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Abstract

We study the microstructural evolution of multiple layers of elastically stiff films

embedded in an elastically soft matrix using a phase field model. The coherent and

planar film/matrix interfaces are rendered unstable by the elastic stresses due to

a lattice parameter mismatch between the film and matrix phases, resulting in the

break up of the films into particles. With an increasing volume fraction of the stiff

phase, the elastic interactions between neighbouring layers lead to (a) interlayer

correlations from an early stage, (b) a longer wavelength for the maximally grow-

ing wave, and therefore, (c) a delayed break-up; further, they promote a crossover

in the mode of instability from a predominantly anti-symmetric (in-phase) one to

a symmetric (out-of-phase) one. We have computed a stability diagram for the

most probable mode of breakup in terms of elastic modulus mismatch and volume

fraction. We rationalize our results in terms of the initial driving force for destabi-
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lization, and corroborate our conclusions using simulations in elastically anisotropic

systems.
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1 Introduction

It is well known that the planar interface of a non-hydrostatically stressed

solid in equilibrium with its melt or vapour is unstable with respect to pertur-

bations [1–3]: this instability is known as Asaro-Tiller-Grinfeld (ATG) insta-

bility. Based on elastic and interfacial energy considerations alone, Grinfeld

showed that in the absence of an interfacial energy, a planar boundary be-

tween a solid and its melt or vapour is unstable with respect to perturbations

of any wavelength; the interfacial energy sets the lower wavelength limit of

this instability [4].

The literature on ATG instabilities is vast and varied to be summarized here;

we refer the interested reader to the excellent monographs of Nozières (chapter

1 of [5]), Pimpinelli and Villain [6], and Freund and Suresh [7], and the reviews

(and references therein) of Shchukin and Bimberg [8], Gao and Nix [9], Stangl

et al [10], Johnson and Voorhees [11] and Balibar et al [12] for a summary of

the experimental and theoretical studies.
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Sridhar et al [13,14] (hereafter, referred to as SRS) have shown the crucial role

played by an elastic modulus mismatch in promoting ATG instabilities; more

specifically, for a misfitting thin film layer embedded in a matrix (both in the

presence and absence of externally applied stresses), the planar film/matrix

interface is unstable with respect to perturbations as long as the film is elasti-

cally stiffer than the matrix. In the case of a non-misfitting film embedded in

a matrix under an externally applied stress, the interface is unstable as long

as the film and matrix have different elastic constants.

Using a linear stability analysis that accounts for both curvature (or inter-

facial) and elastic contributions, SRS identify two dominant modes of insta-

bilities that a film/matrix interface can undergo. Depending on whether the

undulations of the upper and lower interfaces of a film are out of phase or

in phase (see their schematic in Fig. 8 of [14]), these modes are known as

symmetric and anti-symmetric, respectively. In addition, their stability dia-

grams show that the anti-symmetric mode is promoted at higher values of the

driving force for film destabilization.

While a linear stability analysis is ideal for the study of onset of instability,

it can not accurately predict the evolution, break up and coarsening of the

microstructure. Further, for multilayer films, interlayer correlations are far too

complicated to be included in such an analysis; thus, for example, the multi-

layer part of the study by SRS has been carried out for a particular kind of

interlayer correlation in which the undulations of the upper interfaces of all

the films are in phase.

There are several simulation studies on the elastic stress induced morphological

instabilities in thin films [15–35]; while most of these studies are based on the
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phase field method [15–27], the rest are based on the phase field crystal [28,29],

continuum, sharp-interface [30–33], and, atomistic [34,35] models.

All phase field studies that we are aware of are for the evolution of multilayer

films in the presence of the film/vapour (or film/melt) interface. In these stud-

ies, the microstructural evolution is influenced by both the multilayer setting

and the film/vapour interface, leading to different behaviours of individual

layers depending on their distance from the film/vapour interface. Our study,

on the other hand, focuses on a ‘pure’ multilayer geometry. It allows us to

determine the effects that arise from the multilayers alone. It also allows us to

explore quantitatively the role of system parameters in determining the mode

of onset of instability and the maximally unstable wavelength.

