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Abstract 
 

Nonsingular, stressed, dislocation (wall) profiles are shown to be 1-d equilibria of a non-equilibrium 
theory of Field Dislocation Mechanics (FDM). It is also shown that such equilibrium profiles 
corresponding to a given level of load cannot generally serve as a traveling wave profile of the governing 
equation for other values of nearby constant load; however, one case of soft loading with a special form 
of the dislocation velocity law is demonstrated to have no ‘Peierls barrier’ in this sense. The analysis is 
facilitated by the formulation of a 1-d, scalar, time-dependent, Hamilton-Jacobi equation as an exact 
special case of the full 3-d FDM theory accounting for non-convex elastic energy, small, Nye-tensor 
dependent core energy, and possibly an energy contribution based on incompatible slip. Relevant 
nonlinear stability questions, including that of nucleation, are formulated in a non-equilibrium setting. 
Elementary averaging ideas show a singular perturbation structure in the evolution of the (unsymmetric) 
macroscopic plastic distortion, thus pointing to the possibility of predicting generally rate-insensitive slow 
response constrained to a tensorial ‘yield’ surface, while allowing fast excursions off it, even though only 
simple kinetic assumptions are employed in the microscopic FDM theory. The emergent small viscosity 
on averaging that serves as the small parameter for the perturbation structure is a robust, almost-geometric 
consequence of large gradients of slip in the dislocation core and the persistent presence of a large 
number of dislocations in the averaging volume. In the simplest approximation, the macroscopic yield 
criterion displays anisotropy based on the microscopic dislocation line and Burgers vector distribution, a 
dependence on the Laplacian of the incompatible slip tensor and a nonlocal term related to a Stokes-
Helmholtz-curl projection of an ‘internal stress’ derived from the incompatible slip energy. 
 
1. Introduction 
 
We are concerned here with the development of an idealized mathematical description of 
nominally crystalline solids containing dislocations as the only defects. The interest is in 
behavior at the time scale of ~ microseconds or more and therefore in theory that can be 
routinely used for attempting to understand such behavior. It is our belief that an appropriate, 
nonlocal field/continuum description that involves fields that are smooth over a length scale of 
interatomic length and larger can be adequate for such a purpose. Kinetic energy of atomic and 
subatomic vibrations below this length scale, and time averaged over periods of microseconds, is 
characterized as dissipation within such a framework. Thus, in concept, we exchange the atoms 
and their (sub)femtosecond vibration periods in Molecular Dynamics with the dissipative 
evolution of a mathematical dislocation density field (capable of representing ‘individual’ 
dislocations) within a nominally elastic continuum characterized eventually by Cauchy-Born 
crystal elasticity (Milstein, 1982; Ortiz and Phillips, 1999). The stored energy of the body is 
augmented with some additional contributions to represent nonlocal energy content that cannot 
be ascribed to local elastic response, but hopefully with enough physical meaning so as to be 
capable of unambiguous definition from quantum/atomistic studies. Our main goal in pursuing 
this direction of work is really the prediction of the dynamics of mesoscale microstructure and its 
effect on macroscopic properties; since temporal coarse-graining of MD remains elusive and a 
rational discrete-to-continuum transition in the 3-d, time-dependent setting even more so in the 
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presence of large numbers of defects, we believe that it is important to understand exactly what 
can and cannot be achieved  by an atomic scale field theory grounded in sound kinematics, 
conservation statements, and the possibility of  fitting necessary physics from subatomic scales, 
since such a framework has the potential of being an effective unified tool for achieving the 
desired scale transitions. We provide a very first demonstration of this overall approach in the 
paper, and, of course, much remains to be done. 

We pursue work here in the geometrically linear setting for two reasons. First, the continuum 
mechanics and physical ideas involved are sufficiently non-standard to warrant leaving aside the 
complications due to geometric nonlinearity for the moment. Second, for a part of the present 
model, the extension to finite deformations exists in Acharya (2004), and extending that earlier 
work to account for the new developments, while technically intricate from the continuum 
mechanics perspective, would be conceptually straightforward. 

An interesting conceptual issue comes up in this work related to the definition of the condition 
for the onset of motion of a single dislocation, especially when compared to the treatment of the 
same question as initiated in Peierls (1940) based on the static, classical, elastic theory of 
dislocations. Due to the translational invariance of the sum of the linear elastic and the 
interplanar energy of an infinite body in that analysis, the dislocation core could be situated 
anywhere on the slip plane with the same energy cost. This prompted Peierls to conclude that, 
within that theory, there could not be a threshold stress to initiate rigid motion of a dislocation to 
move it from one location to another. A stronger result is shown by Movchan et al. (1998) in that 
an equilibrium solution to the problem with a non-zero, but small, applied stress does not exist. 
Peierls’s (1940) conclusion and preliminary work prompted the accounting of lattice discreteness 
in the theory of the Peierls stress (Nabarro, 1947) followed by a rich literature (e.g. Picu, 2002), 
whereby invariance of the energy with respect to all continuous spatial translations of its 
argument fields is exchanged for discrete invariance respecting the symmetry of the lattice (e.g. 
Lu et al., 2000). 

The model presented in this paper is translationally invariant. It is also dynamic, even in the 
absence of inertia. In the context of the static approach to the Peierls stress problem, while the 
absence of an equilibrium configuration under small load is a compelling result, it is perhaps fair 
to say that this result by itself does not say anything about how the dislocation profile evolves 
under non-zero load – e.g. does instability lead to a complete collapse of the slip configuration, 
or a very severe distortion with no semblance to a slip profile representing a dislocation, or does 
it mean rigid translation of the equilibrium profile corresponding to no load? Or, very 
importantly, does the dislocation density profile evolve, but with indiscernible translation of the 
dislocation core up to a certain value of the load after which there is an almost rigid translation? 
What effect does rate of loading and temperature have on this experiment? It seems that a 
dynamical model, with a basis in mechanics (e.g. the discrete Peierls model of Movchan et al., 
1998), is required for such a purpose. Thus, we pose the question of existence of a barrier to 
rigid translation as one of determining when dislocation-like equilibrium profiles under zero load 
may not serve as traveling wave profiles under load, realizing full well that the practically 
relevant criterion would be related to “almost rigid’ translation, but defining the latter precisely 
is far more delicate than the former. In a simplified 1-d setting, we show that the answer varies 
with the choice of dislocation velocity law and loading mode (displacement or traction control), 
and clearly translational invariance is not the crux of the issue in this model. Of course, our 
general theory does not preclude the inclusion of discrete translational invariance in the model 
through physically appropriate modifications to the form of the energy density function, in the 
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spirit of the semi-discrete Peierls model (Lu et al., 2000) and/or through a restatement in the 
language of discrete calculus (e.g. Ariza and Ortiz, 2005). 

