4)

where Σ is a functional that operates on “histories”, that is, it operates on 3× 3 matrix-valued functions of
the form Ft(y, τ), τ ≤ t, with determinant 1, and with t,y being parameters. The function Ft(y, τ), τ ≤
t, y ∈ Ωt, is the relative deformation gradient, i.e., it is the gradient of the deformation that maps the
domain Ωt of the body at time t to its domain Ωτ at the earlier time τ . That is, Ft(z, τ) is the gradient with
respect to z of the function y(y−1(z, t), τ), where y(x, t) is an ordinary Lagrangian description of motion
for example as given in (5.3). The scalar p is the pressure. Viscometric flows are defined by the following
restriction on the relative deformation gradient:

Ft(y, τ) = Qt(y, τ)(I + (τ − t)Mt(y)), M2
t = 0, Qt ∈ O(3), τ ≤ t, t > 0, y ∈ Ωt, (5.5)

(see, e.g., Coleman, Markovitz and Noll, [4]9). We note that the condition M2
t = 0 is necessary and

sufficient that Mt is expressible10 in the form Mt = at ⊗ bt with at · bt = 0. With this form of Mt the
constraint of incompressibility is necessarily satisfied by viscometric flows.

The relative deformation gradient of the affine motion (5.3) is by direct calculation11

Ft(y, τ) = (I + τA)(I + tA)−1. (5.6)

Comparing (5.6) to (5.5), in particular, putting FT
t Ft from (5.6) equal to the same quantity based on (5.5)

and then evaluating at t = 0, we see after a few calculations that the affine motion (5.3) describes a
viscometric flow if and only if A = M0 = a⊗ b, a · b = 0, in which case Ft(y, τ) = I + (τ − t)a⊗ b.
This is the case of plane Couette flow. That is, if A = a ⊗ b, a · b = 0 then the Eulerian velocity based
on (5.3) is

v(z, t) = ẏ(y−1(z, t), t) = A(I + tA)−1z = a(b · z), (5.7)
9Most people these days would replace O(3) by SO(3), but this has no bearing on our arguments.

10Proof: If M2 = 0, then M(M(u)) = 0 for all u ∈ R3. Hence M is not invertible, so M has rank ≤ 2. If M has rank
2, then it nullifies a 1-dimensional subspace. But then by M(M(u)) = 0 we must have that Mu belongs to that subspace.
Thus, M cannot be rank 2, for it would have a 2 dimensional range. Thus, M must have rank= 1, so M = a ⊗ b. Finally,
(a⊗ b)2 = 0 =⇒ a · b = 0.

11For the rest of the paper we assume the domain for t excludes the isolated points (at most 3) where det(I + tA) = 0.
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That is, in the orthonormal basis aligned with {a,b, a× b}, we have v = (κ z2, 0, 0).

On the other hand, there are flows of the form (5.6) in an incompressible fluid that are not viscomet-
ric flows. To see this, we impose only the condition of incompressibility on (5.6). This condition,
detFt(y, τ) = 1 for all τ ≤ t > 0, is equivalent to det(I + At) = 1 for all t > 0. Divide this by t3 and
look at the characteristic equation to prove that necessary and sufficient conditions for det(I + At) = 1
for all t > 0 are that detA = trA = trA2 = 0. In turn, a necessary and sufficient condition that
detA = trA = trA2 = 0 is that there is an orthonormal basis such that in this basis A has the form

A =

 0 0 κ
γ1 0 γ3

0 0 0

 . (5.8)

Generally, this is a rank-2 matrix. Thus there are many isochoric affine flows that are not viscometric
flows.

Based on the known relation between molecular dynamics and continuum mechanics, either via the kinetic
theory or by spatial averaging [25, 17, 14, 24], we expect that the affine flows will have a favorable relation
to the balance laws of continuum mechanics. Note that Ft given by (5.6) is independent of y. For all other
constitutive relations of which we are aware (see Section 7) the Cauchy stress based on an affine motion
is uniform in space. Therefore, the balance of linear momentum becomes

ρ(vt +∇vv) = ∇ · σ = 0. (5.9)

This equation is identically satisfied for all affine motions, because, using the Eulerian velocity (5.7),

ρ(vt +∇vv) = ρ(−A(I + At)−1A(I + At)−1y + A(I + At)−1A(I + At)−1y) = 0. (5.10)

Now we can interpret these calculations. The presence of Qt in the definition (5.5) of viscometric flows
is related to the frame-indifference of the stress in continuum mechanics. One can say that viscometric
flows are plane Couette flows up to a time and space dependent change of frame. Some viscometric flows
(plane Couette flow, in particular) are affine motions, and therefore have a favorable relation to the exact
solutions of the equations of molecular dynamics given here. The reason that the full set of viscometric
flows apparently does not have exact analogs in molecular dynamics is because of 1) the special nature of
a simple fluid, which allows spatial dependence in Qt, and 2) the absence of full time-dependent frame
indifference in molecular theory. The latter is closely related to the discussion surrounding (4.3) and (4.4).
It is also related to the objections raised by Müller [23]. On the other hand, there are affine flows that are
not viscometric flows. There are many such compressible flows, but also those given by (5.8) that would
be possible in many incompressible materials. All have convenient interpretations at molecular level
as exact solutions of the equations of molecular dynamics with an arbitrary number of simulated atoms
satisfying arbitrary initial conditions. We do not understand why these other flows have been excluded
from the definition of “viscometric flows”, or why they have not been used experimentally in the same
way viscometric flows are used.

