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Abstract

The continuum mechanics of line defects representing singularities due to terminating discontinu-
ities of the elastic displacement and its gradient field is developed. The development is intended
for application to coupled phase transformation, grain boundary, and plasticity-related phenom-
ena at the level of individual line defects and domain walls. The continuously distributed defect
approach is developed as a generalization of the discrete, isolated defect case. Constitutive
guidance for equilibrium response and dissipative driving forces respecting frame-indifference
and non-negative mechanical dissipation is derived. A differential geometric interpretation of
the defect kinematics is developed, and the relative simplicity of the actual adopted kinematics
is pointed out. The kinematic structure of the theory strongly points to the incompatibility of
dissipation with strict deformation compatibility.

1 Introduction

Whether due to material contrast or material instability, there are many situations in solid me-
chanics that necessitate the consideration of 2-d surfaces across which a distortion measure is
discontinuous. By a distortion we refer to measures akin to a deformation ‘gradient’ except, in
many circumstances, such a measure is not the gradient of a vector field; we refer to a 2-d sur-
face of discontinuity of a distortion measure as a phase boundary (which, of course, includes a
grain boundary as a special case). The more familiar situation in conventional theory (i.e. non-
linear elasticity, rate-independent macroscopic plasticity) is when the distortion field corresponds
to the gradient of a continuous displacement field, but one could, and here we will, consider the
presence of dislocations, or a discontinuity in the elastic displacement field, as well when neces-
sary. We are particularly interested in situations where the phase boundary discontinuity actually
terminates along a curve on the surface or, more generally, shows in-plane gradients along the
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surface. We consider such terminating curves as phase boundary tips and the more general case
as a continuously distributed density of tips and their coupling to dislocations. We refer to the
phase boundary tip curves as generalized disclinations (or g.disclinations; a (classical) disclina-
tion in solids corresponds to the tip constituting the termination of a pure rotation discontinuity).
Concrete physical situations where the kinematic construct we have just outlined occur are com-
monplace. In connection to fundamental, (un)loaded, microstructure of materials, such terminating
boundaries (or domain walls) occur as grain boundaries and triple junction lines in polycrystalline
metals [DW72, BZB+12, LXBC10, HLL+12] or layered polymeric materials [LB06, RFL+12]. As
agents of failure, some examples are weak interfaces between matrix and fiber in fiber-reinforced
polymer composites, or two such phase boundaries spaced closely apart enclosing a matrix weak
zone in such materials, e.g. crazed inclusions and shear bands. Of course, deformation bands
(especially shear bands) are just as commonplace in the path to failure in metallic materials and
granular materials. More mundane situations arise in understanding stress singularities at sharp
corners of inclusions in a matrix of dissimilar material in a linear elastic context.

The conditions for the emergence of phase boundaries/localized deformation bands are by now
well-understood, whether in the theory of inelastic deformation localization, e.g. [HH75, Ric76,
PAN82] or solid-solid phase transformations, e.g. [KS78, Jam81, AK06]. On the other hand, there
does not exist a theory today to represent the kinematics and dynamics of the terminating lines
of such phase boundaries and the propagation of these boundary-tips with the associated coupling
to dislocations1. This can be of primary importance in understanding progressive damage, e.g.
onset of debonding at fiber-matrix interfaces, extension of shear bands or crazes, or the stress
concentrations produced at five-fold twin junctions, or grain boundary triple lines. It is the goal
of this paper to work out the general continuum mechanics of coupled phase boundary and slip
(i.e. regularized displacement-gradient and displacement discontinuities), taking into account their
line defects which are g.disclinations and dislocations. The developed model is expected to be of
both theoretical and practical use in the study of the coupling of the structure and motion of phase
boundaries coupled to dislocation and kink-like defects e.g. [HP11, WSL+13, SKS+10].

A corresponding ‘small deformation’ theory has been worked out in [AF12]. It was not clear to
us then whether one requires a theory with couple stress or not and both thermodynamically ad-
missible possibilities were outlined there. We now believe that dealing with g.disclinations requires
mechanics mediated by torque balance2 and, therefore, in this paper, we only consider models
where couple stresses also appear. A dissipative extension of disclination-dislocation theory due
to deWit [deW70] has been developed in [FTC11, UCTF11, UCTF13] as well as the first numer-
ical implementations for the theory with application to understanding grain-boundary mechanics
[TCF+13b, TCF13a]. While we focus on continuously distributed defect densities, it is to be un-
derstood that we include in our setting the modeling of individual defect lines as non-singular
localizations of these density fields along space curves.

The concept of classical disclinations and dislocations arose in the work of Weingarten and
Volterra (cf. [Nab87]) from the specific question of characterizing the displacement and rotation
jumps across a surface of a multiply connected region with a hole, when the displacement field is
required to be consistent with a prescribed twice differentiable strain (metric field) field; a well-
developed static theory exists [RK09] as well as a very sophisticated topological theory, full of

1We note here the work of [SB98] that discusses kinetics of junctions of phase-boundaries under the assumption
that the deformation is compatible while [GLS10], [PBSR08] discuss coupling of strain incompatibilities with phase-
transformation without explicit kinematic consideration of strain-gradient incompatibilities due to terminating phase
boundaries.

2However, a dislocation-only defect model does not require any consideration of torque balance or couple stresses,
as shown in [Ach11, AF12] and in Sec 5.3.
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Figure 1: Path to an idealized edge dislocation nucleation (c) involving a deformation discontinuity,
achieved through the formation of a g.disclination dipole (b) in a continuous deformation with two
surfaces of strain discontinuity of an unstretched atomic configuration (a). Here, a continuous
deformation (b) of the original configuration (a) refers to the preservation of all nearest neighbors
signified by bond connections; a discontinuous deformation (c) refers to a change in topology of
bond connections.

subtle but difficult insights, due to Klemán and Friedel [KF08]. While self-contained in itself,
this question does not suffice for our purposes in understanding phase boundaries, since these can,
and often necessarily, involve jumps in the strain field. Nevertheless, the differential geometry of
coupled dislocations and so-called disclinations have been the subject of extensive enquiry, e.g.
[Kon55, Bil60, KL92, CMB06], and therefore we show how our g.disclinations can be placed in a
similar differential geometric context, while pointing out the main differences from the standard
treatment. The differences arise primarily from a desire to achieve relative simplicity by capitalizing
on the available Euclidean structure of the ambient space in which we do our mechanics directed
towards applications.

The remainder of the paper is organized as follows. In Section 2 we provide a list of notation.
In Section 3 we develop a fundamental kinematic decomposition relevant for our work. In Section
4 we develop the governing mechanical equations. In Section 5 we examine consequences of mate-
rial frame-indifference (used synonymously with invariance under superposed rigid body motions)
and a dissipation inequality for the theory, ingredients of which provide a critical check on the
finite deformation kinematics of the proposed evolution equations for defect densities. Section 6
describes a small deformation version of the model. In Section 7 we provide a differential geometric
interpretation of our work. Some concluding observations are recorded in Section 8.

Finally, in order to provide some physical intuition for the new kinematic objects we have
introduced before launching into their continuum mechanics, we demonstrate (Figure 1) a possible
path to the nucleation of an edge dislocation in a lattice via the formation of a g.disclination
dipole. It is then not surprising that point-wise loss of ellipticity criteria applied to continuum
response generated from interatomic potentials can bear some connection to predicting the onset
of dislocation nucleation [LVVZ+02, ZLJVV+04].
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2 Notation

A superposed dot on a symbol represents a material time derivative. The statement a := b indicates
that a is defined to be equal to b. The summation convention is implied unless otherwise mentioned.
We denote by Ab the action of the second-order (third-order, fourth-order) tensor A on the vector
(second-order tensor, second-order tensor) b, producing a vector (vector, second-order tensor).
A · represents the inner product of two vectors, a : represents the trace inner product of two
second-order tensors (in rectangular Cartesian components, A : D = AijDij) and matrices and the
contraction of the last two indices of a third-order tensor with a second order tensor. The symbol
AD represents tensor multiplication of the second-order tensors A and D. The notation (·)sym and
(·)skw represent the symmetric and skew symmetric parts, respectively, of the second order tensor
(·). We primarily think of a third-order tensor as a linear transformation on vectors to the space of
second-order tensors. A transpose of a third-order tensor is thought of as a linear transformation
on the space of second order tensors delivering a vector and defined by the following rule: for a
third-order tensor B (

BTD
)
· c = (Bc) : D,

for all second-order tensors D and vectors c.
The symbol div represents the divergence, grad the gradient, and div grad the Laplacian on

the current configuration. The same words beginning with a Latin uppercase letter represent
the identical derivative operators on a reference configuration. The curl operation and the cross
product of a second-order tensor and a vector are defined in analogy with the vectorial case and the
divergence of a second-order tensor: for a second-order tensor A, a third-order tensor B, a vector
v, and spatially constant vector fields b, c, and a spatially uniform second-order tensor field D,

c · (A× v) b =
[(
ATc

)
× v

]
· b ∀b, c

D : (B × v) b =
[(
BTD

)
× v

]
· b ∀D, b

(divA) · c = div
(
ATc

)
∀c

(divB) : D = div
(
BTD

)
∀D

c · (curlA) b =
[
curl

(
ATc

)]
· b ∀b, c

D : (curlB) b =
[
curl

(
BTD

)]
· b ∀b,D

In rectangular Cartesian components,

(A× v)im = emjkAijvk

(B × v)irm = emjkBirjvk

(divA)i = Aij,j

(divB)ij = Bijk,k

(curlA)im = emjkAik,j

(curlB)irm = emjkBirk,j

where emjk is a component of the third-order alternating tensor X. Also, the vector XAD is
defined as

(XAD)i = eijkAjrDrk.

The spatial derivative for the component representation is with respect to rectangular Cartesian
coordinates on the current configuration of the body. Rectangular Cartesian coordinates on the
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reference configuration will be denoted by uppercase Latin indices. For manipulations with com-
ponents, we shall always use such rectangular Cartesian coordinates, unless mentioned otherwise.
Positions of particles are measured from the origin of this arbitrarily fixed Cartesian coordinate
system.