This paper is organized as follows: we present a brief outline of the formulation

in Section 2; in Section 3, we present our numerical simulation results and

discuss the key features of multilayer evolution in Section 4; we conclude the

paper with a short summary.

2 Formulation

In this section, we outline our phase field model for systems that are elasti-

cally inhomogeneous and anisotropic. The model is based on the Cahn-Hilliard

equation [36], and details of its formulation and numerical implementation may

be found in Ref. [37,38].

We consider a binary alloy consisting of two phases, namely, p and m, whose

scaled equilibrium compositions in the absence of elastic stresses are unity

and zero, respectively. Our phase field formulation starts with the following
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expression for the total free energy F of a system with spatial variations in

composition c:

F = Nv

∫

[Ac2(1 − c)2 + κ(∇c)2]dV +
1

2

∫

σel : ǫeldV, (1)

where Nv is the number of atoms per unit volume, κ is the (positive) gradient

energy coefficient, A is the free energy barrier between the two phases, ǫel and

σel are the elastic strain and stress fields, respectively, and ‘:’ denotes tensor

inner product. The microstructural evolution in the system is described by

the Cahn-Hilliard equation:

∂c

∂t
= ∇ · M∇µ, (2)

where µ is the chemical potential, defined as the variational derivative of the

free energy with respect to composition:

µ =
δ(F/Nv)

δc
. (3)

The stress, σel, is obtained by assuming Hooke’s law (that is, the phases m

and p are linear elastic):

σel
ij = Cijklǫ

el
kl, (4)

where we have used Einstein’s convention of summation over repeated indices.

Cijkl is the elastic modulus tensor, and ǫel
ij is the elastic strain, given by

ǫel
ij = ǫij − ǫ0

ij , (5)

where ǫ0
ij is the eigenstrain, and ǫij is the total strain compatible with the

displacement ui:

ǫij =
1

2

(

∂ui

∂rj

+
∂uj

∂ri

)

. (6)
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The displacement field is obtained by solving the equation of mechanical equi-

librium

∂σel
ij

∂rj

= 0. (7)

We assume the following composition dependences for the elastic moduli and

the eigenstrain:

Cijkl(c) = Ceff
ijkl + α(c)∆Cijkl; (8)

ǫ0

ij(c) = β(c)ǫT δij (9)

where α(c) and β(c) are scalar interpolating functions of composition, Ceff
ijkl =

(Cp
ijkl + Cm

ijkl)/2 is the arithmetic average of the elastic moduli of the two

phases, ∆Cijkl = Cp
ijkl −Cm

ijkl is the difference between the elastic modulus of

the p phase and that of m phase, ǫT denotes the strength of the eigenstrain

and δij is the Kronecker Delta.

2.1 Simulation details and parameters

We use a semi-implicit Fourier spectral technique to solve the evolution equa-

tion for composition Eq. 2 in two dimensions (2D), with periodic boundary

conditions. The evaluation of the right hand side (RHS) of Eq. 2 involves not

only the composition and its gradient but also the elastic stress and strain

fields. For a given composition field, we obtain the elastic stress and strain

fields by solving the equation of mechanical equilibrium (Eq. 7). The solution

of the equation of mechanical equilibrium is also obtained using a Fourier

based iterative technique, assuming prescribed displacement conditions (in

other words, the homogeneous strain is zero); see [37–39] for details. Once we

obtain the stress and strain fields, the RHS of Eq. 2 can be evaluated, which is

then used for time stepping and hence, for following the microstructural evo-
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lution. All the (discrete) Fourier transforms needed for our simulations were

carried out using the freeware FFTW developed by Frigo and Johnson [40].