We close this subsection with a note about a known generalization of viscometric flows that is studied in
the context of nonclassical fluids. These are motions with constant stretch history. In some cases they also
have a favorable relation to the equations of motion. Noll [26] shows that these motions can be represented
by the following formula for the relative deformation gradient.

Ft(τ) = Q(τ)e(τ−t)MQT (t), (5.11)
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where M ∈ R3×3,Q ∈ O(3), and all quantities are smooth in −∞ < τ ≤ t < ∞ and can depend on
position y ∈ R3, but the latter dependence is suppressed. Without loss of generality ([26], Theorem 1)
one can put t = 0 in this characterization. Also one can assume without loss of generality that Q ∈
SO(3), since it occurs twice in (5.11), i.e., if detQ(t0) = −1 for some t0 then detQ(t) = −1 for all
t by continuity. If so, insert two −I’s in (5.11), which commute with every tensor, to make detQ(t) =
detQ(τ) = 1. Thus, smooth motions with constant stretch history are affine motions if and only if

I + τA = Q(τ)eτM, Q(τ) ∈ SO(3), τ ∈ R. (5.12)

Taking the determinant we have that det(I + τA) = exp(τ trM). Since an exponential can be a cubic
polynomial only if it is 1, this implies that A has the representation (5.8). Furthermore, the 3×3 matrix M
has at least one real eigenvalue, so, operating (5.12) on the corresponding eigenvector ê, we see that this
eigenvalue is zero, so Aê = Mê = 0 and Qê = ê, i.e., Q has constant axis, Q(τ) = exp(θ(τ)W), WT =
−W. Now writing the equation exp(−τM)(I + τA) = Q(τ) in the orthonormal basis ê1, ê2, ê3 = ê, one
finds first that A−M = γW, γ = θ′(0). Then putting the 11 and 22 components of exp(τM)(I + τA)
equal, the sum of 12 and 21 to zero, and the 31 and 32 components individually to zero, one proves that
A2 = 0 and therefore the flow is viscometric. Hence, the remarks made above also apply to these more
general motions.

5.3 Lees-Edwards and related methods

In this section we briefly explain that Lees-Edwards boundary conditions [21] are precisely equivalent to
OMD specialized to the case of plane Couette flow, and we point out that many of its generalizations are
inconsistent with OMD.

5.3.1 Plane Couette flow

As noted above plane Couette flow is defined by (5.2) with e1, e2, e3 orthogonal and A a trace-free matrix
of rank one. Let ê1, ê2, ê3 be an orthonormal basis and let A = γ̇ê1 ⊗ ê2 corresponding to plane Couette
flow with a shear rate γ̇. Let orthogonal dimensioned vectors be defined by ei = Liêi, i = 1, 2, 3.
Following (5.2), an OMD simulation based on these choices is then defined, in the hatted basis, by

yµ,k(t) = gµ(yk(t)) = yk(t) +

 µ1L1 + µ2γ̇tL2

µ2L2

µ3L3

 (5.13)

with µ1, µ2, µ3 integers.

Picture ê2 oriented up and ê1 directed to the right. The Lees-Edwards method pictures a box Ω0 =
(0, L1) × (0, L2) × (0, L3), fixed translates of this box in the ±ê1 and ±ê3 directions, and moving boxes
above and below Ω0 with center velocities depending linearly on the x̂2 coordinate. The MD simulation
begins with a fixed number of atoms in Ω0 with given initial positions and velocities. At every time-step
positions of atoms are extended by the instantaneous periodicity to the other boxes. So far, this is clearly
the same as the OMD method described above with the simulated atoms chosen as those belonging to Ω0.
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Let us suppose that an atom leaves the box Ω0 at time t?. In the Lees-Edwards method, if the kth atom
leaves Ω0, say, through the left hand face, it is replaced by an atom at the right face using the e1-periodicity.
This occurs also in the formula (5.13), i.e.,

y(1,0,0),k(t
?) = yk(t

?) +

 L1

0
0

 , ẏ(1,0,0),k(t
?) = ẏk(t

?). (5.14)

If an atom leaves Ω0 through the bottom face, then, in the Lees-Edwards method, it is replaced by an
atom at the top face at a position determined by instantaneous periodicity, but with a horizontal velocity
augmented by γ̇L2. This occurs also in the formula (5.13), i.e.,

y(0,1,0),k(t
?) = yk(t

?) +

 γ̇ t?L2

L2

0

 , ẏ(0,1,0),k(t
?) = ẏk(t

?) +

 γ̇L2

0
0

 . (5.15)

Thus, it is seen that the methods are equivalent.

The Lees-Edwards method shows that, in the case of plane Couette flow, one could redefine the simulated
atoms of OMD at selected times so that they always lie in a fixed box. This is a special property of plane
Couette flow12, and cannot be done in general for OMD, even when restricted to the time-dependent trans-
lation group. Possibly, it is for this reason that the more general viewpoint studied here was not noticed
by people seeking generalizations of Lees-Edwards boundary conditions. However, all translation groups
do have small unit cells, which can be taken as the parallelepiped generated by the three instantaneous
vectors (I + tA)ei, i = 1, 2, 3. As explained above, the simulated atoms could be redefined at occasional
times to always lie in this deforming parallelepiped. After a long time, this parallelepiped necessarily
becomes highly distorted. However, from the theory of lattice invariant deformations of crystallography
([29], Sect. 3.1)), it is known that one could also occasionally redefine the unit cell so as to be relatively
undistorted. If done correctly, all of these redefinitions would preserve our basic theorem that all the atoms
satisfy exactly the equations of molecular dynamics13 at every t > 0. It should be mentioned that all the
other discrete groups of isometries have fundamental domains which could be used in a similar way.