This paper is organized as follows: in Section 2 we settle on some notational conventions. 
Section 3 describes the theoretical framework. In Section 4 a simple, but exact, model problem is 
developed and the general theory is applied to it. We obtain some special exact solutions for 
equilibria and a travelling wave, and formulate some questions of dynamical stability whose 
answers would be of direct physical interest. In Section 5 we consider preliminary implications 
of our atomic-scale model on meso and macroscopic response. In Section 6 we present some 
comparative observations on aspects of our model with time-dependent Ginzburg Landau models 
and level-set propagation. 
 
2. Notation 
 
A superposed dot on a symbol represents a material time derivative. The statement :a b=  is 
meant to indicate that a is being defined to be equal to b . The summation convention is implied. 
We denote by Ab  the action of the second-order (third-order, fourth-order) tensor A  on the 
vector (second-order tensor, second-order tensor) b , producing a vector (vector, second-order 
tensor). A ⋅  represents the inner product of two vectors, a : represents the trace inner product of 
two second-order tensors (in rectangular Cartesian components, : ij ijA BA B = ) and matrices. The 

symbol AB  represents tensor multiplication of the second-order tensors A  and B . The 
curl operation and the cross product of a second-order tensor and a vector are defined in analogy 
with the vectorial case and the divergence of a second-order tensor: for a second-order tensor A , 
a vector v , and a spatially constant vector field c , 
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( ) ( )
( ) ( ) .

T T

T T

T T

div div

curl curl
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In rectangular Cartesian components, 
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,
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,

mjk ij kim
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mjk ik jim

e A v

div A

curl e A

A v =

A

A =

´

=  (2) 

where mjke  is a component of the third-order alternating tensor  . Also, the vector  AB  is 

defined as 
   ijk jr rki

e A B AB . (3) 

The spatial derivative, for the component representation is with respect to rectangular Cartesian 
coordinates on the body. For all manipulations with components, we shall always use such 
rectangular Cartesian coordinates. The symbol div  represents the divergence, grad  the gradient, 
and div grad the Laplacian. We often have occasion to use the identity 

     curl curl grad div div grad     , often for an argument for which   0div   . 
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The theory utilizes a continuum description of defect density based on the incompatibility of 
elastic distortion. As such, it is potentially applicable to materials for which an elastic response is 
defined (e.g. amorphous materials like metallic glasses); in this paper we associate the defect 
density field   with a continuously distributed dislocation density in crystalline materials, with 
single dislocations viewed as non-singular, spatially localized structures in this continuously 
distributed density field. The utility of such a representation, even for the visualization of core 
structures from computer simulations, is demonstrated in Hartley and Mishin (2005)1. A single 
such spatially localized structure may be visualized as the smoothed boundary on the slip plane 
of  a ‘fattened’ cut-and-weld operation involved in the definition of a Volterra dislocation of the 
classical theory (see, e.g., Head et al., 1993). It is essential in classical dislocation theory to 
introduce a displacement discontinuity, so that the displacement field is multivalued. It is 
important to realize that in the continuously distributed dislocation model this multivaluedness is 
preserved, even though we use smooth fields – a smooth, incompatible elastic distortion field 
cannot be represented as the (generalized) gradient of a continuous, and hence single-valued, 
vector field, and this is essential for the prediction of internal stress in the theory. 

The elastic distortion of the lattice is represented by the (generally nonsymmetric) tensor eU . 
Due to lattice incompatibility, the elastic distortion is not generally a gradient of a vector field 
and we write its incompatibility field as 
 :ecurl = U . (4) 
Since we insist that the total observable displacement gradient field (from an arbitrarily chosen 
reference configuration, say B ) be the sum of the plastic distortion, pU (with respect to that 
reference),  and the elastic distortion, the plastic distortion is also not in general a gradient; 
 e p e pgrad curl curl= +  =-u U U U U . (5) 
It is written as a sum of a gradient and an incompatible part (that cannot be expressed as a 
gradient) 
 p grad  U z . (6) 
The incompatible part results from the distribution   through the fundamental geometrical 
equation of incompatibility  
 pcurl curl  U      (7) 
with the side condition 

 
  on 

on the boundary  with unit normal 

div B





0

n 0  n


 

 (8) 

to ensure that when  0  the incompatible part   vanishes identically on the body. Thus, (6) 

may be interpreted as the Stokes-Helmholtz decomposition of pU  into a gradient field and a curl 
field (see (23) below). The compatible part grad z  depends upon the history of  plastic straining 
and accumulates the compatible increments of the plastic strain produced by the motion of  the 
dislocation density through the equation 
  div grad div z V . (9) 

In this model of dislocation mechanics, the total displacement field, u , does not represent the 
actual physical motion of atoms involving topological changes but only a consistent shape 

                                                 
1 The paper contains some unfortunate typographical errors that cloud the exposition of the method. Also, the link 

that the authors wish to demonstrate with Bilby’s lattice correspondence functions could not be followed by this 
author, but thankfully that link is not a relevant part of the essential construction of the paper. 
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change and hence is not required to be discontinuous. However, the stress produced by these 
topological changes in the lattice is adequately reflected in the theory through the utilization of 
incompatible elastic/plastic distortions. As usual in continuum plasticity, the stress is a function 
of the elastic distortion (in the linear elastic case given by eT CU ). While not necessary in the 
context of the general theory, in this paper we focus on defect dynamics in the presence of static 
force balance characterized by 
 divT 0 . (10) 