All our simulations are carried out using a non-dimensional version of Eq. 2,

wherein the non-dimensional values of κ, A and M are unity. For cubic elastic

elastic constants, circular averages of the three Voigt constants, C11, C12, and

C44, are used to define the shear modulus G, Poisson’s ratio ν, and the Zener

anisotropy parameter AZ [41]:

G = C44, (10)

ν =
1

2

C12

C12 + C44

, (11)

and,

AZ =
2C44

C11 − C22

(12)

Further, we also assume Am
Z = Ap

Z and νm = νp. Thus, a complete description

of the system’s elastic paramters requires specifying the values of Am
Z , νm, and

Gm, along with the inhomogeneity parameter δ, defined as the ratio of the

shear moduli the p and m phases: δ = Gp/Gm. We have used ν = 0.3, and

Gm = 50; we have assumed (except in Fig. 7) elastic isotropy: AZ = 1. For

the interpolation function for eigenstrain, we have used β = c3(1− 15c +6c2);

this implies that the unstressed m phase is used as the reference state. For the

interpolation function for elastic moduli, we use: α = c3(1− 15c + 6c2)− 1/2.

All our simulations are on two dimensional systems, and use a spatial grid of

∆x = ∆y = 1. The non-dimensionalized Cahn-Hilliard parameters are: A = 1,

κ = 1, and M = 1. For time stepping, we use ∆t = 0.5 for the first 10000 time

steps and ∆t = 1.0 for the rest of the evolution.
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3 Results

Our simulations start with a system with alternating layers of p and m phases,

with an equal interlayer spacing of H . Their thicknesses are h and (H − h),

and compositions are 1.0 and 0.01, respectively. We use periodic boundary

conditions, and the microstructure evolves under zero homogeneous strain.

Since the unstressed matrix is the reference state with respect to which strains

are measured, and since the p (film) phase has a larger lattice parameter than

the matrix, the elastically stiff p layers are under a compressive stress, causing

their instability.

After a short simulation run (upto, say, t = 500), the microstructure exhibits

diffuse interfaces. The reported values of h, the thickness of p-phase films, is

obtained from this microstructure. Since all the p-phase films have the same

thickness h (defined as the thickness of the p layer with a composition of over

0.5), its volume fraction is f = h/H. [We note that the average composition

co is not an accurate measure of volume fraction of the p phase, because the

elastic stresses shift the equilibrium compositions of the two phases.]

3.1 A single layer film embedded in a matrix

Fig. 1 shows the stress-driven evolution of a single thin film embedded in

a matrix; due to periodic boundary conditions, the film is not isolated; the

volume fraction, however, is small: (h/H) = 0.043. Fig. 1(a) shows a film with

δ = 2 and h = 11, while Fig. 1(b) is for a stiffer and thicker film: δ = 4,

h = 22. While the mode of instability in the former is symmetric (i.e., the

undulations on the upper and lower interfaces of the film are out of phase by
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(a) (b)

(c) (d)

Fig. 1. Microstructural development in a single stiff layer embedded in a soft matrix.

The left and right columns represent, respectively, low and high driving force for film

destabilization, and the top and bottom rows are for, respectively, onset of instability

and well after film break-up. Left column: δ = 2, h = 11, (a) t = 1.28× 105 and (c)

t = 1.44×105. Right column: δ = 4, h = 22, (b) t = 2.0×104, and (d) t = 3.5×104.

half a wavelength), that in the thicker and stiffer film is anti-symmetric (i.e.,

the undulations on the upper and lower interfaces are in phase). Further, the

wavelength of the undulations is higher, and the time taken for break-up is

longer, for the symmetric system.

The transition from a symmetric mode for the onset of instability in Fig. 1(a)

to an anti-symmetric one in Fig. 1(b) is in agreement with the results of

SRS, who also found such a transition with an increasing driving force for

film destabilization (i.e., with increasing δ and h). Further, the maximally

unstable wavelength λmax ≈ 102 observed in the simulations of the symmetric

instability mode (Fig. 1(a)) are in agreement with the value of 80 obtained

from a linear stability analysis (similar to that of Sridhar et al [14]) for film

evolution under volume diffusion control; the details of the analysis can be

found at [42].