For a second-order tensor W , a third-order tensor S and an orthonormal basis {ei, i = 1, 2, 3}
we often use the notation(

WS2T
)

= WlpSrpker ⊗ el ⊗ ek ;
(
WS2T

)
rlk

:= WlpSrpk.

The following list describes some of the mathematical symbols we use in this paper.
x: current position
F e: elastic distortion tensor (2nd-order)
W = (F e)−1: inverse of elastic 1-distortion tensor (2nd-order)
S: eigenwall tensor (3rd-order)
Y : inverse-elastic 2-distortion tensor (3rd-order)
α: dislocation density tensor (2nd-order)
Π: g.disclination density tensor (3rd-order)
v: material velocity
L: velocity gradient
D = Lsym: rate of deformation tensor
Ω = Lskw: spin tensor
ω = −1

2X : Ω = 1
2 curl v: half of the vorticity vector

M = gradω: vorticity gradient tensor
J = gradW : gradient of i-elastic distortion
V Π : g.disclination velocity
V α: dislocation velocity
V S : eigenwall velocity
T : Cauchy stress tensor
Λ: couple stress tensor
K: external body moment per unit mass
b: external body force per unit mass
ρ: mass density
ψ: free energy per unit mass

3 Motivation for a fundamental kinematic decomposition

With reference to Figure 2a representing a cross-section of a body, suppose we are given a tensor
field ϕ (0th-order and up) that can be measured unambiguously, or computed from measurements
without further information, at most points of a domain B. Assume that the field ϕ is smooth
everywhere except having a terminated discontinuity of constant magnitude across the surface S.
Denote the terminating curve of the discontinuity on the surface S as C. We think of the subset P
of S across which a non-zero jump exists as a wall of the field ϕ and the curve C as a line defect
of the field ϕ. Physical examples of walls are domain walls, grain boundaries, phase boundaries,
slip boundaries and stacking faults (surfaces of displacement discontinuity); those of defect lines
are vortices, disclinations, g.disclinations, and dislocations. Let ν be a unit normal field on S, with
arbitrarily chosen orientation. Let B+ be the subset of B into which ν points; similarly, let B− be
the subset of B into which −ν points. Let x be a point on P. Let x+ ∈ B+ and x− ∈ B− be points
arbitrarily close to x but not x, and let ϕ(x+) = ϕ+ and ϕ(x−) = ϕ−. Join x+ to x− by any
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Figure 2: Classical terminating discontinuity and its physical regularization.

contour Cx
−

x+ encircling C. Then∫
Cx−

x+

grad ϕ · dx = ϕ− −ϕ+ =: −JϕK. (1)

Note that by hypothesis JϕK is constant on P so that regardless of how close x is to C, and how
small the non-zero radius of a circular contour Cx

−

x+ is, the contour integral takes the same value.
This implies that |grad ϕ(y)| → ∞ as y → C with y ∈ B\C 3. Our goal now is to define a field A
that is a physically regularized analog of grad ϕ; we require A to not have a singularity but possess
the essential topological property (1) if gradϕ were to be replaced there with A. For instance, this
would be the task at hand if, as will be the case here, A is an ingredient of a theory and initial
data for the field needs to be prescribed based on available observations on the field ϕ, the latter
as described above.

It is a physically natural idea to regularize the discontinuity on P by a field on B that has support
only on a thin layer around P. We define such a field as follows (Figure 2b). For simplicity, assume
all fields to be uniform in the x3-direction. Let the layer L be the set of points

L = {y ∈ B : y = x+ hν(x),−l/2 ≤ h ≤ l/2,x ∈ P} .

Let the x1 coordinate of C be x0. Define the strip field

WV (x) =

{
f(x1)

{ϕ−(x1)−ϕ+(x1)}
l ⊗ ν(x1), if x ∈ L

0, if x ∈ B\L
4

where ν(x1) = e2 here, and

f(x1) =

{
x1−x0
r , if x0 < x1 ≤ x0 + r

1, if x0 + r ≤ x1.
3As an aside, this observation also shows why the typical assumptions made in deriving transport relations for

various types of control volumes containing a shock surface do not hold when the discontinuity in question is of the
‘terminating jump’ type being considered here.

4WV is to be interpreted as the name for a single field.
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In the above, the layer width l and the defect-core width r are considered as given physical param-
eters. We now define A as

A := gradB +WV in B, (2)

where B is at least a continuous and piecewise-smooth potential field in B, to be determined from
further constraints within a theoretical structure as, for example, we shall propose in this paper.

Let n be the order of the tensor field ϕ. A small calculation shows that the only non-vanishing
component(s) of curlWV is

(curlWV )i1···in3 = e312
∂f

∂x1

[
−JϕKi1···in

l

]
= WVi1···in2,1

5

and this is non-zero only in the core cylinder defined by

Cr =
{
x : x0 ≤ x1 ≤ x0 + r,−l/2 ≤ x2 ≤ l/2

}
.

Moreover, since ∂f
∂x1

= 1
r in Cr and zero otherwise, we have∫
C
A · dx =

∫
A
curlWV · e3 da = − JϕK

(l · r)
(l · r) = −JϕK,

for any closed curve C encircling Cr and A is any surface patch with boundary curve C.
Without commitment to a particular theory with constitutive assumptions, it is difficult to

characterize further specific properties of the definition (2). However, it is important to avail of the
following general intuition regarding it. Line defects are observed in the absence of applied loads.
Typically, we are thinking of gradϕ as an elastic distortion measure that generates elastic energy,
stresses, couple-stresses etc. Due to the fact that in the presence of line defects as described, gradϕ
has non-vanishing content away from P in the absence of loads, if A is to serve as an analogous
non-singular measure, it must have a similar property of producing residual elastic distortion for
any choice of a gradB field for a given WV field that contains a line defect (i.e. a non-empty
subset Cr). These possibilities can arise, for instance, from a hypothesis on minimizing energy or
balancing forces or moments. That such a property is in-built into the definition (2) can be simply
understood by realizing that WV is not a gradient and therefore cannot be entirely annihilated by
gradB. To characterize this a bit further, one could invoke a Stokes-Helmholtz type decomposition
of the (localized-in-layer) WV field to obtain

WV = gradZ + P on B

div gradZ = divWV on B

gradZn = WV n on ∂B

curlP = curlWV on B (3)

divP = 0 on B

Pn = 0 on ∂B,

noting the interesting fact that gradZ = −P in B\L because of the localized nature of WV .
Thus, gradB can at most negate the gradZ part of WV and what remains is at least a non-
localized field P representing some, or in some specific cases (e.g. screw dislocation in isotropic

5Here it is understood that if n = 0 then the symbol i1 · · · in correspond to the absence of any indices and the
curl of the higher-order tensor field is understood as the natural analog of the second-order case defined in Section 2.
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linear elasticity or Neo-Hookean elasticity, [Ach01]) all, of the off-Cr content of the original gradϕ
field. Of course, it must be understood that the primary advantage, within our interpretation, of
utilizing A in place of gradϕ is that the former is non-singular, but with the desired properties6.

It should be clear now that a field with many defect lines can as well be represented by a
construct like (2) through superposition of their ‘corresponding WV fields’, including dipolar
defect-line structures where the layer L has two-sided terminations within the body, without running
all the way to the boundary.

As a common example we may think of classical small deformation plasticity where the plastic
distortion field Up may be interpreted as −WV , the displacement field u as the potential B and
A as the elastic distortion U e. In classical plasticity theory, the decomposition U e = gradu−Up

is introduced as a hypothesis based on phenomenology related to 1-d stress strain curves and
the notion of permanent deformation produced in such a set-up. Our analysis may be construed
as a fundamental kinematical and microstructural justification of such a hypothesis, whether in
the presence of a single or many, many dislocations. At finite deformations, there is a similar
decomposition for the i-elastic 1 distortion F e−1 = W = χ + gradf [Ach04, Ach11], where the
spatial derivative is on the current configuration and we identify A with W , Z +B with f , and
P with χ.

Based on the above motivation, for the theory that follows, we shall apply the definition (2) to
the i-elastic 2-distortion Y to write

Y = gradW + S, (4)

where W is the i-elastic 1-distortion and we refer to S (3rd-order tensor) as the eigenwall field.
What we have achieved above is a generalization of the eigenstrain concept of Kröner, Mura,

and deWit. With the gained understanding, it becomes the natural modeling tool for dealing with
the dynamics of discontinuities and line-singularities of first and higher-order deformation gradients
with smooth (everywhere) fields within material and geometrically linear and nonlinear theories.
The main utility ofWV fields, as will be evident later, is in providing a tool for stating kinematically
natural evolution equations for defect densities; while they also provide regularization of nasty
singularities, such a smoothing effect can, at least in principle, also be obtained by demanding that
the jump JϕK rise to a constant value from 0 over a short distance in P, without introducing any
new fields.

4 Mechanical structure and dissipation

4.1 Physical notions

This subsection has been excerpted from [AZ14] for the sake of completeness.
The physical model we have in mind for the evolution of the body is as follows. The body

consists of a fixed set of atoms. At any given time each atom occupies a well defined region of
space and the collection of these regions (at that time) is well-approximated by a connected region
of space called a configuration. We assume that any two of these configurations can necessarily
be connected to each other by a continuous mapping. The temporal sequence of configurations
occupied by the set of atoms are further considered as parametrized by increasing time to yield a
motion of the body. A fundamental assumption in what follows is that the mass and momentum
of the set of atoms constituting the body are transported in space by this continuous motion. For

6It is to be noted that the decomposition (3) is merely a means to understand the definitions (2), (4), the latter
being fundamental to the theory.
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simplicity, we think of each spatial point of the configuration corresponding to the body in the
as-received state for any particular analysis as a set of ‘material particles,’ a particle generically
denoted by X.

Another fundamental assumption related to the motion of the atomic substructure is as follows.
Take a spatial point x of a configuration at a given time t. Take a collection of atoms around
that point in a spatial volume of fixed extent, the latter independent of x and with size related to
the spatial scale of resolution of the model we have in mind. Denote this region as Dc(x, t); this
represents the ‘box’ around the base point x at time t. We now think of relaxing the set of atoms
in Dc(x, t) from the constraints placed on it by the rest of the atoms of the whole body, the latter
possibly externally loaded. This may be achieved, in principle at least, by removing the rest of
the atoms of the body or, in other words, by ignoring the forces exerted by them on the collection
within Dc(x, t). This (thought) procedure generates a unique placement of the atoms in Dc(x, t)
denoted by Ax with no forces in each of the atomic bonds in the collection.