The definition (4) locally renders   as a density of lines carrying a vectorial attribute (the 
Burgers vector), and it is natural to associate a velocity field that moves these line segments in 
the body. This idea can be made geometrically rigorous and results in the fundamental 
conservation law (due to Mura (1963) who attributes it to Kröner): 
  curl  V   , (11) 

where the field V  at any spatio-temporal location represents the velocity of the infinitesimal 
dislocation segment at that location. Gathering all equations, the complete theory reads as 

 
( ) ( )

( )

( )
( )

on .:e

e

curl

div

div grad div
Bgrad

div

curl

ü= ïïïï= ïïïï= ´ ïïý= - + ïïïïé ù = ïê ú ïë û ïïï=- ´ ïþ

 






 

0

z V

U u z

T U 0

V





 (12) 

As for boundary conditions, 

 
( )

 on B
grad

ü= ïï ¶ýï- ´ = ïþ




n 0

z V n 0
 (13) 

are imposed along with standard conditions on displacement and/or traction. For the dislocation 
density field, analysis from the linear partial differential equation point of view indicates 
(Acharya, 2003) that it suffices to prescribe ( )⋅ V n  on inflow parts of the boundary, but we 

believe that the nonlinear problem admits other physically motivated possibilities (Acharya and 
Roy, 2006). 
 
3.1 Dissipation 
 
In (12)-(13) the functions T  and V  need to be constitutively specified. We seek guidance in 
doing so by following a global analog of parts of a procedure initiated by Coleman and Noll 
(1963) and Coleman and Gurtin (1967) for local constitutive equations. A specific free energy 
density function is introduced as follows: 

 
( ) ( ) ( )

( )
1

ˆ : ,
2

: , 0, 1,

e
sym

m

s l G

s x x x m

     U= + +

= ³ 

 (14) 

where l  is a typical interatomic distance, e.g. Burgers vector magnitude, of the crystal. 
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The first term contains the contribution to the stored energy due to deformation of the lattice 
due to the application of loads and the presence of dislocations – since we are interested in 
nonlinear crystal elasticity respecting the symmetries of a lattice, this contribution is in 
inherently nonlinear due to lattice periodicity.  

The second term reflects a local dependence on incompatible slip in dislocated regions. To the 
extent that any energy is physically understood, it seems reasonable to demand that it be defined 
purely in terms of the observed state. It is for this reason that only the incompatible slip, 
completely identifiable from the observable, instantaneous dislocation density field, occurs as an 
argument of the stored energy and not the whole of the plastic distortion pU  as the latter 
contains the compatible part, grad z , whose knowledge requires knowledge of the history of 

dislocation motion (12) 3 . The function s  ensures that the energy due to incompatible slip is 

taken into account only in regions where the lattice has a ‘fault’, as reckoned by the dislocation 
density. Thus, even though a volumetric density, if dislocated regions are localized around 
planes, this energy contribution is also localized similarly.  

The third term, with ( )2O l =  where   is a typical elastic modulus, represents the fact that 

the dislocation density in the body cannot be greater in order of magnitude than roughly ~ 1 l . 
The physical justification for the statement is that a gradient in elastic distortion can be reliably 
measured over a minimal distance of l  in a crystal. Thus,   is to be thought of as a small 
parameter. Alternatively, the term may also be thought of as an energy contribution in the 
material that arises in the presence of high gradients of  incompatible lattice distortion. 

Taken together, the last two terms in (14) are meant to represent the fact that a solely local 
elastic energy response, even though nonconvex, may not suffice to represent the energy content 
of a material element at the atomic scale, if it happens to contain incompatible gradients of slip. 
Clearly, we are thinking of the body as a continuum containing material points even in the 
regions between successive atomic planes and that such points are capable of transmitting forces 
between themselves. We hope that the dominant qualitative characteristics of actual nonlinear 
and nonlocal energy of a defected lattice can be represented by the postulated general energy in 
(14) but, of course, proving the correspondence in a physically rigorous manner is not obvious, 
and less so mathematically. 

We define the mechanical dissipation in the body as the difference of the power of the applied 
forces and rate of change of the stored energy, i.e. 

 ( ) :
B B B B

da dv grad dv dv Tn u T u
¶

= ⋅ - = -ò ò ò ò   D , (15) 

where we have ignored inertia represented in the displacement field, but including it poses no 
special problems. 

Our modest goal now is to make choices for V  and T  that ensure 0³D . On assuming 

 
e
sym

¶
=

¶
T

U
 (16) 

consistent with elasticity, the dissipation may be written as 

 ( ) ( ): : :p

B B B B

G
dv dv s l dv G s l l dv      


T U

¶ ¢= - - -
¶ò ò ò ò


  D . (17) 

V  needs to appear in (17) in order to identify its driving force. To this end, we first show that the 
structure of the equations (12)-(13) imply p = ´U V . Equations (6), (12)1,3,6  imply 
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( )

( ).

p

p

curl curl

div div

= ´

= ´





U V

U V



  (18) 

(18)1  implies the existence of a vector field2, say a , such that p grad- ´ =U V a , and then 

(18) 2  implies that a  satisfies Laplace’s equation 

 div grad =a 0  on B . (19) 

Now, on the boundary B¶ , ( )p grad=- + = ´ U n n z n V n    from (6),(13)1,2 ; therefore, 

 ( )grad =a n 0   on B¶ . (20) 

Consequently, (19) and (20) along with the uniqueness of solutions Laplace’s equation with 
Neumann boundary conditions (up to constant fields) implies 

 pgrad a 0 U V=  = ´ . (21) 

Hence, the dissipation may be written, utilizing (6), (12) 6  and (21) as 

 ( ) ( ) ( ): : :    ;    :
B B B

G
dv curl dv dv s l    


T V V R R

¶
= ´ + ´ - =

¶ò ò ò D . (22) 

In writing (22) we have essentially ignored the contribution from the last term in (17). For m  
large, s  is essentially the constant function with value 1, except near zero. By carrying along the 
ignored contribution through to equation (28) below, it can be seen that ignoring this term from 
(22) onwards implies no loss in generality. In any case, this whole exercise is meant to motivate 
a constitutive assumption for V , and ignoring the said term may just as well be considered as 
part of this assumption. 