There is a vast literature on generalizations of Lees-Edwards boundary conditions. As far as we can tell,
this literature is not based on the principle adopted here that all atoms satisfy exactly the equations of
molecular dynamics. Motivation for these generalizations comes from the use of linear response theory
and the Green-Kubo formula, approximate methods for time-dependent shear strain rates, and the use
of soft loading or fictitious driving force fields. Some of the more widely studied versions include the
DOLLS, SLLOD, g-SLLOD and p-SLLOD algorithms. We do not present a comprehensive survey of this
vast literature, but instead mention the two reviews [9], [33]. Again, we emphasize that the Lees-Edwards
method is exact, while most if not all of these generalizations are not. Furthermore, as explained here,
there are however a great many other exact methods of Lees-Edwards type, both by using other translation
groups or some of the many other interesting isometry groups.

12The point is that there is typically no box that remains the fundamental domain of the instantaneous translation group of
an OMD simulation for an interval of time.

13Lees and Edwards [21] describe subtleties related to the conservation of momentum when switching between images in a
discretized time-integration setting.
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5.3.2 Elongational flows

It is clear from the literature described above that many people would like to simulate planar elongational
flows, i.e., flows with Eulerian velocity gradient of the form

∇v =

 ε̇(t) 0 0
0 −ε̇(t) 0
0 0 0

 . (5.16)

In view of (5.7) this has a corresponding OMD interpretation if and only if A(I + tA)−1 has this form. A
short calculation shows that this has no nontrivial solution A. Some of the examples of motions given by
(5.8) have elongational character in the sense that, like (5.16), the velocity gradient is trace-free and rank-
2. It would be interesting to invent a device to produce such flows, analogous to the numerous devices that
have been invented to study elongational flows experimentally.

There is again a large literature on methods of molecular dynamics designed to simulate elongational flows
([2], [33], [11], [15], [34]). Evidently, none of these are exact methods, though it is possible they give good
approximations in situations of interest.

5.3.3 Parinello-Rahman method

The widely used method of Parinello and Rahman [28] and its generalizations also involves deforming
boxes, like OMD in the case of the time-dependent translation group. The two methods differ in that the
Parinello-Rahman method does not give exact solutions of the equations of molecular dynamics. Even
when it happens that the unit cell of the Parinello-Rahman method is deforming according to the affine
transformation I+ tA, A 6= 0, for a time interval, say, (t1, t2), and the initial conditions of atoms coincide
at t1, the two methods give different motions of the atoms. In that case the term added to the right hand
side of the equations of molecular dynamics in the Parinello-Rahman method is

G−1Ġṡk, where G = (I + tA)T (I + tA) and sk(t) = (I + tA)−1yk(t). (5.17)

This does not generally vanish, as G is invertible, Ġ = A + AT + 2tATA vanishes at most at a single
value of t, and ṡk is highly irregular. This should be contrasted with results given below for the Maxwell-
Boltzmann equation and for Langevin dynamics: both cases represent dissipative theories that are precisely
consistent with OMD.

It should be emphasized that the purpose of the two methods is also different: the Parinello-Rahman
method and other isobaric methods are methods for finding equilibrium states at constant pressure, while
OMD is a method for nonequilibrium molecular dynamics. OMD can only describe motions near macro-
scopic equilibrium if |A| is small, and can never describe the trend to equilibrium.

6 An exact reduction of the Maxwell-Boltzmann equation

The solutions of the equations of molecular dynamics described in Section 5 not only have a natural
macroscopic interpretation as affine motions, but they also have a particular statistics. The distribution of
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velocities near one point determines the distribution near every other point. Thus, it is expected that these
solutions have implications for mesoscale statistical theories.

6.1 An ansatz based on the statistics of objective molecular dynamics

The kinetic theory of gases involves a statistical averaging over velocity space, but not over position space
or time intervals. These statistics are governed by the molecular density function f : R×R3 ×R3 → R≥.
The number density of atoms at (t, y) is n(t,y) =

∫
R3 f dv. The quantity (1/n)f(t,y,v) represents the

probability density of finding an atom with velocity v in a small neighborhood of y at time t. In thinking
about the statistics appropriate to the kinetic theory, one should consider a small volume centered at y at
time t and the velocities represented by atoms in that volume. To compare with the solutions found above,
it is natural to take the volume to be that occupied by the simulated atoms, i.e., the fundamental domain FD,
or one of the images of the FD under the group. So, in the heuristic statements below, we think of position
space R3 partitioned into cells by a lattice based on the time dependent lattice vectors (I+tA)ei, i = 1, 2, 3
(cf., Section 5). In this case we can take the FD as the unit cell U(t) = {λi(I+tA)ei : 0 ≤ λ1, λ2, λ3 < 1}.
In the statements below, the “velocities at y” will be interpreted as the velocities in the instantaneous
translate of U(t) containing y. With this understanding and using (5.2), we have the following statements
about the OMD solutions found above:

• The velocities at 0 are ẏi, i = 1, . . . ,M .