We now imagine immersing Ax in a larger collection of atoms (without superimposing any
rigid body rotation), ensuring that the entire collection is in a zero-energy ground state (this may
require the larger collection to be ‘large enough’ but not space-filling, as in the case of amorphous
materials (cf. [KS79]). Let us assume that as x varies over the entire body, these larger collections,
one for each x, can be made to contain identical numbers of atoms. Within the larger collection
corresponding to the point x, let the region of space occupied by Ax be approximated by a connected
domain Dprer (x, t), containing the same number of atoms as in Dc(x, t). The spatial configuration
Dprer (x, t) may correctly be thought of as stress-free. Clearly, a deformation can be defined mapping
the set of points Dc(x, t) to Dprer (x, t). We now assume that this deformation is well approximated
by a homogeneous deformation.

Next, we assume that the set of these larger collections of relaxed atoms, one collection corre-
sponding to each x of the body, differ from each other only in orientation, if distinguishable at all.
We choose one such larger collection arbitrarily, say C, and impose the required rigid body rotation
to each of the other collections to orient them identically to C. Let the obtained configuration after
the rigid rotation of Dprer (x, t) be denoted by Dr(x, t).

We denote the gradient of the homogeneous deformation mapping Dc(x, t) to Dr(x, t) byW (x, t),
the i-elastic 1-distortion at x at time t.

What we have described above is an embellished version of the standard fashion of thinking
about the problem of defining elastic distortion in the classical theory of finite elastoplasticity
[Lee69], with an emphasis on making a connection between the continuum mechanical ideas and
discrete atomistic ideas as well as emphasizing that no ambiguities related to spatially inhomoge-
neous rotations need be involved in defining the field W 7. However, our physical construct requires
no choice of a reference configuration or a ‘multiplicative decomposition’ of it into elastic and plastic
parts to be invoked [Ach04]. In fact, there is no notion of a plastic deformation F p invoked in our
model. Instead, as we show in Section 4.4 (14), an additive decomposition of the velocity gradient
into elastic and plastic parts emerges naturally in this model from the kinematics of dislocation
motion representing conservation of Burgers vector content in the body.

Clearly, the field W need not be a gradient of a vector field at any time. Thinking of this
ielastic 1-distortion field W on the current configuration at any given time as the ϕ field of Section
3, the i-elastic 2-distortion field Y is then defined as described therein.

It is important to note that if a material particleX is tracked by an individual trajectory x(t) in
the motion (with x(0) = X), the family of neighborhoods Dc(x(t), t) parametrized by t in general
can contain vastly different sets of atoms compared to the set contained initially in Dc(x(0), 0).

7Note that the choice of C affects the W field at most by a superposed spatio-temporally uniform rotation field.
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The intuitive idea is that the connectivity, or nearest neighbor identities, of the atoms that persist
in Dc(x(t), t) over time remains fixed only in purely elastic motions of the body.

4.2 The standard continuum balance laws

For any fixed set of material particles occupying the volume B(t) at time t with boundary ∂B(t)
having outward unit normal field n

˙∫
B(t)

ρ dv = 0,

˙∫
B(t)

ρv dv =

∫
∂B(t)

Tn da+

∫
B(t)

ρb dv,

˙∫
B(t)

ρ (x× v) dv =

∫
∂B(t)

(x× T +Λ)n da+

∫
B(t)

ρ (x× b+K) dv,

represent the statements of balance of mass, linear and angular momentum, respectively. We re-
emphasize that it is an assumption that the actual mass and momentum transport of the underlying
atomic motion can be adequately represented through the material velocity and density fields gov-
erned by the above statements (with some liberty in choosing the stress and couple-stress tensors).
For instance, in the case of modeling fracture, some of these assumptions may well require revision.

Using Reynolds’ transport theorem, the corresponding local forms for these equations are:

ρ̇+ ρ div v = 0

ρv̇ = divT + ρb

0 = divΛ−X : T + ρK.

(5)

Following [MT62], the external power supplied to the body at any given time is expressed as:

P (t) =

∫
B(t)

ρb · v dv +

∫
∂B(t)

(Tn) · v da+

∫
∂B(t)

(Λn) · ω da+

∫
B(t)

ρK · ω dv

=

∫
B(t)

(ρv · v̇) dv +

∫
B(t)

(T : D + Λ : M) dv,

where Balance of linear momentum and angular momentum have been used. On defining the kinetic
energy and the free energy of the body as

K =

∫
B(t)

1

2
(ρv · v) dv,

F =

∫
B(t)

ρψ dv,

respectively, and using Reynolds’ transport theorem, we obtain the mechanical dissipation

D := P − ˙K + F =

∫
B(t)

(
T : D +Λ : M − ρψ̇

)
dv. (6)

The first equality above shows the distribution of applied mechanical power into kinetic, stored
and dissipated parts. The second equality, as we show subsequently, is used to provide guidance
on constitutive structure.
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4.3 G.disclination density and eigenwall evolution

The natural measure of g.disclination density is

curl (Y − gradW ) = curlS = Π.

It characterizes the closure failure of integrating Y on closed contours in the body:∫
a
Πnda =

∫
c
Y dx,

where a is any area patch with closed boundary contour c in the body. Physically, it is to be
interpreted as a density of lines (threading areas) in the current configuration, carrying a tensorial
attribute that reflects a jump in W . As such, it is reasonable to postulate, before commitment to
constitutive equations, a tautological evolution statement of balance for it in the form of “rate of
change = what comes in - what goes out + what is generated.” Since we are interested in nonlinear
theory consistent with frame-indifference and non-negative dissipation, it is more convenient to
work with the measure

?Π := curl
(
WS2T

)
(7)(

WS2T
)
rlk

:= WlpSrpk
?Πrli = eijk [WlpSrpk],j = eijk [Wlp (Yrpk −Wrp,k)],j ,

(cf. [AD12]), and follow the arguments in [Ach11] to consider a conservation statement for a density
of lines of the form

˙∫
a(t)

?Πn da = −
∫
c(t)
Π × V Π dx. (8)

Here, a(t) is the area-patch occupied by an arbitrarily fixed set of material particles at time t and
c(t) is its closed bounding curve and the statement is required to hold for all such patches. V Π

is the g.disclination velocity field, physically to be understood as responsible for transporting the
g.disclination line density field in the body.

Arbitrarily fix an instant of time, say s, in the motion of a body and let Fs denote the time-
dependent deformation gradient field corresponding to this motion with respect to the configuration
at the time s. Denote positions on the configuration at time s as xs and the image of the area patch
a(t) as a(s). We similarly associate the closed curves c(t) and c(s). Then, using the definition (7),
(8) can be written as

˙∫
a(t)

?Πn da +

∫
c(t)
Π × V Π dx =

˙∫
c(t)
WS2T dx+

∫
c(t)
Π × V Π dx

=

∫
c(s)

[
˙

WS2TFs +
(
Π × V Π

)
Fs

]
dxs

=

∫
c(t)

[
˙

WS2TFsF
−1
s +Π × V Π

]
dx = 0

which implies
˙

WS2TFsF
−1
s = −Π × V Π + gradΣ,
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Figure 3: Transport due to g.disclination and eigenwall velocities.

where Σ is an arbitrary second-order tensor field with physical dimensions of strain rate (i.e.
1/T ime) that we will subsequently specify to represent grain/phase boundary motion transverse
to itself. Finally, choosing s = t, we arrive at the following local evolution equation for S:

�
S:= ẆS2T +W ˙S2T +WS2TL = −Π × V Π + gradΣ.

The local form of (8) is

◦
?Π:= (div v) ?Π + ˙?Π − ?ΠLT = −curl

(
Π × V Π

)
.8 (9)

Finally, we choose Σ to be

Σ := WS2TV S ; Σij = WjrSirkV
S
k ,

where V S is the eigenwall velocity field that is physically to be interpreted as transporting the
eigenwall field S transverse to itself. This may be heuristically justified as follows: the eigenwall
field represents a gradient of i-elastic distortion in a direction normal to the phase boundary (i.e. in
the notation of Section 3, normal to P). If the band now moves with a velocity V S relative to the
material, at a material point past which the boundary moves there is change of i-elastic distortion
per unit time given by Σ. The geometrically complete local evolution equation for S is given by

�
S = −Π × V Π + grad

(
WS2TV S

)
. (10)

Thus, for phase boundaries, V Π transports in-plane gradients of S including the tips of such
bands, whereas V S transports the phase boundary transverse to itself (Figure 3).

4.4 Dislocation density and i-elastic 1-distortion evolution

Following tradition [deW73], we define the dislocation density α as

α := Y : X = (S + gradW ) : X (11)

and note that when S ≡ 0, α = −curlW since for any smooth tensor field A, curlA = −gradA :
X. The definition (11) is motivated by the displacement jump formula (18) corresponding to a
single, isolated defect line terminating an i-elastic distortion jump in the body. In this situation,
the displacement jump for an isolated defect line, measured by integrating α on an area patch
threaded by the defect line, is no longer a topological object independent of the area patch.

8An important feature of conservation statements for signed ‘topological charge’ as here is that even without
explicit source terms nucleation (of loops) is allowed. This fact, along with the coupling of Π to the material velocity
field through the convected derivative provides an avenue for predicting homogeneous nucleation of line defects. In
the dislocation-only theory, some success has been achieved with this idea in ongoing work.
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The evolution of the S : X component of α is already specified from the evolution (10) for S.
Thus, what remains to be specified for the evolution of the dislocation density field is the evolution
of

α̃ := −curlW = (Y − S) : X,

that is again an areal density of lines carrying a vectorial attribute.
When S = 0, then α̃ = α, and the physical arguments of finite-deformation dislocation me-

chanics [Ach11] yield
˙∫

a(t)
α̃ n da = −

∫
c(t)
α̃× V α dx

with corresponding local form
Ẇ +WL = α̃× V α,

(up to assuming an additive gradient of a vector field to vanish). Here, V α denotes the dislocation
velocity field, to be interpreted physically as the field responsible for transporting the dislocation
density field in the body.