To manipulate the last term on the right-hand-side of (22), we utilize a Stokes-Helmholtz 
resolution of a square-integrable tensor field with square-integrable gradients due to Friedrichs 
(see, e.g., Jiang, 1998, Theorems 5.8, 5.2). The resolution states that given such a tensor field R , 
there exists a unique (up to a constant) vector field Rg  and a unique tensor field RW  satisfying 

 
( )

    ;       on 

     on 

  ;      on    and

   on .

R R

R

R R

R R

div grad curl div B

B

div grad div grad B

curl grad B

- = =

´ = ¶

= - = ¶

= +

W R W 0

W n 0

g R g R n 0

R W g

3 (23) 

In keeping with the decomposition of the plastic distortion, we alternatively refer to RcurlW  as 

 :R Rcurl= W . (24) 

Utilizing this decomposition, (12) 2,6  and (13)1 ,  

 ( ): :R
B B

dv curl dv=- ´ò ò R W V . (25) 

Therefore, 

                                                 
2 Assuming the required degree of triviality in the topology of the body. 
3 In applying this decomposition to (6), (8) note that pU

´ =W n 0  on B¶  implies that the line integral of pU
W  

on arbitrary closed curves on the boundary B¶  vanishes so that by Stokes theorem, pU
curl =- =W n n 0  on 

B¶ . 



 
 
 

8 
 
 

 [ ]( ){ } ( ):
T

R
B B

curl curl dv da 
¶

é ù= + + ⋅ - ´ ´ë ûò ò    T W V V nD , (26) 

utilizing the fact that ( ) ( ) ( ): : 0R R
é ù´ ´ =- ´ ´ =ë û W V n V W n   on B¶  due to (23). 

We assume that the boundary term is dominated by the interior term, thus identifying the 
‘driving force’ for the dislocation velocity field as 

 [ ]( )T

Rcurl + +   V T . (27) 

Here we consider simple kinetic assumptions of the form 

 

[ ]( )
; 0

 
or   where  ,   are material constants

T

Rcurl
B

B

B

B B B

B

   



T
V

*

*

+ +
= >

ìïïïï=íïïïïî





 (28) 

For two possible choices of the drag function, and the physical dimensions of B  is that of 

stress´( ) 1
length

- ´( ) 1
velocity

-
. It is to be noted that a ‘classical’ dislocation is identified in this 

model as a region of linear dimension of l  (the core) over which the incompatible slip varies 
continuously by an  1O  amount; assumption (28) implies that in this model the dislocation 

velocity field actually varies significantly in this region. 
With this constitutive assumption, the governing equation for  , a tensorial conservation law, 

is given by 

 
[ ]( )

( )

T

Rcurl
curl

B

æ ö+ + ÷ç ÷ç ÷ç=- ´ ÷ç ÷ç ÷ç ÷è ø

   
 



T
  . (29) 

The corresponding governing equation for the plastic distortion is inferred from (21) as 

 
[ ]( )

( )

T p
Rp p

p

div grad curl
curl

B curl

+ - +
= ´

  T U
U U

U



. (30) 

Of course, the jump conditions/continuity requirements for the plastic distortion cannot be 
inferred from (30) without knowledge of the form of the physical conservation law (29). Equation 
(30) is a ‘nonlocal’ (due to the term R ), nonlinear system of second-order PDE, with the flavor 

of a coupled system of first-order Hamilton-Jacobi equations involving wave-phenomena, 
singularly perturbed by a second-order term (Laplacian) but in a nonlinear manner. 
 
4. Shearing of a bar 
 
Consider a problem where only the 
 12

eU  (31)  

component of eU  is non-vanishing and all fields vary only in the 3x  direction. So, 3x  is the axis 

of an infinite cylinder say of square cross section. Let 1 2,x x  be orthogonal directions in the cross 

section. Then the only non-vanishing components of the Nye tensor   are 
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 132 12,3 11 11 12,3
e ee U U     . 

We assume that the only nonvanishing stress components are 

  12 12 21 21

1

2
e eT T U U T

    
 

 

which vary only in the 3x  direction and so equilibrium  , 0ij jT   is identically satisfied 

regardless of the 3x  variation of eU . Assume that required shear tractions can be mobilized on 

the lateral surfaces of the cylinder.  
For simplicity, we now assume that RcurlW  is symmetric and, like the stress, that  ( )

12RcurlW  

is the only nonvanishing component (up to symmetry). 
Now, 

  curl
t

  V


  


 

where V  is given by (28). Consider the term 
 :    ;   i ijk jr rkf e T    f T . 

The only non-vanishing components of jr rkT  is given by 

 2 1 21 11 12 11r rT T T     

so that the only non-vanishing component of f  is  

 3 321 21 11 21 11f e T T    . (32) 

Now  

 

 
 
 

3 13 1 3 23 2 3

1 32

2 31
.

ijk rj k ij rj i r i rri

rr

rr

e f f e f e f

f

f

    





    

  

 







f

f

f

 (33) 

So 

        1 2, 1, 2,
.isp is isrp s r s r sri

curl e f e f e f           f  

Therefore the only non-vanishing component of  curl  f  is 

        132 11 3 312,3 12,311
,curl e f          f f f . (34) 

Of course, under the assumptions we have made, one can use similar arguments to deal with the 
term RcurlW  in the expression for the dislocation velocity. The remaining term to deal with is 