• The velocities at y = (I + tA)x are ẏi + Ax, i = 1, . . . ,M .

• Or, in the Eulerian form used in the kinetic theory, the velocities at y are ẏi + A(I + tA)−1y, i =
1, . . . ,M .

From these statements we see that the probability of finding a velocity of the form v+A(I+ tA)−1y at y
is the same as the probability of finding a velocity v at 0. This statement is independent of the value of M ,
independent of the initial conditions on the simulated atoms and independent of the force laws between
atoms. In terms of the molecular density function,

f(t,y,v + A(I + tA)−1y) = f(t, 0,v), (6.1)

or, rearranging,

f(t,y,v) = f(t, 0,v −A(I + tA)−1y)

= g(t,v −A(I + tA)−1y), v ∈ R3, y ∈ R3, t > 0. (6.2)

We show that the ansatz (6.2) reduces the Maxwell-Boltzmann to an equation on R × R3. The Maxwell-
Boltzmann equation is the following equation14 for the evolution of the molecular density function f :

∂f

∂t
+ v · ∂f

∂y
=

∫
R3

∫
S
(f ′?f

′ − f?f) dSdv?. (6.3)

14We have omitted body forces in the Maxwell-Boltzmann equation, in keeping with the rest of this paper. Certain kinds of
body forces could be included.
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The notation is the following,

f ′? = f(t,y,v′?) = f(t,y,v? − ((v? − v) · e)e),

f ′ = f(t,y,v′) = f(t,y,v + ((v? − v) · e)e),

f? = f(t,y,v?),

f = f(t,y,v), (6.4)

The integration dS = dS(θ, ζ; |v? − v|) on the right hand side of (6.3) is, more explicitly,∫
S
. . . dS =

∫ 2π

0

∫ π/2

0

. . . sin θ S(θ, |v? − v|) dθdζ, (6.5)

where S is the scattering factor, and e is a unit vector that depends on the hemispherical angles ζ, θ:

e = e(ζ, θ,v? − v), |e| = 1. (6.6)

It is therefore seen that the integrand on the right hand side of (6.3) is a function of (r, θ,v?; t,y,v)
with r, θ,v? being integrated out. All information about the atomic forces is contained in the form of e,
the domain S and the measure dS. The detailed form of e(r, θ,v? − v) comes from the solution of the
two-body problem.

Direct substitution of (6.2) into (6.3) and use of the identity d/dt(M−1) = −M−1ṀM−1 yields

∂g

∂t
+
∂g

∂w
·
[
A(I+ tA)−1A(I+ tA)−1y− (A(I+ tA)−1v

]
=

∫
R3

∫
S
(f ′?f

′− f?f)|v?−v| dSdv? (6.7)

with g being evaluated at the arguments t,v −A(I + tA)−1y. On the right hand side of (6.7), using the
change of variables w? = v? −A(I + tA)−1y we have∫

R3

∫
S
(f ′?f

′ − f?f)|v? − v| dSdv? =

∫
R3

∫
S
(g′?g

′ − g?g)|w? −w| dSdw?|w=v−A(I+tA)−1y. (6.8)

Replacing v −A(I + tA)−1y by w throughout (6.7),(6.8), we have that g(t,w) satisfies the equation

∂g

∂t
− ∂g

∂w
·A(I + tA)−1w =

∫
R3

∫
S
(g′?g

′ − g?g)|w? −w| dSdw?. (6.9)

Hence, under the ansatz (6.2), the Maxwell-Boltzmann equation is reduced to an equation in only the
independent variables (t,w), effectively removing the spatial dependence.

6.2 H-theorem

It is interesting to look at the H-theorem corresponding to these solutions. The easiest way to derive it is
to write down its standard form for the original molecular density function f and then to change variables.

For our purposes it is more useful to look at (minus the) entropy per volume than the entropy per molecule.
Therefore we put

H(t,y) =

∫
R3

f log f dv, (6.10)
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(Boltzmann’s “H” is (1/n)H , where n =
∫

R3 f dv). Following the standard approach we multiply (6.3)
by log f and integrate over v ∈ R3. We have formally, by the usual argument,

∂H

∂t
+ divy

∫
R3

vf log f dv ≤ 0, (6.11)

the inequality on the right arising from the special form of the collisions operator and the monotonicity
of the log function. In these calculations use is made of the balance of mass, i.e., the 0th moment of the
Maxwell-Boltzmann equation.

Now we substitute f(t,y,v) = g(t,v −A(I + tA)−1y) into (6.11) and change variables. Trivially,

H(t,y) =

∫
R3

f log f dv =

∫
R3

g log g dw, (6.12)

while (6.11) becomes simply,
∂H

∂t
+ tr(A(I + tA)−1)H ≤ 0. (6.13)

Note that the expansion rate tr(A(I + tA)−1) enters in a simple way. For isochoric motions such as plane
Couette flows, we have simply that H is decreasing.

6.3 Discussion

It would be extremely interesting to deduce information about the form of g satisfying (6.9) for general
force laws. Forthcoming work [19] shows that some information on the time-dependence of g can be
found in a special case.

