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Exact relations for composites: towards a complete solution

Yury Grabovsky and Graeme W. Milton1Abstract. Typically, the electrical and elastic properties of compositematerials are strongly microstructure dependent. So it comes as a nicesurprise to come across exact formulae for ( or linking) e�ective tensorelements that are universally valid no matter what the microstructure.Here we present a systematic theory of exact relations embracing theknown exact relations and establishing new ones. The search for exactrelations is reduced to a search for tensor subspaces satisfying certainalgebraic conditions. One new exact relation is for the e�ective shearmodulus of a class of three-dimensional polycrystalline materials.1991 Mathematics Subject Classi�cation: Primary 35B27, 73B27, 73S10;Secondary 73B40, 49J45Keywords and Phrases: Composites, homogenization, polycrystals, exactrelationsIntroductionTake a metal rod. We can bend it, twist it, stretch it, vibrate it or use it as aconduit for the ow of electrons or heat. It looks just like a homogeneous materialwith behavior governed by bulk and shear elastic moduli and electrical and thermalconductivities. However if we break the metal rod there is a surprise! One can seethat the surface of the break is rough, comprised of individual crystalline grainssparkling in the light. Similarly foam rubber behaves like a highly compressiblehomogeneous elastic material, even though its pore structure is quite complicated.Homogenization theory provides a rigorous mathematical basis for the observationthat materials with microstructure can e�ectively behave like homogeneous mate-rials on a macroscopic scale. A typical result is the following. To ensure ellipticityof the equations let us suppose we are given positive constants � and � > � anda periodic conductivity tensor �eld �(x) taking values in the set Mc comprisingof all d� d symmetric matrices � satisfying�v � v � v � �v � �v � v; (1)1Both authors are supported by the National Science Foundation through grantsDMS9402763, DMS9629692, DMS9704813 and DMS-9803748.Documenta Mathematica � Extra Volume ICM 1998 � 1{4



2 Grabovsky and Miltonfor all vectors v. Then with ��(x) = �(x=�) the electrical potential ��(x) whichsolves the Dirichlet problemr � ��(x)r��(x) = f(x) within 
; ��(x) =  (x) on @
; (2)converges as � ! 0 (i.e. as the length scale of the periodicity of ��(x) shrinks tozero) to the potential �0 which solvesr � ��r�0(x) = f(x) within 
; �0(x) =  (x) on @
; (3)where the e�ective conductivity tensor �� is in Mc and only depends on �(x)and not upon the choice of 
, the source term f(x), nor upon the potential  (x)prescribed at the boundary. The e�ective conductivity tensor �� is obtained bysolving the following cell-problem. One looks for periodic vector �elds j(x) ande(x), representing the current and electric �elds, which satisfyj(x) = �(x)e(x); r � j = 0; r� e = 0: (4)The relation hji = ��hei between the average current and electric �elds serves tode�ne ��. Here, as elsewhere, the angular brackets will be used to denote volumeaverages over the unit cell of periodicity. Homogenization results extend to �elds��(x) taking values in Mc which are locally periodic, or random and stationary,or simply arbitrary: see Bensoussan, et. al. (1978), Zhikov, et. al. (1994), andMurat and Tartar (1997) and references therein.Similar results hold for elasticity. Given positive constants � and � > � anda periodic elasticity tensor �eld C(x) taking values in the set Me comprised of allelasticity tensors C satisfying�A �A � A � CA � �A �A; (5)for all symmetric d�d matrices A, there is an associated e�ective elasticity tensorC� in Me. It is obtained by looking for periodic symmetric matrix valued �elds� (x) and �(x), representing the stress and strain �elds, which satisfy� (x) = C(x)�(x); r � � = 0; � = [ru+ (ru)T ]=2; (6)in which u(x) represents the displacement �eld. The relation h� i = C�h�i betweenthe average stress and strain �elds serves to de�ne C�.A key problem, of considerable technological importance, is to determine thee�ective tensors �� and C� governing the behaviour on the macroscopic scale.For a long while it was the dream of many experimentalists and theorists alikethat there should be some universally applicable \mixing formula" giving the ef-fective tensors as some sort of average of the tensors of the crystalline grains orconstituent materials. However the reality is that the details of the microgeom-etry can sometimes play an inuential role in determining the overall properties,particularly when the crystalline grains have highly anisotropic behavior or whenthere is a large contrast in the properties of the constituent materials. Consider,for example, a two-phase composite where one phase is rigid and the second phaseDocumenta Mathematica � Extra Volume ICM 1998 � 1{4