( )T
curl   . Since 11  is the only non-zero component of the dislocation density, the only 

survivor in 
 ( ) ,jmn in mij

curl e =  

is ( ) 31 11,3 11,312 jcurl e  = = . Therefore, the only non-zero survivor in 

 ( )( ) ( ){ }T T

sjr ir
s ji

curl e curl =     

is 

 ( )( ) ( ){ }321 11 11,3 11
3 21

T T
curl e curl   = =-    . (35) 
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Noting (32)-(35), it can now be deduced that the evolution equation for the only non-zero 
component of the dislocation density tensor is 

 
( )

( )( )11 11 11 12 11,312
11 ,3

1
RT

B
   



ì üï ïï ïé ù=- - + +í ýê úë ûï ïï ïî þ
  . (36) 

We now assume 1,2u  to be the only non-zero displacement gradient component which is only a 

function of 3x  and t . Along with (31),  this implies that 12
pU  is the only non-zero plastic 

distortion component and further that  
 11 132 12,3 12,3

p pe U U =- = . (37) 

Let us denote 
 ( ) ( )12 3, : , ;px t U x t x x = º  (38) 

Henceforth, a subscript x  will denote partial differentiation w.r.t x , and similarly with t . Using 
(32), (33) 2 ,  and (35), (30) now reduces to 

 
( )
( )

2

12 12
x

t xx R

x

T
B


  


é ù= + +ê úë û , (39) 

using the fact that div grad curl- =  . The primary reason why the 1-d scalar version of the 

Laplacian in   can be written in terms of the full plastic distortion ( )xx  is that in this simplified 

problem ( )div ´ = V 0 . 

For the sake of simplifying analysis in a special case, we would like to have (39) solely as an 
equation for  . The assumption on the spatial variation of 1,2u , along with a fixed boundary 

condition on the base of the bar and the fact that 1,3u  has to vanish, implies that 1,2u gº  be a 

function of time alone, so that the term ( ) ( ) ( )( ), ,T x t g t x t º -  in (39) does not pose a 

problem. However, the term ( )
12R  is problematic as it cannot be written as a function of  . For 

the sake of simplicity in this special problem, we will make the approximation that it is simply a 
function of   denoted by P . Thus the governing equations we consider are 

 

( )
( )

( )( ) ( )

( )
( )

( ) ( )

2

2

 hard loading

,   soft loading.

x
t xx

x

x
t xx

x

g t P
B

x t P
B


    




   



é ù= - + +ê úë û

é ù= + +ë û





 (40) 

Equation (40) governs the evolution of (generally incompatible) plastic shear strain in the bar; 
spatial gradients of the profile represent the dislocation density field ((37)-(38)) with individual 
discrete dislocations (more precisely, dislocation walls) represented by a sharply localized x  

field or, alternatively, a sharp transition front in the   field.  

Under hard loading (displacement control), ( )g t  represents the average applied engineering 

shear strain on the bar, that, under the controlling assumptions, can only vary at most with time. 
Under soft loading (traction control), ( ),x t  represents the applied shear stress on the top surface 

of the bar (of course, keeping in mind that constraints would have to be in place that can provide 
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the required reaction tractions on the lateral surface of the cylinder; admittedly, this is not a 
practically realistic requirement). 

The function ( )g t  is defined as follows: by assumption, let ( )1,2 0 3,u g x t=  where 0g  is any 

function of the arguments shown. Then, ( ) ( ) ( )1 1 2 3 0 3 2 1 3, , , , , ,u x x x t g x t x h x x t= + , where h  is 

another function of the arguments shown. We now assume that the base of the bar is at 2 0x =  

and is held fixed, i.e. ( )1 1 3,0, , 0 0u x x t h=  = . The applied displacement at the top of the 

cylinder, 2x l= , is given as ( )0 3,g x t l ; but we need, by assumption, that 1,3 0u º . Then 

( ) ( )0 3 ,g x t g t= , where g  has the physical meaning mentioned in the last paragraph. 

As for boundary conditions, we either consider the Cauchy problem on the domain ( ),-¥ ¥ , 

or with Neumann conditions 0x =  at both ends of a finite bar. 

We note that this problem has been intentionally set up to be simple enough so that force 
equilibrium is trivially satisfied and hence does not play a role in the plastic strain evolution, the 
latter being directly controlled by the applied boundary conditions. In fact, stress fields arising 
from any solution (40) is a genuine static solution of balance of linear momentum without any 
approximation on inertia. 

 
4.1 ( ) 0P  = , hard loading; exact solutions for equilibria in a special case and formulation of 

questions of stability 
 
We deal with (40)1  under the assumption that g  is an arbitrarily fixed constant, i.e. the time 

dependence of the loading is not considered. 
The equation is 

 
       

x
t xx

F
g

B


    , (41) 

where, from (28) 2 candidates for F  are 

 
 
 

2  orF a a

F a a




 (42) 

and we abuse notation and refer to both ,B B*  as B . 
We define the function   as follows: let ̂  be the following ‘periodic-cubic’ function: 

  
2

2
2

ˆ
2

2
2

y y y
 


      
      

 

 extended periodically beyond ,
2 2

    
, 0  . (43) 

Because of natural physical considerations, we need 
    0 0 ; 0 0       (44) 

i.e. shear stress at no elastic strain should vanish and the elastic modulus at zero strain should be 
positive. Now define   in (41) as  

 ( ) ˆ
2e e

   
æ ö÷ç=- - ÷ç ÷çè ø

. (45) 
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We emphasize that accommodating this nonmonotonicity in the stress-elastic strain relationship 
is an essential component of our goal of extending conventional dislocation dynamics to be 
compatible with atomistically defined crystal elasticity. 
Question 0: Are there spatially varying, ‘dislocation like’ equilibria of the equation (e.g. 

 tanh x  type) for special values of g  (or a family of spatially inhomogeneous equilibria 

parametrized by g )? Of course, there is a 1 parameter family of spatially homogeneous 
equilibria. 