In general, one cannot expect any simple kind of statistics for nonequilibrium flows, even for moderately
rarefied monatomic gases. That is evident from the fact that the Maxwell-Boltzmann equation is an infinite
dimensional dynamical system which produces solutions from general initial data f(0,y,v) [6]. However,
for the reduced equations given here, there is some reason to believe that there may be relatively simple
asymptotic solutions, or a simple asymptotic equation. If these could be found, it might be possible to infer
a statistics in general for affine motions in general materials, in the same way the canonical distribution
of statistical mechanics can be inferred from the Maxwellian density (i.e., replace (1/2)|v|2 by a general
Hamiltonian) in the case of equilibrium. Our simulations presented in Section 8, albeit for a more complex
situation, support the idea that these statistics would depend on the form of the atomic forces, even though
the ansatz does not.

There are some known solutions for the infinite set of equations of the moments of the Maxwell-Boltzmann
equation [16, 35] for inverse 5th power molecules. It is not known if these correspond to a nonnegative
molecular density function. These all apparently fall under the ansatz given above. Explicit solutions
for various second and third moments, the stress and heat flux, are given in the case of plane Couette
in [35] (see also [36], Chapt. XIV). These have the following structure. They consist of the sum of an
oscillatory part multiplied by a decaying exponential and an exponentially increasing part. The decaying
part can be eliminated by choosing special initial conditions. All the interesting properties of the solution
– viscosities, normal stresses – are interpreted from the exponentially increasing part. Since moments

18



Nonequilibrium molecular dynamics for bulk materials and nanostructures (to appear in J. Mech. Phys. Solids.) Kaushik Dayal and Richard D. James

are linear functions of the molecular density function, this hints at the possibility of a relatively simple
asymptotic form of the equation (6.9). The only other exact solution of the Maxwell-Boltzmann equation
of which we are aware is that of Bobylev [3] (independently, Krook and Wu [20]), also for inverse 5th

power molecules, but this solution describes a trend to equilibrium and therefore could not be directly
related to the OMD solutions.

The reduced H-theorem (6.13) gives some heuristic qualitative information on how such a molecular
density function should behave15. Consider the case that the expansion rate tr(A(I + tA)−1) = 0 for
simplicity. Recalling that H =

∫
g log g dw, and noting that the function x log x is bounded from below

and has a single minimum at x = e−1, we assume first that g(t, ·) has compact support independent
of t. Then, since g log g is bounded from below, and H is decreasing, one expects that dH/dt tends
asymptotically to 0. But in that case, from standard calculations in the kinetic theory, the collisions
operator on g would be asymptotically zero, and so g would be asymptotically Maxwellian. This is highly
unexpected; rather, these solutions are expected to lead to functions H that tend to −∞ as t → ∞. It
is seen that such a decrease is consistent with H =

∫
g log g dw for appropriate g that do not have fixed

compact support. For example, if g(t,v) = ε3(t) on a ball of radius 1/ε(t), and is zero otherwise, then the
number density n(t) =

∫
g dw is constant, but

H(t) =

∫
B1/ε(t)

ε3(t) log ε3(t) dw = 4π log ε(t) → −∞, (6.14)

if ε(t) → 0. This suggests that the sought after molecular density functions tend to zero, possibly uni-
formly, and have a spreading support with substantial support at higher and higher speeds. This is con-
sistent with the physical intuition that external work is being done on the material at the boundaries and
dissipation leads to an unbounded increase in the temperature at long times.

The OMD solutions described above are applicable to arbitrary kinds of atoms, and therefore to kinetic
theories of gas mixtures, as described for example by Garzó and Santos [12]. It would be interesting to
examine these more general theories in the present context. These authors also observe that the ansatz
f(t,y,v) = g(t,v−Cy)) reduces the Maxwell-Boltzmann equation, as is immediately clear. This agrees
with the present ansatz only when C = A(I + tA)−1 is independent of t. A short calculation shows
that A(I + tA)−1 is independent of t if and only if A2 = 0, which by Footnote 10 is equivalent to
A = a ⊗ b, a · b = 0. This gives C = a ⊗ b and corresponds to plane Couette flow. For C not of this
form we have no OMD interpretation of these flows, possibly indicating a discrepancy between kinetic
theory and molecular dynamics.

7 Proposed extension of the principle of material frame indifference

The calculations of the preceding section, albeit restricted to the very special situation of moderately rar-
efied monatomic gases, suggest that the OMD solutions given in Section 5 are representative of material
behavior. The OMD solutions of Section 5 are possible in any material with an arbitrary number of sim-
ulated atoms having arbitrary initial conditions, under very mild conditions on the force formula. The

15This paragraph benefited from discussions with Stefan Müller.
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presence of these solutions is a direct consequence of the frame-indifference (actually just translation in-
variance) and permutation invariance of this formula. In all cases the macroscopic motions corresponding
to these OMD solutions are affine motions, independent of the material, and each affine motion corre-
sponds to an infinity of OMD solutions, with an arbitrary number of simulated atoms satisfying arbitrary
initial conditions. This suggests that the Principle of Material Frame Indifference of nonlinear continuum
mechanics should be augmented to include the requirement that the balance laws of continuum mechanics
hold for such motions. This becomes a restriction on constitutive relations, as discussed below.