Using identical logic, we assume as the statement of evolution of W the equation

Ẇ +WL = α× V α, (12)

with a natural adjustment to reflect the change in the definition of the dislocation density field.
This statement also corresponds to the following local statement for the evolution of α̃:

◦
α̃:= (div v) α̃+ ˙̃α− α̃LT = −curl (α× V α) . (13)

It is to be noted that in this generalization of the dislocation-only case, the dislocation density
is no longer necessarily divergence-free (see (11)) which is physically interpreted as the fact that
dislocation lines may terminate at eigenwalls or phase boundaries.

We note here that (12) can be rewritten in the form

L = Ḟ eF e−1 + (F eα)× V α, (14)

where F e := W−1. To make contact with classical finite deformation elastoplasticity, this may be

interpreted as a fundamental additive decomposition of the velocity gradient into elastic
(
Ḟ eF e−1

)
and plastic ((F eα)× V α) parts. The latter is defined by the rate of deformation produced by the
flow of dislocation lines in the current configuration, without any reference to the notion of a
total plastic deformation from some pre-assigned reference configuration. We also note the natural
emergence of plastic spin (i.e. a non-symmetric plastic part of L), even in the absence of any
assumptions of crystal structure but arising purely from the kinematics of dislocation motion (when
a dislocation is interpreted as an elastic incompatibility).

4.5 Summary of proposed mechanical structure of the theory

To summarize, the governing equations of the proposed model are

ρ̇ = −ρdiv v

ρv̇ = divT + ρb

0 = divΛ−X : T + ρK (15)

Ẇ = −WL+α× V α

Ṡ = W−1
{
−ẆS2T −WS2TL−Π × V Π + grad

(
WS2TV S

)}2T

0 = −α+ S : X − curlW .
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The fundamental dependent fields governed by these equations are the current position field x, the
i-elastic 1-distortion field W , and the eigenwall field S.

The relevance of the eigenwall velocity field V S would seem to be greatest in the completely
compatible case when there are no deformation line defects allowed (i.e. α = 0, Π = 0). For
reasons mentioned in section (4.6), including eigenwall evolution seems to be at odds with strict
compatibility. Additionally, modeling wall defects by dipolar arrays of disclinations [TCF13a]
appears to be a successful, fundamental way of dealing with grain boundary motion. However, it
also seems natural to consider many phase boundaries as containing no g.disclinations whatsoever,
e.g. the representation of a straight phase boundary of constant strength that runs across the
body without a termination (this may be physically interpreted as a consistent coarser length-scale
view of a phase-boundary described by separated g.disclination-dipole units). To represent phase
boundary motion in this situation of no disclinations, a construct like V S is necessary, and we
therefore include it for mathematical completeness.

The model requires constitutive specification for

• the stress T ,

• the couple-stress Λ,

• the g.disclination velocity V Π ,

• the dislocation velocity V α, and

• the eigenwall velocity V S (when not constrained to vanish).

As a rough check on the validitiy of the mechanical structure, we would like to accommodate
analogs of the following limiting model scenarios within our general theory. The first corresponds to
the calculation of static stresses of disclinations in linear elasticity [deW73], assuming no dislocations
are present. That is, one thinks of a terminating surface of discontinuity in the elastic rotation field,
across which the elastic displacements are continuous (except at the singular tip of the terminating
surface). The analog of this question in our setting would be to set α = 0 in (11) and consider
S : X as a given source for W , i.e.

α̃ = −curlW = −S : X,

where W is assumed to be the only argument of the stress tensor. Thus, the S field directly affects
the elastic distortion that feeds into the stress tensor. Of course, this constrained situation, i.e.
α = 0, may only be realized if the field S : X is divergence-free on B. Thus, with (11) as a field
equation along with constitutive equations for the stress and couple stress tensor and the static
versions of balance of linear and angular momentum, this problem becomes accessible within our
model.

As a second validating feature of the presented model, we mention the work of [TCF13a] on the
prediction of shear coupled grain boundary migration within what may be interpreted as a small-
deformation, disclination-dislocation-only version of the above theory. There, the grain boundaries
are modeled by an array of (stress-inducing) disclination dipoles and it is shown how the kinematic
structure of the above type of system along with the presence of stresses and couple stresses allows
grain boundary motion with concomitant shear-producing dislocation glide to be predicted in accord
with experiments and atomistic simulations.

Finally, one would of course like to recover some regularized version of classical, compatible
phase transformation theory [BJ87], i.e. classical nonlinear elasticity with a non-convex energy
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function and with continuous displacements, in the absence of dislocations, g.disclinations and the
eigenwall field in our model, i.e. (α = 0,S = Π = 0). The model reduces to a strain gradient
regularization [Sle83, AK91, BK84, SLSB99] of classical nonlinear elasticity resulting from the
presence of couple stresses and the dependence of the energy function on the second deformation
gradient.

4.6 The possibility of additional kinetics in the completely compatible case

The question of admitting additional kinetics of phase boundary motion in the completely com-
patible case (i.e. no dislocations and g.disclinations) is an interesting one, raised in the works of
Abeyaratne and Knowles [AK90, AK91]. In the spatially 1-d scenario considered in [AK91], it is
shown that admitting higher gradient effects does provide additional conditions over classical elas-
ticity for well-defined propagation of phase boundaries, albeit with no dissipation, while the results
of [Sle83] show that a viscosity effect alone is too restrictive and does not allow propagation. The
work of [AK91], that extends to 3-d [AK06], does not rule out, and in fact emphasizes, more general
kinetic relations for phase boundary propagation arising from dissipative effects, demonstrating the
fact through a combined viscosity-capillarity regularization of nonlinear elasticity.

Within our model, the analogous situation is to consider the g.disclination density and the
dislocation density constrained to vanish (Π = 0 and α = 0). A dissipative mechanism related to
phase boundary motion may now be introduced by admitting a generally non-vanishing V S field.
For the present purpose, it suffices then to focus on the following three kinematic equations:

Ṡ = W−1
{
−ẆS2T −WS2TL+ grad

(
WS2TV S

)}2T

Ẇ = −WL+α× V α (16)

0 = −α+ S : X − curlW .

We first note from (162) that if α = 0 then a solution for W with initial condition I would be F−1,
where F is the deformation gradient with respect to the fixed stress-free reference configuration.
Then from (163), it can be seen that this ansatz requires the eigenwall field to be symmetric in the
last two indices. In its full-blown geometric nonlinearity, it is difficult to infer from (161) that if S
were to have initial conditions with the required symmetry, that such symmetry would persist on
evolution.

An even more serious constraint within our setting making additional kinetics in the completely
compatible case dubious is the further implication that if Π = curlS = 0 and S : X = 0 on a
simply connected domain, then it is necessarily true that S can be expressed as the second gradient
of a vector field say a, i.e.

Sijk = ai,jk. (17)

This implies that (161) is in general a highly overdetermined system of 27 equations in 3 unknown
fields, for which solutions can exist, if at all, for very special choices of the eigenwall velocity field
V S . Even in the simplest of circumstances, consider (161) under the geometrically linear assumption
(i.e. all nonlinearities arising from an objective rate are ignored and we do not distinguish between
a material and a spatial time derivative)

Ṡ = grad
(
SV S

)
=⇒ ȧi,j = ai,jk

(
V S
)
k

(upto a spatially uniform tensor field). This is a generally over-constrained system of 9 equations for
3 fields corresponding to the evolution of the vector field a requiring, for the existence of solutions,
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a pde constraint to be satisfied by the phase boundary/eigenwall velocity field, namely

curl
{

(grad grada)V S
}

= 0

that amounts to requiring that

ai,jk
(
V S
k,l

)
− ai,lk

(
V S
k,j

)
= 0.

While satisfied in some simple situations, e.g. gradV S = 0 wherever grad grada is non-vanishing,
or when all field-variations are in one fixed direction (as for phase boundary propagation in a 1-d
bar), this is a non-trivial constraint on the V S field in general. Of course, it is conventional wisdom
that the phase boundary velocity kinetics be specifiable constitutively, and a ‘nonlocal’ constraint
on V S as above considerably complicates matters. On the other hand, we find it curious that a
nonlocal constraint on phase transformation constitutive behavior arises naturally in our model as
a consequence of enforcing strict kinematic compatibility.

If one disallows a non-local PDE constraint as above on the constitutive specification of V S ,
then the kinematics suggests the choice V S = 0 (and perhaps the even stronger Ṡ = 0). Based on
the results of Section 5.3, this precludes dissipation in the completely compatible case. We find it
interesting that recent physical results guided by continuum mechanics theory [CCF+06, ZTY+10]
point to a similar conclusion in the design of low-hysteresis phase-transforming solids.

4.7 Contact with the classical view of modeling defects: A Weingarten theorem
for g.disclinations and associated dislocations

The discussion surrounding (17) and seeking a connection of our work to the classical tradition
of the theory of isolated defects suggest the following natural question. Suppose one has a three-
dimensional body with a toroidal (Figure 4a) or a through-hole in it (Figure 4d)(cf. [Nab87]). In
both cases, the body is multiply-connected. In the first, the body can be cut by a surface of finite
extent that intersects its exterior surface along a closed curve and the surface of the toroidal hole
along another closed curve in such a way that the resulting body becomes simply-connected with the
topology of a solid sphere (Figure 4b). In more precise terminology, one thinks of isolating a surface
of the original multiply-connected domain with the above properties, and the set difference of the
original body and the set of points constituting the cut-surface is the resulting simply-connected
domain induced by the cut. Similarly, the body with the through-hole can be cut by a surface
extending from a curve on the external surface to a curve on the surface of the through-hole such
that the resulting body is again simply-connected with the topology of a solid sphere (Figure 4e).
Finally, the body with the toroidal hole can also be cut by a surface bounded by a closed curve
entirely on the surface of the toroidal hole in such a way that the resulting body is simply-connected
with the topology of a solid sphere with a cavity in it. For illustration see (Figure 4c).