Inhomogeneous equilibria: It can be checked that the one-parameter family of profiles 

  ; tanh
2 2 4eq x g g x
  


 

     
 

 (46) 

are equilibria. To see this, define :e g = -  and note that ( ) 2e x -  corresponding to the 

profiles in (46) belong to the range [ ]2, 2 - . Next note that the periodic-cubic defined in 

(43) agrees with the actual cubic function of the same form on the interval [ ]2, 2 - . Let us 

call this ‘actual’ cubic, i.e. without periodic extension as in (43), ( )c ⋅ . Now for ( )0 e x £ £ , 

which is the range of values covered by the elastic strain e  of the profiles in (46), a calculation 

for the profiles (46) shows that ( ) ( ) ( )( )2eq exx
x c x   = - , for each x  in ( ),-¥ ¥ . But for 

0 e £ £ , ( ) ( ) ( )ˆ2 2e e ec       - = - =-  by construction of c  and ̂  and (45), which 

implies ( ) ( ) ( )( ) 0eq exx
x x   + =  for all x  in ( ),-¥ ¥  for the profiles (46). Of course, by 

design,   satisfies the physical requirement (44). The problem definition and special solution 
have been achieved by inspection: we consider admissibility of equilibria of the physically 
desired form, i.e. ( )tanhA B sx+  , ( , ,A B s  constants), and pick the constants and design the 

function   to satisfy physical requirements and equilibrium. 
Now consider the equilibrium for g g . Consider the PDE with  , , 0  g x t g   , where 

,g   are constants, and initial condition 

    ,0 ;  eqx x g  . (47) 

Question 1: The question is whether there exist  travelling wave solutions (with non-zero 
velocity, and hopefully “dislocation-like’) for equation (41) with constant g g    and if the 

initial condition (47) is attracted to such a travelling wave as t   or to other equibiria that 

exist, in particular  ;  eq x g  . For 0 g  if such a travelling wave exists for some 0P  to 

which  ;0eq x  is attracted, then we would have shown the existence of a ‘Peierls strain’ in the 

model.  
Traveling waves: We call a function of the form ( ) ( ), :x t f x ct = - , c  a constant, a 

travelling wave solution to (41) if it satisfies it with 0c ¹ . Here f is a function of a single 
variable. On considering the governing equation of a traveling wave solution 

 
( )

( ){ }
F f

f c f g f
B

  *

¢
¢ ¢¢- = + + -  (48) 
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it can be checked that ( );eq x ct g *-  is not a travelling wave solution to (41) with g g *= + , 

for 0, 1 ¹  . In this sense, it may be said that the model has a Peierls barrier, in that these 

‘dislocation’-like equilibria cannot be rigidly translated by changing the load. Question 1 above 
addresses the question of whether there exists load levels corresponding to which there are 
profiles that move rigidly and whether, upon additional loading, the equilibrium profiles 
displayed above in (46) can be deformed into ones close to these travelling waves. 
Question 2:  , 0 x t  is an equilibrium solution. Is there a value of 0g  in (41), say Ng , 

and further conditions (e.g. boundary conditions) for which   becomes ‘unstable’ and some 

initial condition    x x    (small perturbation) is attracted to the equilibria  ;eq Nx g ? If 

so, then we would have shown the possibility of nucleation within the model as a question of 
dynamic instability (cf. Dayal and Bhattacharya (2006) in the context of peridynamic theory). 
The analogous question for g time-dependent can be similarly formulated. 
Linear Stability: We mention here that a linear stability analysis for (41) about a time-
dependent, linear-in-space solution with small slope (this is necessary as the equation is 
degenerate about constant solutions) shows an instability threshold on g  past the peak of the 
stress-elastic strain curve and wavenumber threshold based on the negative slope of the stress 
strain curve and the parameter  . Since the problem is highly nonlinear and we do not provide 
any nonlinear stability analysis, we simply mention this result here without providing details of 
the analysis for the sake of brevity. 

As an interesting aside, it is important to realize that a time-parametrized family of equilibria 
defined by 

    , tanh
2 2 4eq x t g t x
  


 

     
 

, (49) 

where ( )g ⋅  is any non-constant, time-dependent loading program, is not a solution to the 

governing equation, for the same time-dependent loading, given by 

 
    x

t xx

F
g t

B


        . (50) 

Such are the curiosities of  ‘quasi-static solutions’ of evolution equations, that may only be 
justified in an asymptotic sense corresponding to loading histories representing short bursts of 
rapid loading interspersed with long periods of loads held constant. 
 
4.2 ( ) 0P  ¹ ; equilibria for hard and soft loading in a special case 

 
Recall that ( )P   is a crude simplification for a term that is in reality a component of  the non-

local, curl  projection of ( )s l G R = ¶ ¶ . At any rate, this needs constitutive specification. 

Let us make the assumption that 
 ( ) ( )ˆ: 2P g  =- - , (51) 

where ĝ  is a material-specific strain value. For analytical progress, let us assume the stress 
response in this case to be given by 
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 ( ) ( )ˆe e   =  (52) 

where ̂  is defined by (43). 
Equilibria, hard loading: For the case of hard loading, the governing equation for the plastic 

strain evolution becomes 

 
     ˆ ˆ ˆ2x

t xx

F
g g

B


            , (53) 

where F  is defined in (42). As before, we consider the simpler problem of (53) with a constant, 
but arbitrary, value of the load. 

It is clear that spatially homogeneous profiles are equilibria, regardless of the value of the 
applied strain g . Spatially inhomogeneous equilibria can be written down for (53), stated for the 
special value of ˆg g= , as 

 ˆ tanh
2 4

g x
 



æ ö÷ç ÷ ç ÷ç ÷÷çè ø
. (54) 

It is easy to check that the functions in (54) cannot serve as travelling wave profiles for (53) 
stated for ˆ , 0, 1g g   = + ¹  . 

Question 3: A natural question that arises is the following one related to nucleation: for (53) 
stated for ˆg g=  or for g time-dependent, does the homogeneous solution ( ), 0x t º  lose 

stability so that a minor perturbation on ( ), 0x t º  as initial condition drives the solution of (53) 

to the profiles given in (54)? 
Equilibria, soft loading: For soft loading,  we consider the governing equation 

 
     ˆ ˆ2x

t xx

F
x g

B


          , (55) 

where ( )x  is the applied traction on the top surface of the bar. 