The Principle of Material Frame-Indifference is the following ([37], pp. XI and 296). One defines a
change of frame by the equations

y? = R(t)y + c(t), (7.1)

where R : [0,∞) → SO(3) and c : [0,∞) → R3, assumed to be smooth functions. For the Lagrangian
description of motion y(t,x),x ∈ Ω, t > 0, for example, we have for an observer in the starred frame,

y?(t,x) = R(t)y(t,x) + c(t). (7.2)

All transformation laws for kinematic quantities come from this relation. Other macroscopic quantities
are assumed to have transformation laws. The Cauchy stress for example has the transformation law for
an objective tensor:

σ? = R(t)σR(t)T . (7.3)

In a purely mechanical setting a constitutive equation is given that relates the Cauchy stress to kinematic
quantities. Simple fluids as described above are examples. More generally, σ(t,x) = ft,x(y), where ft,x
for each t > 0,x ∈ Ω is a functional defined on a space of histories y(z, s), z ∈ Ω, s < t. The Principle
of Material Frame Indifference states the functional f is independent of the observer in the sense that

σ?(t,x) = ft,x(y
?) if and only if σ(t,x) = ft,x(y) (7.4)

where σ? and y? are related to σ and y by (7.3) and (7.2), respectively. The point is that ft,x is the same
functional in the two statements in (7.4). This is the main principle that is used to give the accepted
forms of the constitutive equations for Newtonian and non-Newtonian fluids, nonlinearly elastic solids,
viscoelastic solids, etc., from rather general starting assumptions.

The added requirement that is suggested by this paper, as discussed above, is

The equations of motion are identically satisfied for the family of affine motions y(t,x) =
(I + tA)x, x ∈ Ω for t ∈ R such that det(I + At) > 0.

In Eulerian form the suggested modification is:

The equations of motion are identically satisfied for the family of velocity fields v(t,y) =
A(I + tA)−1y, y ∈ y(Ω, t), for t ∈ R such that det(I + At) > 0.

The modified principle is only meant to apply to homogeneous materials, as for example would be asso-
ciated with the method of OMD simulation using the translation group, as described above. For incom-
pressible materials we would of course impose the constraint of incompressibility on the affine motions.

20



Nonequilibrium molecular dynamics for bulk materials and nanostructures (to appear in J. Mech. Phys. Solids.) Kaushik Dayal and Richard D. James

All generally successful constitutive equations we know satisfy the augmented principle. However, in
other mesoscale theories which have a relation to molecular dynamics, it seems to be a useful restriction.
We discuss some implications.

1. The modified principle is satisfied for all simple fluids by virtue of the calculation (5.10) and the
form of the constitutive relations for these materials. Thus, the modified principle is satisfied for all
(homogeneous) Newtonian and non-Newtonian fluids and all nonlinearly elastic solids. All models
of viscoelastic fluids of which we are aware satisfy the modified principle.

2. It is interesting to look at the extended principle for models of turbulence. Mathematically, one
could imagine a possible violation, as turbulence models often involve spatial averaging of nonlinear
quantities. We consider in detail at the LES (Large Eddy Simulation) and related models [30, 31].
LES is based on the equations for the Eulerian velocity of the following form:

v̄t +∇v̄v̄ = −∇P̄ + ν∆v̄ −∇ · τ, ∇ · v̄ = 0, (7.5)

where P is the average kinematic pressure, ν is the kinematic viscosity, the overbar denotes spatial
filtering,

ū(t,y) =

∫
R3

g(y − y′)u(t,y′) dy′, (7.6)

and
τ = v ⊗ v − v̄ ⊗ v̄. (7.7)

It is a straightforward exercise to show that indeed all isochoric affine motions v(t,y) = A(I +
tA)−1y identically satisfy (7.5) if the first moment of g vanishes and

∫
g dy = 1. The Navier-Stokes

alpha model [10] also satisfies the modified principle under the same restrictions on the filter. It is
more difficult to make such statements about the k-εmodel of turbulence, because the constraints on
initial conditions on the functions k and ε that appear in that model are not clear. If affine motions
are assumed to be solutions of the k-ε model regardless of these initial conditions, it follows that k-ε
models do not satisfy the modified principle. If, on the other hand, one is allowed to adjust initial
conditions in any way, then, at least in the case of simple shearing one does have satisfaction of the
modified principle for at least short times. Turned around, the suggested modification suggests how
to choose initial conditions for the k-ε model, at least for these special flows.

3. The Langevin equation as usually written for plane Couette flows satisfies reasonable interpreta-
tion of the principle, and the principle gives a suggestion on how to write Langevin dynamics for
more general flows. For definiteness we restrict attention to the case of a polymer solution with
coarse-grained polymer chains represented by a string of beads at positions Xν,k, ν ∈ Z3, k =
1, . . . ,M each with effective mass m in a plane Couette flow with velocity v(X) = γ̇X2e1, γ̇ =
const., and e1, e2, e3 is an orthonormal basis. The beads interact according to a potential energy
ϕ(. . . ,Xν1,1, . . .Xν1,M ,Xν2,1, . . . ,Xν2,M , . . . ) whose derivative is assumed to be frame-indifferent
and permutation invariant in the sense of (3.2), (3.3). The stochastic terms then model the effects of
the solvent on the motions of these beads. As above, we write Xk = X(0,0,0),k, k = 1, . . . ,M , and
assume that Xk = Xk(t) satisfy the Langevin equations,

mẌk =
∂ϕ

∂X(0,0,0),k

− γm(Ẋk − γ̇(Xk · e2)e1) +Rk (7.8)
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where Rk is a stochastic term which is a stationary Gaussian process with zero mean,

〈R(t)〉 = 0, 〈R(t) ·R(t′)〉 = 2γkBTmδ(t− t′), (7.9)

and δ is a Dirac mass, kB is Boltzmann’s constant, T is the target temperature, γ is the damping
constant. The precise interpretation of (7.8), (7.9) is in terms of stochastic ordinary differential
equations.