To make contact with our development in Section 3, one conceptually associates the support
of the defect core as the interior of the toroidal hole and the support of the strip field WV as a
regularized cut-surface.

Suppose that on the original multiply-connected domain

• a continuously differentiable, 3rd-order tensor field Ỹ is prescribed that is

• symmetric in its last two indices (Ỹijk = Ỹikj) and

• whose curl vanishes (Ỹijk,l = Ỹijl,k).
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Figure 4: Non simply-connected and corresponding induced simply-connected bodies. For a,b,c
the bodies are obtained by rotating the planar figures by π about the axes shown; for d,e they are
obtained by extruding the planar figures along the axis perpendicular to the plane of the paper.

Given such a field, we ask the question of whether on the corresponding simply-connected domain
induced by a cut-surface as described in the previous paragraph, a vector field y can be defined
such that

grad grady = Ỹ ; yi,jk = Ỹijk,

and if the difference field of the limiting values of y, as the cut-surface is approached from the two
sides of the body separated by the cut-surface, i.e. the jump JyK of y across the cut, is arbitrary
or yields to any special characterization. Here, we will refer to limits of fields approached from one
(arbitrarily chosen) side of the cut-surface with a superscript ‘+’ and limits from the corresponding
other side of the cut-surface with a superscript ‘−’ so that, for instance, Jy(z)K = y+(z)− y−(z),
for z belonging to the cut-surface.

For the question of existence of y on the simply-connected domain, one first looks for a field
W̃ such that

grad W̃ = Ỹ ; W̃ij,k = Ỹijk

and since Ỹ is curl-free and continuously differentiable on the multiply-connected domain with the
hole, on the corresponding simply-connected domain induced by a cut, the field W̃ can certainly
be defined [Tho34]. The jump JW̃ K is not to be expected to vanish on the cut surface, in general.

However, by integrating
(
grad W̃

)+
and

(
grad W̃

)−
along a curve on the cut-surface joining any

two arbitrarily chosen points on it, it is easy to deduce that JW̃ K is constant on the surface because
of the continuity of Ỹ on the original multiply-connected domain.

With reference to (Figure 5), consider the line integral of Ỹ on the closed contour shown in
the original multiply-connected domain without any cuts (the two oppositely-oriented adjoining
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Figure 5: Contour for proving independence of ∆ on cut-surface. The contour need not be planar
and the points A and B need not be on the same cross-sectional plane of the body.

parts of the contour between points A and B are intended to be overlapping). In conjunction, also
consider as the ‘inner’ and ‘outer’ closed contours the closed curves that remain by ignoring the
overlapping segments, the inner closed contour passing through A and the outer through B. Then,
because of the continuity of Ỹ and its vanishing curl, the line integral of Ỹ on the inner and outer
closed contours must be equal and this must be true for any closed circuit that cannot be shrunk
to a point while staying within the domain. Let us denote this invariant over any such closed curve
C as ∫

C
Ỹ dx = ∆.

If we now introduce a cut-surface passing through A and construct the corresponding W̃ , say W̃1,
then the jump of W̃1 at A is given by

JW̃1K(A) =

∫
C(A−,A+)

grad W̃1 dx =

∫
C(A−,A+)

Ỹ dx = ∆,

where C(A−,A+) is the curve formed from the inner closed contour defined previously with the
point A taken out and with start-point A− and end-point A+. The last equality above is due to
the continuity of Ỹ on the original multiply-connected domain. Similarly, a different cut-surface
passing through B can be introduced and an associated W̃2 constructed with JW̃2K(B) = ∆. Since
A, B and the cut surfaces through them were chosen arbitrarily, it follows that the jump of any
of the functions JW̃ K across their corresponding cut-surface takes on the same value regardless of
the cut-surface invoked to render simply-connected the multiply-connected body.

On a cut-induced simply-connected domain, since W̃ exists and its curl vanishes (due to the
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symmetry of Ỹ in its last two indices), clearly a vector field y can be defined such that

grady = W̃ .

Suppose we now fix a cut-surface. Let x0 be an arbitrarily chosen base point on it. Let x be any
other point on the cut-surface. Then, by integrating (grady)+ and (grady)− along any curve lying
on the cut-surface joining x0 and x, it can be observed that

Jy(x)K = Jy(x0)K +∆ (x− x0) . (18)

The ‘constant vector of translation’, Jy(x0)K, may be evaluated by integrating W̃ on a closed
contour that intersects the cut-surface only once, the point of intersection being the base point x0

(W̃ is, in general, discontinuous at the base point). It can be verified that for a fixed cut-surface,
Jy(x)K is independent of the choice of the base point used to define it.

The physical result implied by this characterization is as follows: suppose we think of the vector
field y as a generally discontinuous deformation of the multiply-connected body, with discontinuity
supported on the cut-surface. Then the separation/jump vector y(x) for any point x of the surface
corresponds to a fixed affine deformation of the position vector of x relative to the base point x0

(i.e. ∆ independent of x), followed by a fixed translation.
It is important to note here that, for the given field Ỹ on the multiply-connected domain,

while ∆ = JW̃ K is independent of the particular cut-surface invoked to define it, the translational
part, Jy(x0)K, of the jump JyK on a cut-surface depends on the definition of the cut-surface (both
through the dependence on x0 and the impossibility, in general, of defining a continuous W̃ on
the original multiply-connected domain), unless ∆ = 0. This is the analog of the known result in
classical (disclination-dislocation) defect theory that the Burgers vector of an isolated defect is a
well-defined topological object only in the absence of disclinations. In the same spirit, when the
(non-trivial) constant tensor ∆ is such that it has a 2-dimensional null-space, then for a specific
flat, cut-surface spanning the null-space, it is possible that the jump in JyK vanishes. This gives
rise to a surface in the (non-simply-connected) body on which the deformation map is continuous
but across which the deformation gradient is discontinuous.

Thus, the notion of g.disclinations offers more flexibility in the type of discontinuities that
can be represented within continuum theory, as compared to Volterra distortions defining classical
disclinations (cf. [Cas04, Nab87])9. This is natural since the Volterra distortion question involves
a twice-continuously differentiable Right-Cauchy Green field in its formulation (in the context
of this subsection, this would amount to enforcing a high degree of smoothness, and therefore
continuity, on W̃ TW̃ ) so that only the polar decomposition-related rotation field of W̃ can be

9In the classical disclination-dislocation case, the corresponding question to what we have considered would be
to ask for the existence, on a cut-induced simply-connected domain, of a vector field y and the characterization
of its jump field across the cut-surface, subject to (grady)T grad y = C and the Riemann-Christoffel curvature
tensor field of (twice continuously differentiable) C (see [Shi73] for definition) vanishing on the original multiply-
connected domain. Existence of a global smooth solution can be shown (cf. [Sok51] using the result of [Tho34] and
the property of preservation of inner-product of two vector fields under parallel transport in Riemannian geometry).
The corresponding result is

Jy(x)K = Jy(x0)K + JRKU (x− x0) ,

where grady = RU on the cut-induced simply-connected domain, and R is a proper-orthogonal, and U =
√
C is

a symmetric, positive-definite, 2nd-order tensor field. U cannot have a jump across any cut-surface and the jump
JRK takes the same value regardless of the cut-surface invoked to define it, as can be inferred from the results of
[Shi73]. By rearranging the independent-of-x term in the above expression, the result can be shown to be identical to
that in [Cas04]. Of course, for the purpose of understanding the properties of the Burgers vector of a general defect
curve, it is important to observe the dependence of the ‘constant’ translational term on the cut-surface. An explicit
characterization of the jump in grady in terms of the strength of the disclination is given in [DZ11].
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discontinuous, whereas allowing for an incompatible Ỹ field on a multiply-connected domain, even
though irrotational, implies possible discontinuities in the whole field W̃ .

5 Frame-Indifference and thermodynamic guidance on constitu-
tive structure

As is known to workers in continuum mechanics, the definition of the mechanical dissipation (6)
coupled to the mechanical structure of a theory (Section 4), a commitment to constitutive dependen-
cies of the specific free-energy density, and the consequences of material frame indifference provide
an invaluable tool for discovering the correct form of the reversible response functions and driving
forces for dissipative mechanisms in a nonlinear theory. This exercise is useful in that constitutive
behavior posed in agreement with these restrictions endow the theory with an energy equality that
is essential for further progress in developing analytical results regarding well-posedness as well
as developing numerical approximations. In exploiting this idea for our model, we first deduce a
necessary condition for frame-indifference of the free-energy density function that we refer to as the
‘Ericksen identity’ for our theory; in this, we essentially follow the treatment of [ACF99] adapted
to our context.

5.1 Ericksen identity for g.disclination mechanics

We assume a specific free energy density of the form

ψ = ψ (W ,S,J , ?Π) . (19)

All the dependencies above are two-point tensors between the current configuration and the ‘inter-
mediate configuration,’ i.e. {Dr(x, t) : x ∈ B(t)}, a collection of local configurations with similarly
oriented and unstretched atomic configurations in each of them. On superimposing rigid motions
on a given motion, each element of this intermediate configuration is naturally assumed to remain
invariant. With this understanding, let Q(s) is a proper-orthogonal tensor-valued function of a real
parameter p defined by

dQ

dp
(p) = sQ(p),

where s is an arbitrarily fixed skew-symmetric tensor function, and Q(0) = I. Thus, dQ
T

dp (0) = −s.
Also, define A tB through

{(A tB)jkrl −AjrBkl)} ej ⊗ ek ⊗ er ⊗ el = 0.

Then, frame-indifference of ψ requires that

ψ (W ,S,J , ?Π) = ψ
(
WQT ,S : QT tQT ,J : QT tQT , ?ΠQT

)
(20)

for Q(p) generated from any choice of the skew symmetric tensor s. Differentiating (20) with
respect to p and evaluating at p = 0 implies

0 = − (∂Wψ)ijWirsrj − (∂Sψ)ijk Sirs (srjδsk + δrjssk)

− (∂Jψ)ijk Jirs (srjδsk + δrjssk)− (∂?Πψ)ijk
?Πijrsrk
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where the various partial derivatives of ψ are evaluated at (W ,S,J , ?Π). This can be rewritten as

0 =
[
(∂Wψ)ijWir + (∂Sψ)ijk Sirk + (∂Sψ)ikj Sikr (21)

+ (∂Jψ)ijk Jirk + (∂Jψ)ikj Jikr + (∂?Πψ)ikj
?Πikr

]
srj ,

valid for all skew symmetric s which implies that the term within square brackets has to be a
symmetric second-order tensor. This is a constraint on constitutive structure imposed by Material
Frame Indifference.