Again, spatially homogeneous profiles are equilibria, regardless of the nature of  . For 
( ) 0x º , it is easy to check that  

 ( ) ˆ: tanh
2 2

s
eq x g x

 


æ ö÷ç ÷=  ç ÷ç ÷÷çè ø
 (56) 

are equilibria of (55). For the case of ( )F a a= , it is interesting that ( )s
eq x ct -  is a travelling 

wave solution to (55) stated for   a non-zero constant. Noting that (56) represents spatially 
monotone profiles, i.e. the sign of the first derivative is either positive or negative at all x , the 
constant speed of the travelling wave is given by 

 ( )( )sgn s
eq x

c
B

=- . (57) 

Thus, this case corresponds to the classical conclusion of Peierls (1940) of a continuum theory 
not having a Peierls barrier. However, as is clear from our model and analysis, translational 
invariance of the theory is not a sufficient condition for the absence of a Peierls barrier in this 
dynamical point of view. 

Dynamical stability questions analogous to the ( ) 0P  =  case can also be formulated in these 

cases for ( ) 0P  ¹ . 
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5. Implications for Meso/Macroscopic Plasticity 
 
The question we now address is what information can be inferred about the evolution of plastic 
distortion averaged over space and/or time, given the microscopic evolution equation (30). From 
(29)-(30) we note that the plastic distortion evolution may be written in the form 

 
( )

( )1p

B
= ´  


U S

 , (58) 

where S  is an appropriate second-order tensor. Now, 

 ( ) ( )T T´ = -     S S S . (59) 

We assume that on solving the microscopic theory and probing the dislocation density field 
around any point x , the   can be expressed in the form 

 

( ) ( ) ( ) ( )

( ) ( )
( )

( )
,

1

, , , ,

1   if  
, : , , ,

0  otherwise

N x t
I I

I

t t d x t t

t t t d
=

=

ì ¹ïï= Ä =íïïî
å

 x x D x

D D 0 
D x m x l x

 (60) 

where d  is an ( )1O  non-dimensional numerical factor, ( ),N tx  is an integer that represents the 

number of dislocation segments involved in a possible junction at the location ( ), tx , ( ),I tm x  is 

a unit vector representing the Burgers vector of  the thI  dislocation segment that may be 
involved in the junction, and similarly ( ),I tl x  is the line direction of the same segment. Then 

 

( )
[ ]

[ ]

2 2

2 2

,

T T T
ip kp jr kj

ir

T
ij kr kjir

T

R

d D D S

d D D S

div grad





é ù =ê úë û

=

= + - +

 

  

 

S

S

S T

 (61) 

and defining fourth-order structure tensor fields 

 
( ) ( ) ( )

( ) ( ) ( )

1

2

, , ,

, , , ,

ip kp jrirkj

ij krirkj

t D t D t

t D t D t

é ù =ê úë û
é ù =ê úë û

x x x

x x x




 (62) 

the evolution of (asymmetric) plastic distortion takes the form 

 
( )

( )
2

2 1 2 :p
Rd div grad

B
é ù= - - +ê úë û


 


U T   . (63) 

To define spatially averaged behavior, we resort to the use of ‘filters.’ For a microscopic field 
f  given as a function of space, we define the meso/macroscopic space averaged field f  as 

follows: 

 ( )
( )

( )

( ) ( )1
, : , ,

B
f t w f x t d

w d


¢ ¢ ¢= -
¢ ¢-

ò
ò x

x x x x
x x x

 (64) 

where B  is the body. In the above, ( ) x  is a bounded region within the body around the point 

x  with linear dimension of the order of the spatial resolution of the macroscopic model we seek. 
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The averaged field f  is simply a weighted, running space-average of the microscopic field f  
over regions whose scale is determined by the scale of spatial resolution of the averaged model 
one seeks. The weighting function w  is non-dimensional, assumed to be smooth in the variables 

, ¢x x  and, for fixed x , have support (i.e. to be non-zero) only in ( ) x  when viewed as a 

function of ( )¢x . Applying this operator to (63) (now phrased in terms ¢x ), we obtain 

 ( )2 1 2 :p p
R

d
d div grad

dt
 é ù= = - - +ê úë û  U U T    (65) 

under the assumption that 
  »  (66) 
where 

 
( )

2

B
 =


 . (67) 

The assumption (66) is valid when there is a large number of dislocation segments within the 
averaging volume, and this situation persists in time. It is also assumed that the average 
magnitude of   within a dislocation core is the same at all locations where a dislocation 
segment is present. 

The physical dimensions of B  is given by     B    T V . Let the average stress magnitude 

in the core of a single dislocation be   .  The average magnitude of the dislocation density in 
the core is 2/b b . According to Nabarro (1987, p. 506-507) the free-flight velocity from 
experiment for a single dislocation is exp 1 . 100 .v m s m s   Thus, the magnitude of B  is 

expbv  and the magnitude of   is expv b  . Let t  be the time-resolution of observations 

and define s t t . Then (65) may be rewritten as 

 ( )2 1 21
:p

R

d
t f d div grad

ds f
  


* *

*

ì üï ïï ïé ù= - - +í ýê úë ûï ïï ïî þ
 U T   (68) 

where f  is some non-dimensional constant. Let us define the nondimensional viscosity,  , by  

 
1

: t f 


  . (69) 

Assuming the magnitude of t  and b  to be 31 . ~ 10 .s s  and 1010 .m , respectively, and 
310 1f   , we have 

 
3 3 2

10 10

10 .1.10 1 1.10 .1

10 10

 

   ; (70) 

Hence, the viscosity 1  , and (68) takes on the form of a singularly perturbed system, due to 
the assumed persistence of the large dislocation density in the averaging volume. Equation (68) 
implies that on occasions when the magnitude of the spatially averaged plastic distortion rate on 

the t  time-scale is not too large, say  1O t , i.e. at most ~ 1 t , the constraint 

