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Compliant Flexure Joints

•

 

Problem: Large-scale “pint joints”

 

don’t work with insect-scale robots
•

 

Surface forces (friction) dominate inertial forces at small scale
•

 

Traditional manufacturing techniques insufficient for such tiny robots
•

 

Solution: Use flexible polymer hinges that act as revolute joints

Rigid composite 
material (carbon fiber)

Thin flexible polymer film



Flexure Joint Stiffness
•

 

Carbon fiber can be assumed to be rigid
•

 

Each joint can be modeled as a cantilever beam with bending 
stiffness k = E*I/L where E = elastic modulus, I = cross-sectional 
moment of inertia and L = flexure length

•

 

Stiffness is thus a constant for a given flexure geometry and material
•

 

Desirable to actively modulate the stiffness of the flexure joints –

 

this 
can affect robot dynamics for control purposes

•

 

To change stiffness, need to either vary flexure geometry or material 
properties



Modulating Flexure Stiffness

•

 

Idea: add material with variable elastic properties to flexure joint
•

 

This allows change in the equivalent bending stiffness of the entire 
flexure

•

 

Two-layer flexure can be modeled as a composite beam
•

 

This can be accomplished with shape-memory alloy (SMA) 
materials, which have a very temperature-dependent elastic 
modulus

Flexible 
polymer

SMA coating Beam cross-section



But it’s not that simple…
•

 

Shape memory alloys also undergo a large strain when they are 
heated (~7%)

•

 

Problem: thin film bonded to rigid substrate, film wants to contract
•

 

Similar to plate theory homework problem
•

 

Will result in deformation of the film and substrate, possible 
delamination or failure of the flexure

Side View
Top View



Finite Element Analysis with COMSOL
•

 
Create two 3D plates rigidly fixed to each other on one 
side

•
 

First model
–

 

Boundary conditions: one edge fixed, opposite edge has applied 
distributed moment, other edges free

–

 

Calculate moment with M = keq

 

*θ

 

(analagous

 

to F = k*x), where θ

 
is desired angle of rotation of flexure joint

–

 

Does not account for large induced strain (~7%) when SMA is 
heated

•
 

Second Model
–

 

Keep flexure flat, not concerned with rotation
–

 

Want to model contraction of SMA when heated and resulting 
stresses

•
 

Third Model: Combination of loads from models 1 and 2



Failure Criteria
•

 
Criteria for delamination of film involves fracture 
mechanics and the amount of energy available to drive a 
crack –

 
beyond scope of this project

•
 

Instead interested in possible plastic deformation of 
either polymer layer or SMA

•
 

This could occur due to either large-angle deformation of 
flexure or large strain induced in SMA when heated –

 
will 

analyze both cases



First FEA Model –
 

Beam Bending

•BCs
 

–
 

one edge fixed, distributed moment on opposite 
edge, all other faces free. Run twice with moment in 
opposite directions, putting each side alternately in 
compression or tension

Tension

Compression



Equivalent Modulus of a Composite Beam

b

E1

E2

b

b2

• From undergraduate solids course

E2=

Where b2

 

=nb, n = E1

 

/E2

Therefore, if you can actively control E1

 

, you can change the 
equivalent stiffness and moment of inertia, and thus the entire 
bending stiffness k = E*I/L. 



2-D Sanity Check
Theoretical and Finite Element Bending Stresses Due to Applied Moment
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Results of first model –
 

low temp SMA phase
•Max tensile stress in Kapton

 
~176 MPa, just over yield 

strength of 172 MPa

•Max tensile stress in SMA ~400 MPa, well over low-temp 
phase yield strength of 100 MPa

 
–

 
SMA will plastically 

deform



Deformed Shape Plot



Second FEA Model –
 

SMA Contraction

•
 

Previous models did not take into account large strain 
SMA undergoes when heated

•
 

SMAs
 

have a negative coefficient of thermal expansion –
 they contract with increasing temperature

•
 

This can be modeled with FEA program, assuming 
thermal expansion coefficient of kapton

 
is ~0 compared 

to the SMA
•

 
Fixed-fixed boundary conditions at the beam edge –

 
not 

worried about rotation yet, just effects of contracting 
SMA



Reality Check: 1D Thermal Strain Analysis
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•Two equations, two unknowns σ1

 

and σ2

•Thermal expansion coefficient for kapton

 

negligibly small compared to SMA

•Analytical results:

•σkapton

 

= -.393 GPa, σSMA

 

= 1.47 GPa

•FEA Results:

•σkapton

 

= -.35 GPa, σSMA

 

= 1.2 GPa



Results of Second Model –
 

Deformed Shape

•
 

Largest deformation occurs at free edges of flexure



Second Model -
 

Stresses
•

 

Stresses are rather high due to the large strain of the SMA, 
especially at the edges (roughly 2x stress concentration)

•

 

This will likely result in failure of the SMA 
•

 

SMA may fracture since stress is above the ultimate tensile strength 
(960 MPa), not just the yield strength



Second model –
 

stress (continued)
•

 
Despite large deformations at edges, highest von Mises

 stresses actually occur in the center of the flexure

Side view of 
long side of 
flexure –

 

note 
lower stress at 
the edge of 
SMA layer



Line plot of normal stress at center plane

•log plot shows 
that stress in 
kapton

 
layer is 

not constant, as it 
appears in 
contour plot on 
previous slide



Third Model: Combination of Loading Cases
•

 
Account for both applied moment and contraction of 
SMA due to thermal actuation

•
 

Resulting stresses are higher
•

 
Stress concentrations occur at corners in all three 
models

+

=



Combination Loading: Corner Stresses

Von Mises Stress at Corner of Flexure for Three Loading Cases
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Conclusion

•
 

This flexure design will fail under the imposed loading
•

 
Shape memory alloy may be too stiff for this purpose

•
 

Possible solution: use of shape-memory polymer, which 
is more flexible

•
 

Questions?



Appendix: References

•
 

For details on composite beam calculations, see R.C. 
Hibbeler, “Mechanics of Materials”

•
 

For more information on the Harvard Microrobotics Lab, 
visit the group’s website: 
http://www.micro.seas.harvard.edu/

•
 

Material properties were taken from www.matweb.com
 

–
 searchable online database that includes brand-name 

materials (Such as Kapton
 

and Nitanol)

http://www.micro.seas.harvard.edu/
http://www.matweb.com/


Appendix: Physical Parameters
•

 
Geometry:
–

 

Flexure length = 100 μm, width = 1500 μm, thickness = 7.5 μm
–

 

SMA coating thickness = 2 μm

•
 

Material Properties
–

 

Kapton

 

®

 

Polymer Film from Dupont

 

Corporation: 
•

 

E = 5 GPa
•

 

ν

 

= .34
•

 

Tensile strength = 172 MPa
–

 

Nitinol

 

Shape Memory Alloy (Low Temp/High Temp phases)
•

 

E = 28 GPa

 

/ 75 GPa
•

 

ν

 

= .3 / .3
•

 

Tensile strength = 100 MPa

 

/ 560 MPa
•

 

undergoes ~5% linear strain (contraction) when heated
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