5.2 The mechanical dissipation

Assuming a stored energy density function ψ with arguments as in (19), we now re-examine the
mechanical dissipation D in (6). We first compute the material time derivative of ψ to obtain

ψ̇ = (∂Wψ) :Ẇ + (∂Sψ) ·3 Ṡ + (∂Jψ) ·3 J̇ + (∂?Πψ) ·3 ˙?Π

= (∂Wψ) : ( −WL+α× V α )

+ (∂Sψ) ·3 ( W−1 { − ẆS2T −WS2TL−Π × V Π

+ grad ( WS2TV S ) }2T )

+ (∂Jψ) ·3 J̇
+ (∂?Πψ) ·3 [ − (L : I)?Π + ?ΠLT − curl

(
Π × V Π

)
] .

(22)

In the above, ·3 refers to the inner-product of its argument third-order tensors (in indices, a contrac-
tion on all three (rectangular Cartesian) indices of its argument tensors). Recalling the dissipation
(6):

D =

∫
B(t)

(
T : D +Λ : M − ρψ̇

)
dv,

we first collect all terms in (22) multiplying L = D+Ω and gradL, observing that the coefficient
of Ω has to vanish identically for the dissipation to be objective (cf. [AD12]). Noting that

J̇ = grad Ẇ − (gradW )L⇐⇒ ˙Wrw,k =
(

˙Wrw

)
,k
−Wrw,mLmk,

we obtain ∫
B(t)

[ − (∂Wψ)ijWirLrj

+ (∂Sψ)rwkW
−1
wl (WlrLrpSrpk −WlpSrpmLmk)

+ (∂Jψ)rwk (−Wrp,kLpw −Wrw,mLmk)

+ (∂?Πψ)ikj
(
?ΠikrL

T
rj − Lrr?Πikj

)
] dv

+

∫
B(t)

(∂Jψ)rwk (−WrpLpw,k) dv,

Noting the symmetry of Lpwk in the last two indices we define

(
Dsym
J ψ

)
rwk

:=
1

2
[(∂Jψ)rwk + (∂Jψ)rkw] ,
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and substituting the above in the dissipation (6) to collect terms ‘linear’ in D, Ω, and gradΩ, we
obtain

−
∫
B(t)
−ρ [ (∂Wψ)ijWir + (∂Sψ)ijk Sirk + (∂Sψ)ikj Sikr

+ (∂Jψ)ijk Jirk + (∂Jψ)iwj Jiwr

+ (∂?Πψ)ikj
?Πikr ] Ωrj dv

+

∫
B(t)

[ Trj − ρ { − (∂Wψ)ijWir

+ (∂Sψ)mrk Smjk − (∂Sψ)mwj Smwr

− (∂Jψ)pjk Jprk − (∂Jψ)mwj Jmwr

+ (∂?Πψ)ikr
?Πikj − (∂?Πψ)ikm

?Πikmδrj

+
(
Dsym
J ψ

)
pjk,k

Wpr +
(
Dsym
J ψ

)
pjk

Jprk } ] Drj dv

+

∫
∂B(t)

ρ
(
Dsym
J ψ

)
pjk
WprnkDrj da

+

∫
B(t)

[ Λik − eimn ρ (Dsym
J ψ )rnkWrm ]

(
−1

2
eipwΩpw,k

)
dv.

(23)

The remaining terms in the dissipation D are

−
∫
B(t)

[ (∂Wψ)ij ejrsαir + (∂Sψ)rwk
(
−epjsW−1wl αljSrpk

)
− (∂Jψ)rwk,k ewjsαrj ]V α

s dv

−
∫
B(t)

[ (∂Sψ)rwk
(
−ekjsW−1wl Πrlj

)
+ (∂?Πψ)rwk,m (δkpδms − δksδmp)Πrwp ]V Π

s dv

+

∫
B(t)

(∂Sψ)rwk,kWwpSrpjV
S
j dv

−
∫
∂B(t)

(∂Sψ)rwk nkWwpSrpjV
S
j da

−
∫
∂B(t)

(∂Jψ)rwk nkαrjewjsV
α
s da

+

∫
∂B(t)

(∂?Πψ)rwk nm(δkpδms − δksδmp)ΠrwpV
Π
s da.

(24)

5.3 Reversible response and dissipative driving forces

We deduce ingredients of general constitutive response from the characterization of the dissipation
in Section (5.2).

1. It is a physical requirement that the pointwise dissipation density be invariant under super-
posed rigid body motions (SRBM) of the body. The ‘coefficient’ tensor of the spin tensor
Ω in the first integrand of (23) transforms as an objective tensor under superposed rigid
motions (i.e. (·) → Q(·)QT for all proper orthogonal Q), but the spin tensor itself does
not (it transforms as Ω → −ω +QΩQT , where ω(t) = Q̇(t)QT ). Since an elastic response
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(i.e. V α = V S = V Π = 0) has to be a special case of our theory and the 2nd, 3rd, and 4th

integrals of (23) remain invariant under SRBM, the coefficient tensor of Ω must vanish. This
is a stringent requirement validating the nonlinear time-dependent kinematics of the model.
Using the Ericksen identity (21), it is verified that the requirement is indeed satisfied by our
model.

2. We would like to define elastic response as being non-dissipative, i.e. D = 0. Sufficient condi-
tions ensuring this are given by the following constitutive choices for Λdev, the deviatoric part
of the couple stress tensor, the symmetric part of the Cauchy stress tensor, and a boundary
condition:

Λdevjk = ejpw ρW
T
pr

(
Dsym
J ψ

)
rwk

, (25)

Trj + Tjr = Arj +Ajr
Arj :=ρ { − (∂Wψ)ijWir

+ (∂Sψ)mrk Smjk − (∂Sψ)mwj Smwr

− (∂Jψ)pjk Jprk − (∂Jψ)mwj Jmwr

+ (∂?Πψ)ikr
?Πikj − (∂?Πψ)ikm

?Πikmδrj

+
(
Dsym
J ψ

)
pjk,k

Wpr +
(
Dsym
J ψ

)
pjk

Jprk }

(26)

and

[Bpwk + Bwpk]nk = 0 on boundary of body

Bpwk := ρW T
pr

(
Dsym
J ψ

)
rwk

.
(27)

These constitutive choices are meant to be valid for all processes, whether dissipative or not.
The following observations are in order:

• The skew-symmetric part of the Cauchy stress, T skw, is constitutively undetermined
(cf. [MT62]). Similarly, the hydrostatic part of the couple stress tensor is constitutively
undetermined (cf. [UCTF13]), since eipwΩpw,k = − (eiwpvp,w),k in (23) is deviatoric as
the vorticity, being the curl of the velocity field, is necessarily divergence-free. Taking the
curl of the balance of angular momentum (153) and substituting the divergence of T skw

in the balance of the linear momentum (152), one derives a higher order equilibrium
equation between the symmetric part of the Cauchy stress T sym and the deviatoric
couple-stress Λdev:

ρv̇ = divT sym +
1

2
curl(divΛdev) + ρb+

1

2
curlρK (28)

In each specific problem, the fields ρ,x,W ,S are obtained by solving (151,4,5,6) and (28).
This amounts to solving all of (15), where balance of angular momentum is understood
as solved simply by evaluating the skew part of the Cauchy stress from (153).

• The boundary condition (27) does not constrain the specification of couple stress related
boundary conditions in any way.

• Couple-stresses arise only if the push-forward of the tensor Dsym
J ψ to the current config-

uration has a skew-symmetric component. In particular, if
(
Dsym
J

)
rwk

= 0, then there
are no couple-stresses in the model and, in the absence of body-couples, the stress tensor
is symmetric and balance of linear momentum (152), viewed as the basic equation for
solving for the position field x or velocity field v is of lower-order (in the sense of partial
differential equations) compared to the situation when couple-stresses are present.
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• The important physical case of dislocation mechanics is one where
(
Dsym
J ψ

)
rwk

= 0.
Here, the stored-energy function depends upon J = gradW only through α̃ = −J : X
and (∂Sψ) = (∂?Πψ) = 0. The theory, including dissipative effects, then reduces to the
one presented in [Ach04, Ach11].

• In the compatible, elastic case, assuming the existence of a stress-free reference configu-
ration from which the deformation is defined with deformation gradient field F , we have
W = F−1 and the energy function is only a function of gradF−1, and F−1. In this
case, (∂Jψ)pjk =

(
Dsym
J ψ

)
pjk

. Defining

ψ
(
F−1, gradF−1

)
:= ψ̃

(
F
(
F−1

)
, GradF

(
F−1, gradF−1

))
and using the relations

(GradF )sP,K = (gradF )sP,k FkK

(gradF )aB,c = −FaM
(
gradF−1

)
Mn,c

FnB

along with further manipulation, it can be shown that

Λjk = ejwpHwpk

Hwpk = ρFwB
∂ψ̃

∂FpB,K
FkK

(29)

and

Arj
∣∣
compatible

=
∂ψ̃

∂FrA
FjA +

∂ψ̃

∂FrB,C
FjB,C −Hjrk,k. (30)

The couple-stress and symmetric part of Cauchy stress relations that arise from relations
(29 - 30) are precisely the ones derived by Toupin [Tou64]10,[TN04], starting from a
different (static and variational) premise and invoking the notion of an hyperstress tensor,
a construct we choose not to utilize. Admittedly, we then need a slightly restricted
boundary condition (27), but we do not consider this as a major restriction given the
difficulty in physical identification of hyperstresses and hypertractions.

3. We refer to dissipative ‘driving forces’ in this context as the power-conjugate objects to the
fields V Π ,V α, and V S in the dissipation D (24), since in their absence there can be no me-
chanical dissipation in the theory (i.e. all power supplied to the body is converted in entirety
to stored energy), with the reversible response relations (25),(26),(27) in effect. Interestingly,
the theory suggests separate driving forces in the bulk and at external boundaries of the body.