A larger driving force for film destabilization (due to larger values of h and δ)

also leads to a smaller value of the maximally growing wavelength (λmax ≈ 60)

and time for break-up (t ≈ 33000) observed in the anti-symmetric case, as
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compared to λmax ≈ 102 and t ≈ 140000 in the symmetric case.

3.2 Multilayer thin film assemblies

(a) (b)

(c) (d)

Fig. 2. Evolution of multilayers with δ = 4 at two different volume fractions. Left col-

umn: f = 0.086, two layers in the simulation cell,, (a) t = 25000 and (c) t = 36000.

Right column: f = 0.34, eight layers in the simulation cell, (b) t = 36000 and (d)

t = 49000.

Fig. 2 shows the microstructural evolution in systems with volume fractions of

f = 0.086 (left column) and f = 0.34 (right column); they correspond to two

and eight layers, respectively, of the stiffer film (with h = 22 each) stacked

in a 1024 × 512 simulation cell. The top row shows the onset of instability

in these two systems, while the bottom row shows an advanced stage of film

break up.

There are two key differences in the microstructural evolution of the two sys-

tems in Fig. 2. The onset of instability is anti-symmetric in the system with
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two layers, while it is symmetric in that with eight layers. Further, the maxi-

mally unstable wavelength is higher (and the time for break up is longer), in

the eight layer case as compared to the two layer case.

3.2.1 Height-height correlations
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Fig. 3. Development of (a) inter-layer and (b) intra-layer correlations with time for

two layers (f = 0.086) and eight layers (f = 0.36) in a 1024 × 512 simulation cell.

The lines joining the data points are only a guide to the eye. δ = 4, h = 22.

A closer examination of Fig. 2(d) reveals that the broken-up particles of the

film phase show a high degree of correlation across layers: particles in a given
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layer appear, on average, in the middle of two particles in its two adjacent

layers. On the other hand, in the 2-layer case, such correlations do not ap-

pear significant. These correlations can be more quantitatively studied using

the height-to-height correlations, obtained from a procedure described in the

Appendix. Of special importance to us is the behaviour of H(0), the time

evolution of which is shown in Figs. 3(a) and 3(b), respectively, for inter-layer

and intra-layer correlations.

Fig. 3(a) depicts the time dependence of inter-layer correlations Hi,i+2(0) for

the 2-layer and 8-layer systems. These correlations are small (and negative)

at t = 4000 in both the systems; however, they stay small in the 2-layer case,

while they grow stronger with time in the 8-layer case. In particular, in the

8-layer system, the top (or bottom) interfaces of adjacent layers develop a

negative correlation (i.e., their undulations are out of phase). Interestingly,

the correlations are significant even at t = 10, 000, when the interface undu-

lations are barely discernible. Since each film in the 8-layer case, in Fig. 2(b),

undergoes a symmetric instability creating alternating bulges and necks, the

negative value for the inter-layer correlation Hi,i+2(0) implies that the bulges

in any given layer are aligned (along the y-direction) with the necks of the ad-

jacent layers, and vice versa. Further evolution of this correlated undulations

leads to the final (fully broken-up) microstructure, shown in Fig. 2(d), which

is also highly correlated.

Finally, Fig. 3(b) for intra-layer correlations confirms our observations about

the instability mode: in phase or out of phase. In the two layer case, the

onset is anti-symmetric or in-phase (Hi,i+1(0) > 0); with increasing time,

this correlation becomes stronger. Similarly, for the eight layer case, we find

Hi,i+1(0) < 0, indicating that the onset is symmetric or out-of-phase.

12



3.2.2 Effect of volume fraction and inhomogeneity
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Fig. 4. Variation of the maximally unstable wavelength λmax with volume fraction

f of the (stiffer) film phase in systems with δ = 4 and h = 22. The line joining the

data points is only a guide to the eye.
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Fig. 5. Stability diagram depicting the most likely instability mode in terms of

volume fraction f of the stiffer phase and the inhomogeneity ratio δ in systems with

h = 22. The dashed line is only a guide to the eye.