Exact relations for composites 3is compressible. The question of whether the composite as a whole is rigid or com-pressible is not solely determined by the volume fractions occupied by the phases,but depends on whether the rigid phase has a connected component spanning thematerial or consists of isolated inclusions embedded in the compressible phase.So we have to temper the dream. Instead of seeking a universally applicable\mixing formula" one can ask whether certain combinations of e�ective tensorelements can be microstructure independent. Indeed they can. Sometimes theseexact relations are easy to deduce and sometimes they are not at all obvious.Such exact relations provide useful benchmarks for testing approximation schemesand numerical calculations of e�ective tensors. Grabovsky (1998) recognized thatthere should be some general theory of exact relations. Utilizing the fact that anexact relation must hold for laminate materials he derived restrictive constraintson the form that an exact relation can take. This reduced the search for candidateexact relation to an algebraic question that was analysed by Grabovsky and Sage(1998). Here we give su�cient conditions for an exact relation to hold for allcomposite microgeometries, and not just laminates. At present the general theoryof exact relations is still not complete. There is a gap between the known necessaryconditions and the known su�cient conditions for an exact relation to hold. Inaddition the associated algebraic questions have only begun to be investigated.Before proceeding to the general theory let us �rst look at some examples: seealso the recent review of Milton (1997).Examples of some elementary exact relationsAn example of a relation which is easy to deduce is the following. Lurie, Cherkaevand Fedorov (1984) noticed that if the elasticity tensor �eld C(x) is such thatthere exist non-zero symmetric tensors V and W with C(x)V = W for all xthen the e�ective tensor C� must satisfy C�V = W . The reason is simply thatthe elastic equations are solved with a constant strain �(x) = V and a constantstress � (x) = W and the e�ective tensor, by de�nition, relates the averages ofthese two �elds. In particular, consider a single phase polycrystalline material,where the crystalline phase has cubic symmetry. Each individual crystal respondsisotropically to hydrostatic compression, and we can take V = I and W = d�0Iwhere d is the spatial dimension (2 or 3) and �0 is the bulk modulus of the purecrystal. The result implies that the e�ective bulk modulus �� of the polycrstal is�0 (Hill, 1952). Another way of expressing this exact relation is to introduce themanifold M =M(V ;W ) = fC 2 Me j CV =W g; (7)of elasticity tensors. The exact relation says that if C(x) 2 M for all x thenC� 2 M. In other words the manifold M is stable under homogenization. Itde�nes an exact relation because it has no interior. Many other important exactrelations derive from uniform �eld arguments: see Dvorak and Benveniste (1997)and references therein.The classic example of a non-trivial exact relation is for two-dimensional con-ductivity (or equivalently for three-dimensional conductivity with microstructureindependent of one coordinate). When d = 2 the equations (4) can be written inDocumenta Mathematica � Extra Volume ICM 1998 � 1{4