• The bulk driving forces are given by

V α
s  − [ (∂Wψ)ij ejrsαir + (∂Sψ)rwk

(
−epjsW−1wl αljSrpk

)
− (∂Jψ)rwk,k ewjsαrj ]

(31)

V Π
s  − [ (∂Sψ)rwk

(
−ekjsW−1wl Πrlj

)
+ ( (∂?Πψ)rwp,s − (∂?Πψ)rws,p)Πrwp ]

(32)

V S
j  (∂Sψ)rwk,kWwpSrpj (33)

10In the published version of our paper, this reference by Toupin was incorrectly referred to as [Tou62].
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• The boundary driving forces at an external boundary point with outward unit normal n
are given by

V S
j  − (∂Sψ)rwk nkWwpSrpj (34)

V α
s  − (∂Jψ)rwk nkαrjewjs (35)

V Π
s  

(
(∂?Πψ)rwp ns − (∂?Πψ)rws np

)
Πrwp. (36)

When the various defect velocities are chosen to be in the directions of their driving forces, then
the mechanical dissipation in the body is guaranteed to satisfy

D ≥ 0,

i.e. the rate of energy supply in the model is never less than the rate of storage of energy.

5.4 A special constitutive dependence

There are many situations when the atoms of the as-received body relieved of applied loads can
be re-arranged to form a collection that is stress-free. An example is that of the as-received body
consisting of a possibly dislocated perfect single crystal. Let us denote such a stress-free collection of
the entire set of atoms in the body as R. When such an atomic structure is available, it is often true
that, up to boundary-effects, there are non-trivial homogeneous deformations of the structure that
leave it unchanged (modulo rigid body deformations) and this provides an energetic constraint on
possible atomic motions of the body. In our modeling, we would like to encapsulate this structural
symmetry-related fact as a constitutive energetic constraint.

When defects of incompatibility are disallowed (e.g. compatible phase transformations), then
the theory already presented suffices for modeling, employing multiple well-energy functions in the
deformation gradient from the perfect crystal reference with second deformation gradient regular-
ization. In the presence of defects, in particular dislocations, and when the focus is the modeling
of individual dislocations, a constitutive modification may be required. There exists a gradient
flow-based modeling technique for small deformation analysis called the phase-field method for
dislocations [RLBF03, WL10, Den04] that amalgamates the Ginzburg-Landau paradigm with Es-
helby’s [Esh57] eigenstrain representation of a dislocation loop; for an approach to coupled phase-
transformations and dislocations at finite deformations within the same paradigm see [LJ12]. An
adaptation of those ideas within our framework of unrestricted material and geometric nonlinearity
and conservation-law based defect dynamics requires, for the representation of physical concepts
like the unstable stacking fault energy density, a dependence of the stored energy on a measure
that reflects deformation of R to the current atomic configuration. This measure cannot be defined
solely in terms of the i-elastic 1-distortion W . The following considerations of this section provides
some physical justification for the adopted definition (37) of this measure.

Let us approximate the spatial region occupied by R by a fixed connected spatial configuration
R. We consider any atom in R, say at position XR, and consider a neighborhood of atoms of it.
As the deformation of the body progresses, we imagine tracking the positions of the atoms of this
neighborhood around XR. By approximating the initial and the image neighborhoods by connected
domains, one can define a deformation between them. We assume that this deformation is well-
approximated by a homogeneous deformation with gradient F s(XR, t). We assume that by some
well-defined procedure this discrete collection of deformation gradients at each time (one for each
atomic position) can be extended to a field on the configuration R11, with generic point referred to

11Note that such a tensor field is not F p of classical elastoplasticity theory; for instance, its invariance under
superposed rigid body motions of the current configuration is entirely different from that of F p.
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as XR. Since R and B(t) are both configurations of the body, we can as well view the motion of
the body, say xR, with R as a reference configuration and with deformation gradient field

FR = GradXR
x,

where the expression on the right hand side refers to the gradient of the position field x on the
configuration R.

Through this one-to-one motion referred to R we associate the field

W s(x, t) := F s−1(x, t)

with the current configuration B(t) in the natural way and constrain the possible local deformations
F s12by requiring

curlW s = α̃ =⇒ curl (W −W s) = 0

and choosing the ‘free’ gradient of a vector field through

W = W s + gradx−1R =⇒ W s := W − F−1R . (37)

We note that the knowledge of the motion of the body and the evolution of the W field completely
determine the evolution of the fieldW s. In the manner defined, in principleW s is an unambiguously
initializable field whenever the atomic configuration in the as-received body is known and a ‘perfect’
atomic structure R for the body exists.

When a dependence of the energy function on the structural distortion is envisaged, this implies
an additional dependence of the stored energy function (19) on FR (and a dependence on the
configuration R). This implies corresponding changes in the Ericksen identity, reversible response
functions, and the driving forces that may be deduced without difficulty.

We emphasize, however, that it is not clear to us at this point that the constitutive modeling
necessarily requires accounting for the structural variable W s (or equivalently the pair W and FR),
despite the viewpoint of the phase-field methodology. In particular, whether a suitable dependence
of the stored energy function solely on the element W of the pair suffices for the prediction of
observed behavior related to motion of individual dislocations needs to be explored in detail.

6 ‘Small deformation’ model

In this section we present a model where many of the geometric nonlinearities that appear in the
theory presented in Section 5 are ignored. This may be considered as an extension of the theory of
linear elasticity to account for the dynamics of phase boundaries, g.disclinations, and dislocations.
A main assumption is that the all equations are posed on a fixed, known, configuration that enters
‘parametrically’ in the solution to the equations. Such a model has been described in [AF12]. In
what we present here, there is a difference in the reversible responses from those proposed in [AF12],
even though the latter also ensure that the dissipation vanishes in the model for elastic processes.
The choices made here render our model consistent with Toupin’s [Tou62] model of higher-order
elasticity in the completely compatible case.

The eigenwall field in the small deformation case is denoted by Ŝ. All g.disclination density
measures are denoted by Π̂. The elastic 1-distortion is approximated by I − U e where U e is a
‘small’ elastic distortion measure and we further introduce a plastic distortion field by the definition

U e := gradu−Up,

12This may also be viewed as a constraint on the atomic re-arrangement leading to the choice of the particular R.
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where u is the displacement field of the body from the given distinguished reference configuration.
The strain tensor is defined as ε := (gradu)sym. The elastic 2-distortion is defined as Ge :=

gradU e + Ŝ, with the g.disclination density as curl Ge = curl Ŝ = Π̂. The dislocation density is
defined as α̂ := −Ge : X = curlU e − Ŝ : X.

The governing equations are

ρü = div T + b̂

0 = divΛ−X : T + K̂

U̇p = α̂× V̂ α

˙̂
S = −Π × V̂ Π + grad

(
ŜV̂ S

)
˙̂
Π = −curl

(
Π̂ × V̂ Π

)
.

(38)

Here V̂ S is the eigenwall velocity, V̂ α the dislocation velocity, V̂ Π the disclination velocity, and b̂
and K̂ are body force and couple densities per unit volume. We also define Ĵ := gradU e.

The stored energy density response (per unit volume of the reference) is assumed to have the
following dependencies:

ψ = ψ
(
U e, Ŝ, Π̂, Ĵ

)
,

and a necessary condition for the invariance of the energy under superposed infinitesimal rigid
deformations is

(∂Ueψ) : s = 0 for all skew tensors s,

which implies that (∂Ueψ) has to be a symmetric tensor, thus constraining the functional form of
ψ.

On defining
(
Dsym

Ĵ
ψ
)
ijk

:= 1
2

[(
∂Ĵψ

)
ijk

+
(
∂Ĵψ

)
ikj

]
, the dissipation can be characterized as:

D =

∫
B
Tij ε̇ij dv −

1

2

∫
B
ΛijeirsΩrs,j dv −

∫
B
ψ̇ dv

=

∫
B

[
Tij − (∂Ueψ)ij +

(
Dsym

Ĵ
ψ
)
ijk,k

]
Dij dv

+

∫
B

[
−1

2
eirsΛij −

(
Dsym

Ĵ
ψ
)
rsj

]
Ωrs,j dv

+

∫
B

[
esjr

{
(∂Ueψ)ij −

(
∂Ĵψ

)
ijk,k

}]
α̂irV̂

α
s dv

+

∫
B

(
∂Ŝψ

)
ijk,k

ŜijrV̂
S
r dv

+

∫
B

[
esnr

{(
∂Ŝψ

)
ijn

+ enmk
(
∂Π̂ψ

)
ijk,m

}]
Π̂ijr V̂

Π
s dv

−
∫
∂B

(
Dsym

Ĵ
ψ
)
ijk
nkε̇ij da

+

∫
∂B
esjr

(
∂Ĵψ

)
ijk
nkα̂irV̂

α
s da

−
∫
∂B

(
∂Ŝψ

)
ijk
nkŜijrV̂

S
r da

+

∫
∂B

(
∂Π̂ψ

)
ijk

[δkrδms − δksδmr]nmΠ̂ijrV̂
Π
s da.

(39)
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6.1 Reversible response and driving forces in the small deformation model

Motivated by the characterization (39), we propose the following constitutive guidelines that ensure
non-negative dissipation in general and vanishing dissipation in the elastic case:

Tij + Tji = Âij + Âji

Âij := (∂Ueψ)ij −
(
Dsym

Ĵ
ψ
)
ijk,k

Λdevij = −eirs
(
Dsym

Ĵ
ψ
)
rsj[(

Dsym

Ĵ
ψ
)
ijk

+
(
Dsym

Ĵ
ψ
)
jik

]
nk

∣∣∣
boundary

= 0

V̂ α
s

∣∣
bulk
 esjr

{
(∂Ueψ)ij −

(
∂Ĵψ

)
ijk,k

}
α̂ir

V̂ S
r

∣∣
bulk
 
(
∂Ŝψ

)
ijk,k

Ŝijr

V̂ Π
s

∣∣
bulk
 esnr

{(
∂Ŝψ

)
ijn

+ enmk
(
∂Π̂ψ

)
ijk,m

}
Π̂ijr

V̂ α
s

∣∣
boundary

 esjr
(
∂Ĵψ

)
ijk
nk α̂ir

V̂ S
r

∣∣
boundary

 −
(
∂Ŝψ

)
ijk
nk Ŝijr

V̂ Π
s

∣∣
boundary

 
[(
∂Π̂ψ

)
ijr
ns −

(
∂Π̂ψ

)
ijs
nr

]
Π̂ijr.