As noted in Section. 3.2 above, for a given inhomogeneity δ the maximally

growing wavelength of the instability λmax increases with increasing volume

fraction f of the film phase. In Fig. 4, we show this trend using the data for

five different volume fractions.

We summarize the role of volume fraction and elastic inhomogeneity using
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an instability mode diagram in Fig. 5. This figure shows that, for a given

volume fraction, increasing δ makes the system switch from a symmetric to

an anti-symmetric mode. On the other hand, for a given δ, increasing volume

fraction leads to a reverse switch, namely, from an anti-symmetric mode to a

symmetric one.

3.2.3 Effect of film thickness

(a)

(b)

Fig. 6. Multilayer microstructures at (a) t = 49000 and (b) t = 59000 for a thin film

assembly with δ = 4, f = 0.35 and h = 45. The film thickness is double (but the

volume fraction f is nearly the same as) that in Fig. 2(b) and (d).

For a given volume fraction, increasing the film height increases the driving

force for destabilizing the film, as does increasing the elastic inhomogeneity

δ. Since Fig. 5 shows that an increasing δ promotes an anti-symmetric onset,

we expect an increasing h to do the same. Thus, in the system with f = 0.34,

for example, increasing h from 22 to 45 (while keeping the volume fraction

f = h/H the same) does indeed lead to an anti-symmetric break-up; see
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Fig. 6.

3.2.4 Effect of anisotropy

In addition to tuning the film thickness h and inhomogeneity δ, there is yet

another way of changing the driving force for film destabilization if we con-

sider elastically anisotropic systems: in such systems, if the films have an elas-

tically unfavourable (favourable) orientation, this driving force is increased

(decreased).

(a) (b)

Fig. 7. Multilayer evolution at (a) t = 16000 and (b) t = 64000 in elastically

aniostropic systems: AZ = 0.8 and AZ = 1.2, respectively. All the other parameters

(δ = 4, f = 0.34, h = 22, simulation cell: 1024 × 512) are the same as in Fig. 2(b)

for an elastically isotropic (AZ = 1) system.

Consider a system with a Zener anisotropy parameter of AZ = 0.8; the 〈10〉

directions are elastically stiffer than the 〈11〉 directions. Therefore, a film ini-

tially oriented along the [10]-direction (x axis) is in an elastically unfavourable

geometry, and may be expected (based on Fig. 2) to exhibit an anti-symmetric

instability mode. Fig. 7(a) shows that this is indeed the case. By the same ar-

gument, a film oriented along [10]-direction in a system with AZ = 1.2 would

be expected to retain its symmetric instability mode; this, again, is shown to

be true in Fig. 7(b). Finally, the behaviour of the maximally unstable wave-
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length in these simulations is also consistent with these arguments: for the

same film thickness of h = 20, and as compared with the elastically isotropic

system, an anisotropy of AZ = 0.8 leads to lower λmax while an anisotropy of

AZ = 1.2 leads to a higher λmax; see Table 1.

Table 1

Variation of λmax with h and AZ

h AZ λmax Mode

22 1.0 93 Symmetric

45 1.0 85 Antisymmetric

22 1.2 128 Symmetric

22 0.8 64 Antisymmetric

4 Discussion

An important conclusion from our simulation study is that, in a system with

a given combination of interfacial energy γ, elastic inhomogeneity ratio δ and

film height h, an increase in volume fraction (or, equivalently, a decrease in

layer spacing) may (a) change the onset of instability from an anti-symmetric

mode to a symmetric one, (b) increase the wavelength of the maximally unsta-

ble perturbation, and (c) induce inter-layer correlation. A related finding is the

development of inter-layer correlations when the perturbations of film-matrix

interface are barely discernible.

It is convenient to examine the early stages of evolution of the multilayer
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microstructure using energy arguments. The elastic energy in the system is

the primary destabilizing factor, while the interfacial energy is the stabilizing

factor. The work of SRS has established that their effects are described ade-

quately through the two factors δ and θ = γ/
[

EAh(ǫT )2
]

. SRS also established

that an increase in elastic energy (through an increase in δ or a decrease in θ)

leads to a change in the onset of instability from a symmetric (out of phase)

mode to an anti-symmetric (in phase) mode.