For general affine flows we suggest writing the Langevin equation as

mẌk =
∂ϕ

∂X(0,0,0),k

− γm(Ẋk −A(I + tA)−1Xk) +Rk (7.10)

which reduces to (7.8) in the case of plane Couette flows, A = γ̇e1 ⊗ e2.

A reasonable interpretation of the principle is that the remaining beads with positions

Xν,k(t) = Xk(t) + (I + tA)νiei, (7.11)

also then necessarily satisfy the Langevin equations. We are relying on the ideas that 1) the beads
represent some kind of average positions of atoms on polymer chains, or are simply Lagrangian
markers for the chain, 2) that the Langevin solution corresponds to an OMD solution carried out for
all the atoms, including the atoms of the solvent. Now using the frame-indifference and permutation
invariance of ϕ and (3.9), (7.11), we have by direct calculation

mẌν,k = mẌk =
∂ϕ

∂X(0,0,0),k

− γmẊk +Rk

=
∂ϕ

∂Xν,k

− γm(Ẋν,k −A(I + tA)−1Xν,k)) +Rk. (7.12)

Hence, the other atoms Xν,k, ν 6= (0, 0, 0) then necessarily exactly satisfy the equations of Langevin
dynamics. A key point in this argument is that the noise term Rk is independent of ν. This is also
consistent with the statistics given in the three bullets of Section 6.1, though more general forms
of Rk than (7.9) could be considered. (This statistics should be considered as a requirement to be
satisfied by the form of the noise (7.9) ). In the same way that OMD gives a simplified method
of simulating molecular dynamics for affine flows, the above gives a simplified exact method of
simulating Langevin dynamics for these flows.

As many people have noticed, the Langevin equation is similar to thermostatted equations of motion.
We conclude this section with a few remarks about thermostats. It is easily seen that under the
restrictions (a) there is no time-dependence of the group elements, and (b) the group is finite (N is
finite), if the simulated atoms (1, k), k = 1, . . . ,M satisfy the Nosé-Hoover thermostatted equations
of motion, then all the atoms satisfy the Nosé-Hoover thermostatted equations of motion. This
statement is not true for all thermostats. Some of them add a nonlinear term in the momentum
vector on the right hand side of the equations of motion, and, for all of these that we have seen, the
above statement is not true. The restriction to finite N here may only be a formality related to the
the convergence of a sum appearing in the thermostat model: we did not investigate whether there
is a version of the Nosé-Hoover thermostat that applies only to the atoms in the FD. For the time-
dependent groups the statement above does not hold: all thermostats of which we are aware do not
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preserve the time-dependent invariant manifold of molecular dynamics when the time dependence
is not trivial.

These statements suggest that the Langevin equation, while perhaps more restricted in its applica-
tion, is more faithful to molecular dynamics than thermostatted equations of motion. The main point
is the inclusion of the term involving the macroscopic motion into the Langevin equation. While we
know of no justification to use thermostat models away from macroscopic equilibrium, it is possible
that the inclusion of similar terms into the Nose-Hoover or other thermostats will then make the
modified thermostats compatible with the method proposed here.

8 Study of the failure of carbon nanotubes under imposed strain
rate

A rather different application of OMD is to the deformation and failure of nanostructures. Here we give a
simple demonstration of the method by studying the deformation and failure of carbon nanotubes pulled
axially at a constant macroscopic strain rate.

We refer to Section 2 for the groups used. As explained there, we first used the group G4 = {hpgqfm :
p ∈ Z, q = 1, . . . , n, m = 1, 2} to construct the positions of an nominally unstressed (6, 6) nanotube (see
[7]), with h, g, f defined in Items 1, 2, 3 following (2.3) (except θ is a rational multiple of 2π). Note also
the comments in the latter part of Section 2. The choice of parameters was

x0 = (0, 0, 0), e = (0, 0, 1), τ0 = 0.123 nm, θ = π/6, (8.1)
e1 = (0.98481, 0.17365, 0), ψ = π/3, n = 6, ξ = 0.

We applied this group to the point z1 = (0.4068 nm, 0, 0) to generate a full nanotube.

Then, as explained in Section 2, we considered subgroups G′ ⊂ G and corresponding sets of simulated
atoms belonging to the fundamental domains of these subgroups, the initial positions of the simulated
atoms given by the positions of the nominally relaxed nanotube described above. In all simulations we
used two different subgroups and corresponding FDs. These effectively defined the simulated atoms. In
the notation of Section 2 these are specified by

p′ = 12, q′ = 3, and p′ = 6, q′ = 6. (8.2)

Pictures of the two FDs and corresponding simulated atoms in red are shown in Figure 3. The FD on
the left of Figure 1 was particularly chosen to promote the formation of Stone-Wales defects. This FD is
consistent with the possibility of a series of widely spaced Stone-Wales defects on two infinite intertwined
helices propagating so as to cause plastic slip on these helices.