(40)

As before, a dependence of the energy on F s in the nonlinear case translates to an extra
dependence of the stored energy on

Up = gradu−U e = I −U e − (I − gradu) ≈W − F−1R = W s

in the small deformation case, with corresponding changes in the reversible response and driving
forces.

7 Contact with the differential geometric point of view

For the purpose of this section it is assumed that we operate on a simply-connected subset of the
current configuration B. Arbitrary (3-d) curvilinear coordinate systems for the set will be invoked
as needed, with the generic point denoted as

(
ξ1, ξ2, ξ3

)
. Lower-case Greek letters will be used to

denote indices for such coordinates. The natural basis of the coordinate system on the configuration
B will be denoted as the list of vectors

eα =
∂x

∂ξα
α = 1, 2, 3,

with dual basis
(
eβ = grad ξβ, β = 1, 2, 3

)
. We will assume all fields to be as smooth as required;

in particular, equality of second partial derivatives will be assumed throughout.
Beyond the physical motivation provided for it in Section 4.3 as a line density carrying a tensorial

attribute, the disclination density field Π = curlY alternatively characterizes whether a solution
W̃ (2nd-order tensor field) exists to the equation

grad W̃ = Y , (41)
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with existence guaranteed when Π = curlY = curlS = 0 which, in a rectangular Cartesian
coordinate system, amounts to

Sijk,l − Sijl,k = erlkerqpSijp,q = erlk (curlS)ijr = 0. (42)

This is a physically meaningful question in continuum mechanics with a simple answer. More-
over, when such a solution exists, the existence of a triad d̃α, α = 1, 2, 3 of vectors corresponding
to each choice of a coordinate system for B is also guaranteed by the definition

d̃α := W̃eα.

This question of the existence of a triad of vectors related to arbitrary coordinate systems for B
and the integrability of Y can also be posed in a differential geometric context, albeit far more
complicated.

We first consider the i-elastic 1-distortion W that is assumed to be an invertible 2nd-order
tensor field by definition. Defining

d̄α = Weα

and noting that d̄α, α = 1, 2, 3 is necessarily a basis field, there exists an array Γ̄µαβ satisfying

d̄α,β = Γ̄µαβd̄µ. (43)

Let the dual basis of
(
d̄α, α = 1, 2, 3

)
be
(
d̄α = W−Teα, α = 1, 2, 3

)
. Then

Γ̄ ραβ = eρ ·W−1 ([{gradW } eβ] eα +Weα,β) .

We observe that even though (43) is an overconstrained system of 9 vector equations for 3 vector
fields, solutions exist due to the invertibility ofW , and the following ‘integrability’ condition arising
from d̄α,βγ = d̄α,γβ, holds:

Γ̄µαβ,γ − Γ̄
µ
αγ,β + Γ̄ ραβΓ̄

µ
ργ − Γ̄

ρ
αβΓ̄

µ
ργ = 0. (44)

Guided by the integrability/existence question suggested by (43) we now turn the argument
around and ask for conditions of existence of a vector field triad (dα) given the connection symbols
Γ defined by

Γ ραβ := Γ̄ ραβ + Sρ.αβ

Sρ.αβ := eρ ·W−1 ({Seβ} eα) .

Thus, we ask the question of existence of smooth solutions to

dα,β = Γµαβdµ. (45)

Based on a theorem of Thomas [Tho34], it can be shown that a 9-parameter family of (global)
solutions on simply-connected domains may be constructed when the following condition on the
array Γ holds:

Rµ.αβγ(Γ ) := Γµαβ,γ − Γ
µ
αγ,β + Γ ραβΓ

µ
ργ − Γ

ρ
αβΓ

µ
ργ = 0. (46)

The condition corresponds to the mixed components of the curvature tensor of the connection Γ
vanishing and results in dα,βγ = dα,γβ for the (dα) triad that can be constructed. We note that

Rα.µβγ(Γ ) = Rα.µβγ(Γ̄ ) +Rα.µβγ(S) + Γ̄ανγS
ν
.µβ + Γ̄ νµβS

α
.νγ − Γ̄ανβSν.µγ − Γ̄ νµγSα.νβ
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with Rα.µβγ(Γ̄ ) = 0 from (44). Furthermore, the typical differential geometric treatment [Kon55,
Bil60, KL92, CMB06] imposes the condition of a metric differential geometry, i.e. the covariant
derivative of the metric tensor (here W TW ) with respect to the connection Γ is required to vanish.
There is no need in our development to impose any such requirement.

The difference in complexity of the continuum mechanical and differential geometric integrability
conditions (42) and (46), even when both are expressed in rectangular Cartesian coordinates, is
striking. It arises because of the nature of the existence questions asked in the two cases. The
differential geometric question (45) involves the unknown vector field on the right hand side while
the continuum mechanical question (41), physically self-contained and sufficiently general for the
purpose at hand, is essentially the question from elementary vector analysis of when a potential
exists for a completely prescribed vector field.

Finally, we note that both in the traditional metric differential geometric treatment of defects
[Kon55, Bil60, KL92, CMB06] and our continuum mechanical treatment at finite strains, it is
not straightforward, if possible at all, to separate out the effects of strictly rotation-gradient and
strain-gradient related incompatibilities/non-integrabilities. Fortunately from our point of view,
this is not physically required either (for specifying, e.g., the defect content of a terminating elastic
distortion discontinuity from observations).

8 Concluding remarks

A new theoretical approach for studying the coupled dynamics of phase transformations and plas-
ticity in solids has been presented. It extends nonlinear elasticity by considering new continuum
fields arising from defects in compatibility of deformation. The generalized eigendeformation based
kinematics allows a natural framework for posing kinetic balance/conservation laws for defect den-
sities and consequent dissipation, an avenue not available through simply higher-gradient, ‘cap-
illary’/surface energy regularizations of compatible theory. Such a feature is in the direction of
theoretical requirements suggested by results of sharp-interface models from nonlinear elasticity in
the case of phase transformations [AK06]. In addition, finite-total-energy, non-singular, defect-like
fields can be described (that may also be expected to be possible with higher-gradient regular-
izations), and their evolution can be followed without the cumbersome tracking of complicated,
evolving, multiply-connected geometries. This feature has obvious beneficial implications for prac-
tical numerical implementations where the developed model introduces interesting combinations
of elliptic and hyperbolic (when material inertia is included) systems with degenerate parabolic
equations for numerical discretization. The elliptic component includes div − curl systems, novel
in the context of their use in solid mechanics. Significant components of such problems have been
dealt with computationally in our prior work e.g. [RA05, VBAF06, FTC11, TCF13a], and detailed
considerations for the present model will be the subject of future work.

The generalized eigendeformation fields have striking similarities with gauge fields of high-
energy particle physics, but do not arise from considerations of gauge invariance of an underlying
Hamiltonian. Instead, they arise from the physical requirement of modeling finite total energies in
bodies that contain commonly observed 1 and 2-dimensional defects, and from a desire to be able
to model their observed motion and interactions.

In formulating a continuum mechanical model of solid-solid phase transformation behavior
based squarely on the kinematics of deformation incompatibility, our work differs from that of
[FG94] and those of [Kha83, Roi78]. In the context of dislocation plasticity alone, for the same
reason it differs from the strain-gradient plasticity work of [Aif84, FH01, GHNH99]. There is an
extended body of work in strain-gradient plasticity that accounts for the dislocation density in
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some form [Ste96, Gur02, FS03, EBG04, LS06, KT08, Gud04, FW09] but none have been shown
to build up from a treatment of the statics and dynamics of individual dislocations as in our case
[Ach01, Ach03, VBAF06, DAZM, ZCA13, TCF13a].

Finally, we mention a widely used, and quite successful, framework for grain-boundary network
evolution [Mul56, KLT06, EES09]. This involves postulating a grain boundary energy density
based on misorientation and the normal vector to the boundary and evolving the network based on
a gradient flow of this energy (taking account of the natural boundary condition that arises at triple
lines). Given that a grain boundary is after all a sharp transition layer in lattice orientation and
the latter is a part of the elastic distortion of a lattice that stretches and bends to transmit stresses
and moments, it is reasonable to ask why such modeling succeeds with the complete neglect of any
notions of stress or elastic deformation and what the model’s relation might be to a theory where
stresses and elastic strains are not constrained to vanish. The Mullins model does not allow asking
such questions. With localized concentrations of the eigenwall field representing the geometry
of grain boundaries (including their normals), g.disclinations representing triple (or higher) lines,
dependence of the energy on the eigenwall field and the i-elastic 1-distortion representing effects
of misorientation, and the eigenwall velocity representing the grain boundary velocity, our model
provides a natural framework, accounting for compatibility conditions akin to Herring’s relation at
triple lines, for the response of grain boundaries to applied stress [TCF13a, FTUC12]. Moreover,
it allows asking the question of whether stress-free initializations can remain (almost) stress-free
on evolution. Interestingly, it appears that it may be possible to even have an exact analog of
the stress-free/negligible stress model by allowing for general evolution of the eigenwall field S,
and constraining the dislocation density field α to ensure that α̃ = −curlW always belongs to
the space of curls of (proper-orthogonal tensor) rotation fields. We leave such interesting physical
questions for further study along with the analysis of ‘simple’ ansatz-based, exact reduced models
of phase boundary evolution coupled to dislocation plasticity within our setting that have been
formulated.

Ericksen [Eri98, Eri08] raises interesting and important questions about the (in)adequacy of
modeling crystal defects with nonlinear elasticity, the interrelationships between the mechanics of
twinning and dislocations, and the conceptual (un)importance of involving a reference configuration
in the mechanics of crystalline solids, among others. It is our hope that we have made a first step
in answering such questions with the theory presented in this paper.
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