 ( )2 1 2: : Rd div gradé ù= - - + »ê úë û  T 0  , (71) 

has to be satisfied, and it may be thought of as a tensorial yield criterion governing rate-
insensitive plastic response at the macroscopic scale. It is worthy of note that our consideration 
does not state that the constraint (71) has to hold at all times; indeed it allows for high-rate 
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deformations where the yield condition can be seriously violated. It seems to be certainly within 
the realm of possibility that pU  evolution on the t*  time-scale corresponding to variations in 
applied boundary loads shows two different regimes; one very slow to vanishing, and the other 
an order(s) of magnitude more rapid, but nevertheless both regimes being at most 1 t* . Were 
this to be the case, macroscopic yielding from elastic response would have been predicted, 
providing a fundamental basis for qualitative features of phenomenological, macroscopic, rate-
independent plasticity theory. Such studies, along with the prediction of episodes of onset and 
arrest of fully rate-sensitive response with significant deviations from the yield set would be 
practically useful results4; however, they clearly require a deep understanding of the stability 
properties of the yield set viewed as a ‘limit set’ of trajectories of the dynamics (68) with all 
external influences held constant.  For a glimpse of what is possible in situations that can only be 
considered ‘simple’ in the context of our general theory see, e.g. Carr and Pego (1989) and, in 
the context of ODE theory, Artstein and Vigodner (1996), Artstein (2002) (the latter has low-
dimensional illustrative examples of coupled slow-fast motions with non-trivial limit motions). 

Since evolution via (68) is naturally viewed in the t  time-scale, the condition (71) may be 
viewed as valid continuously over periods of the order of t ; consequently, (71) may also be 
viewed as valid when averaged over a period of t . Assuming the incompatible slip energy G  
can be characterized from atomistic/quantum studies, characterization of the time-averaged form 
of (71) from theoretical homogenization or lattice-statics calculations or simulations of the 
microscopic theory described in section 3 seems to be a worthy and practically useful challenge 
in defining macroscopic plastic response. When replacing pointwise-field values at  , t x of the 

individual terms appearing in (71) by their space-time averages over   x  and time interval t  

around the instant t  may be justified, (71) takes the instructive form (with space-time averages 
now denoted by overhead bars), 

 1 2 : Rdiv grad  T 0é ù é ù- - + =ê ú ê úë ûë û
  . (72) 

The form (72) begins to suggest the physical origins in fundamental dislocation mechanics of the 
terms commonly used in phenomenological plasticity for work-hardening, the “gradient effects” 
of Aifantis (1984, 1987)5, and plastic anisotropy and spin (e.g. through the structure tensor 

1 2-  ). From this point of view, it is interesting to note the nonlocality inherent in work-
hardening response. Curiously, if one were for the moment to assume the leading structure tensor 
term in (72)  to be the fourth-order identity, then the skew symmetric part of the equation poses 
an interesting integro-differential constraint on the skew part of  . 

We note here that the association of high gradients of slip in a core along with the presence of 
many cores as the primary cause for rate-insensitive macroscopic response is different and 
complementary to other mechanisms for the phenomena based on pinning due to postulated 
rugged energy landscapes (Puglisi and Truskinovsky, 2005) or extrinsic obstacles (e.g. 
Bhattacharya (1999), in the context of phase boundary pinning). It is also interesting to note that 
the assumption of a high dislocation content within the averaging volume leads to wave-like 

                                                 
4 Preliminary numerical computations indicate that both yielding type response and intermittency are within the 

predictive scope of the model, at least in the 1-d case. 
5 Although beyond the Laplacian and the sign in front of it, the details are quite different. Note that, roughly,   

corresponds to pU . 
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response completely dropping out of macroscopic response (when the average plastic distortion 
rate is small). At the mesoscopic scale, this key assumption of a uniformly high dislocation 
density in space cannot be made; then, the transport terms remain, but the microscopic theory is 
practically untenable. What the form of the governing equations should be at this scale is a key 
challenge for rigorous mechanics and mathematics. Some promising heuristic advances coupled 
with numerical work have been made recently (Acharya and Roy, 2006; Roy and Acharya, 2006; 
Taupin et al., 2007; Acharya et al. 2008; Taupin et al., 2008; Fressengeas et al., 2009). 

 
6. Comparison with the structure of phase-field models and level set evolution 
 
We end with a couple of remarks on the structure of our theory. While the manner in which the 
constitutive structure (28) is defined, along with the assumption (14) and the use of a 
conservation law, i.e. (11), may be reminiscent of (time-dependent) Ginzburg-Landau, local-
energy-minima seeking  phase-field type models or Cahn-Hilliard models, the dynamics implied 
by our theory is different from that implied by these formalisms. Roughly speaking, this is 
because our situation corresponds to having a conservation law for the gradient of the order 
parameter (plastic distortion) based in the kinematics of convective transport, along with a 
‘surface energy’ term – alternatively, if one considers the dislocation density as the order 
parameter, then there is a conservation law but no surface energy. To see one of these 
comparisons in the simplest possible context, consider an  energy of the form 

    21
ˆ

2 xg      , (73) 

where g  is a constant. Then the corresponding Ginzburg-Landau model would be 

 

  

   mobility

,xx g

  


    

  

   




   (74) 

and it is instructive to compare this with (41). Of course the all important difference is the 

 xF   term in our dynamical model, one of the major effects of which is in providing the 

singular perturbation structure in the averaged macroscopic model of plasticity mentioned in 
Section 5. This comment is also the only relevant one we are able to make in a comparison to the 
static, energy minimizing, phase field framework of Koslowski et al. (2002), where it is not clear 
exactly what physical criteria is used to pick amongst multiple local minima. Also, it is well-
known that the Cahn-Hilliard formalism yields fourth-order equations whereas ours is simply 
second order. 

Finally, we mention that our equation (40) (with xB B  ) in the scalar case may be 

interpreted as the evolution of a level-set with velocity given by the Ginzburg-Landau driving 
force. Thus it is natural to expect transfer of qualitative properties like pinning, or lack thereof, 
between our model and level-set propagation of this specific type. 
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