Our results show that in a multilayer setting, volume fraction (or, equivalently,

the layer spacing) is an independent factor with an influence on film instabil-

ity. Clearly, a decrease in layer spacing leads to greater elastic interactions

among the layers; our results indicate that the primary effect of these elastic

interactions is to reduce the driving force for destabilizing the films. Thus, for

example, the dominant wavelength is higher, and the instability mode may

even become symmetric. This explanation is further strengthened by other

evidence from our study: starting from a high volume fraction where the sym-

metric mode is dominant, anti-symmetric mode can be obtained again through

a change in system parameters whose primary effect is to increase the driving

force for film destabilization: an increase in δ or h, or an elastic anisotropy

that makes the original film orientation unfavourable.

While the development of inter-layer correlations is an expected result, their

early development is somewhat surprising, because they start to appear at

a stage when the perturbations on the film-matrix interface are barely dis-

cernible. These inter-layer correlations Hi,i+2(0) may be positive or nega-

tive. For example, in the isotropic system with a symmetric instability mode,

Hi,i+2(0) < 0 (i.e., bulges in one film are aligned with the necks in the neigh-

bouring films). However, in the anisotropic system with AZ = 0.8, where the
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instability mode is anti-symmetric, Hi,i+2 > 0; i.e., the hills (valleys) on one

film are aligned with its neighbour’s hills (valleys).

As pointed out in Section 1, the possibility of inter-layer correlations renders

a linear stability analysis of multilayer systems impossible except for specific

correlations. For example, the multilayers studied by SRS assumed a particular

correlation among the layers; as it turns out, this correlation, in which the

bulges in adjacent layers are aligned, is not the one that is observed (see

Fig. 2(a)).

5 Conclusions

Instability in stressed multilayers has been studied using phase field simula-

tions of systems in which the film-matrix misfit is the only source of stress. Our

study shows that, in addition to the elastic inhomogeneity and film thickness,

the volume fraction is another important factor that controls the mode of in-

stability. In particular, an increase in volume fraction increases the wavelength

of the maximally unstable perturbation, leads to correlations in interface per-

turbations in neighbouring layers. It also promotes a transition in the mode

of instability from an anti-symmetric mode to a symmetric one.

Appendix

Consider a microstructure consisting of Mf uniformly spaced films of the p

phase embedded in a matrix. Thus, there are 2Mf film-matrix interfaces. With

respect to the stiffer film phase, an i-th interface is designated as bottom when
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i is odd, and top when i is even.

For each interface i, we define a height function yi(x) as the y-coordinate

corresponding to c = 0.5. Let yi and Σi be, respectively, the mean and standard

deviation of this function. Thus, the function Yi(x), defined as

Yi(x) =
yi(x) − yi

Σ

denotes the normalized undulations of the i-th interface about its mean posi-

tion.

We define the height-to-height correlations Hi,j(z) between two interfaces i

and j by the following integral:

Hi,j(z) =
∫

Y ∗

i (x)Yj(z + x)dx,

With this definition, Hi,j(0) has the following interpretation: if it is positive

(negative), undulations i and j are in phase (out of phase). For odd i, Hi,i+1(0)

represents intra-layer correlations. On the other hand, for all i, Hi,i+2 repre-

sents interlayer correlations.

Note that by using the Weiner-Kinchin theorem (p. 456 of [43]), the correlation

integrals can be computed with ease in the Fourier space. Using Ỹ to represent

the Fourier transform of Y , and Ỹ ∗ to represent the complex conjugate of Ỹ ,

we have

H̃i,j(k) = Ỹ ∗

i (k)Ỹj(k)

An inverse Fourier transform of H̃i,j(k) yields Hi,j(z) in real space.

The inter-layer correlation Hi,i+2(0) and intra-layer correlation Hi,i+1(0) re-

ported in Section 3 are averages over three independent simulations.
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