Temperature is calculated as the mean kinetic energy of simulated atoms, after subtracting off the average
velocity, converted to thermal units, i.e., using the formula

T (t) =
m

3kB

1

M

M∑
k=1

|ẏk(t)−
1

M

M∑
i=1

ẏi(t)|2, (8.3)
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(a) p′ = 12, q′ = 3 (b) p′ = 6, q′ = 6

Figure 3: The two sets of simulated atoms (in red) corresponding to the two subgroups used in the simu-
lations, showing the initial positions (acknowledgment [22]).

where kB = 8.617343×10−5eV/K is Boltzmann’s constant andm = 0.124371 eV/(nm/ps)2 is the mass
of C.

These initial positions, together with initial velocities having zero angular velocity (see Section 2), gave
solutions showing a transient which depended on the details of the initial conditions. We found that
macroscopic quantities like failure strain and temperature vs. time were reproducible if we began from
initial positions and velocities taken after this transient. Our procedure was to set the strain rate ε̇ = 0, so
τ = τ0 (cf., (8.2)), to begin with random initial velocities modified to have zero angular velocity and scaled
to approximate a certain temperature, and to run a simulation for 106 fs. We monitored the transient by
plotting the temperature vs. time, and in all cases found a nearly constant temperature vs. time profile well
before the end of this preliminary simulation. Positions and velocities as initial conditions for subsequent
simulations were taken from near the end of this simulation. Subsequent simulations were done of course
with nonzero strain rate. Following this procedure, we did several simulations chosen with the same initial
temperature and strain rate, but with rather different details of initial conditions, and found that failure
strains varied by less than 1% in all cases. This was true with both FDs and otherwise no significant
differences were seen between simulations with one FD or the other. This reproducibility was striking in
view of the dramatic effect of strain rate and initial temperature as reported below.

Modes of failure varied widely. At the very highest strain rates we saw a) fibrous fracture, in which the
nanotube split axially into two parallel fibers with part of the simulated atoms on one and part on the
other16, b) cavitation, in which a hole opened up in the side of the nanotube, c) cross-sectional collapse, in
which the tube collapsed into two parallel graphene sheets. However, the most common mode of failure
could be described as melting, in which there was sudden widespread loss of coordination. This was

16This is perfectly fine vis-a-vis the basic theory.
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Figure 4: Temperature vs time. Initial temperature = 800 K, strain rate = 108 s−1, 2.5 × 106 time steps,
FD is (b) of Figure 3.

especially true at the lower strain rates. However, we did not see any Stone-Wales defects in any of the
simulations. Just prior to failure we did sometimes see what could be termed Stone-Wales partials, in
which one 6 membered ring donated an atom to a neighbor, resulting in contiguous 7 and 5 membered
rings. The varied modes of failure at the highest strain rates would seem to suggest that the hypotheses
of transition state theory are not being satisfied in those cases. A study by Wei, Cho and Srivastava [38]
of the failure of carbon nanotubes at various strain rates and temperatures based on transition state theory
gives strains at failure qualitatively different from that reported here. This is also true of the earlier study
of Yakobson [40], which is partly based on a similar method but not using transition state theory.

A typical temperature vs. time plot is seen in Figure 4. Except in simulations that exhibited failure very
quickly, temperature vs. time showed a long period with a negative slope, interpretable as the thermoelastic
effect. In this sense we find that (6,6) C nanotubes behave more like crystals than polymers: entropic
effects are apparently confined to “lattice” vibrations. Well prior to actual failure, and not evident by
looking at movies of the simulations, the graph of temperature vs. time begins increasing rapidly.

The simulation corresponding to Figure 4 showed no Stone-Wales partials, as far as we could tell. Three
snapshots from this simulation are shown in Figure 2. Figure 2c shows a cavitation failure at about 2240 ps:
a series of holes opened up in the side of the nanotube, each bounded by 18 atoms. Soon after that, at about
2260 ps, the cross-section collapsed, leaving two approximately parallel graphene strips. A catastrophic
loss of coordination occurred shortly thereafter.

Most of the simulations exhibited a clearly defined failure strain, resulting in complete loss of coordination.
A plot of failure strain vs. strain rate and initial temperature is shown in Figure 5. This exhibits a rather
sharp drop at strain rate of about 107 s−1 and a temperatures of about 1200K. This is quite opposite to the
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Figure 5: Failure strain vs. initial temperature and log strain rate from a large set of simulations. For each
point at least two simulations were run with the two different fundamental domains: the strain at failure
differed by less than 1%.

conventional wisdom that lower strain rates and higher temperatures promote ductility. However, since we
have seen neither Stone-Wales defects nor any other analog of dislocations, perhaps one should think in
terms of rather different mechanisms of failure at these rates.

The failures at low strain rates and higher temperatures in Figure 5, resulting in exceptionally low strain
at failure, were preceded by large amplitude vibrations of the cross-section (Figure 6). While these were
not precisely periodic, they occurred at a frequency of approximately 100 GHz. It would be interesting to
examine experimentally the effect of radiation of these frequencies on failure.

Here we have concentrated on the behavior of near perfect nanotubes to demonstrate that the method can
predict failure, and for its inherent interest. In future studies we plan to parallelize the method so as to
access lower strain rates, to explore the effect of removing one or more atoms, to investigate the behavior
of nanotubes with different chirality, to examine the effects of pre-stretch and pre-twist, and to implement
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Figure 6: Extreme distortion of the cross-section in low failure strain calculations.

groups that impose both shear and elongation.
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