4 Grabovsky and Miltonthe equivalent formj 0(x) = �0(x)e0(x); r � j0(x) = 0; r� e0(x) = 0; (8)wherej0(x) � cR?e(x); e0(x) � R?j(x); �0(x) � cR?[�(x)]�1RT?: (9)in which c is a constant and R? is the matrix for a 90� rotation. In other wordsthe �elds j0(x) and e0(x) solve the conductivity equations in a medium withconductivity �0(x). Moreover by looking at the relations satis�ed by the average�elds one sees that the e�ective conductivity tensor �0� associated with �0(x) andthe e�ective conductivity tensor �0� associated with �(x) are linked by the relation�0� = cR?(��)�1RT?; (10)[see Keller (1964), Dykhne (1970) and Mendelson (1975)]. Now suppose theconductivity tensor �eld is such that its determinant is independent of x, i.e.det�(x) = �. With c = � we have �0(x) = �(x) implying �0� = ��. From (10)one concludes that det�� = �. In other words the manifoldM =M(�) = f� 2Mc j det� = �g (11)is stable under homogenization (Lurie and Cherkaev, 1981). Again it de�nes anexact relation because it has no interior. An important application of this result isto a single phase polycrystalline material where the crystalline phase has a conduc-tivity tensor with determinant �. If the polycrystal has an isotropic conductivitytensor the exact relation implies the result of Dykhne (1970) that �� = p�I.An equation satisfied by the polarization fieldFor simplicity, let us consider the conductivity problem and take as our referenceconductivity tensor a matrix �0 inMc. A�liated with �0 is a non-local operator�de�ned as follows. Given any periodic vector-valued �eld p(x) we say that e0 = �pif e0 is curl-free with he0i = 0 and p � �0e0 is divergence-free. Equivalently, wehave be0(k) = �(k)bp(k) for k 6= 0;= 0 when k = 0; (12)where be0(k) and bp(k) are the Fourier coe�cients of e0(x) and p(x) and�(k) = k 
 kk � �0k : (13)Now suppose we take a polarization �eld p(x) = (�(x) � �0)e(x) wheree(x) solves the conductivity equations. It is analogous to the polarization �eldintroduced in dielectric problems. From the de�nition (13) of the operator � wesee immediately that it solves the equation[I + (� � �0)�]p = (� � �0)hei and hpi = (�� � �0)hei: (14)Documenta Mathematica � Extra Volume ICM 1998 � 1{4



Exact relations for composites 5For investigating exact relations it proves convenient to use another form of theseequations. We choose a �xed matrixM , de�ne the fractional linear transformationWM (�) = [I + (� � �0)M ]�1(� � �0); (15)(in which we allow for � � �0 to be singular) and rewrite (14) as[I �KA]p =Kv; hpi =K�v; (16)where K(x) =WM (�(x)); K� =WM (��); v = hei+M hpi; (17)and A is the non-local operator de�ned by its action, Ap = M(p � hpi) � �p:The formula (16) involves the operator KA. If q =KAp we haveq(x) = Xk 6=0 eik�xK(x)A(k)bp(k); where A(k) =M � �(k); (18)and bp(k) is the Fourier component of p(x).Necessary conditions for an exact relationSince exact relations hold for all microstructures they must in particular holdfor laminate microstructures for which the tensors and hence the �elds only havevariations in one direction, n. This simple consideration turns out to impose verystringent constraints. Consider the conductivity problem. Let us takeM = �(n)and let Wn(�) denote the transformation WM (�). When K(x) = K(n � x)(16) is easily seen to have the solution p(x) = K(x)v and K� = hKi becauseA annihilates any �eld which only has oscillations in the direction n. [Milton(1990) and Zhikov (1991) give related derivations of the formula K� = hKi:see also Backus (1962) and Tartar (1976) for other linear lamination formulae.]Since K� is just a linear average of K(x) any set of conductivity tensors whichis stable under homogenization, and hence lamination, must have a convex imageunder the transformation Wn. In particular if a manifold M de�nes an exactrelation, and �0 2 M then Wn(M) must be convex and contain the origin. ButM and hence Wn(M) have no interior, and a convex set with no interior mustlie in a hyperplane. It follows that Wn(M) must lie in a hyperplane passingthrough the origin, i.e. in a subspace K = Kn. Moreover, sinceM must be stableunder lamination in all directions the set Wm(W�1n (K)) must be a subspace foreach choice of unit vector m. Now given some tensor K 2 K and expandingWm(W�1n (�K)) in powers of � givesWm(W�1n (�K)) = �KfI � [�(n)� �(m)]�Kg�1= �K + �2KA(m)K + �3KA(m)KA(m)K + : : : ; (19)where A(m) is given by (18) with M = �(n). Since the linear term is �K thehyperplane Wm(W�1n (K)) must in fact be K itself, i.e. K does not depend on n.From an examination of the quadratic term we then see thatKA(m)K 2 K for all m and for all K 2 K: (20)Documenta Mathematica � Extra Volume ICM 1998 � 1{4



6Higher order terms in the expansion do not yield any additional constraints. Indeedsubstitution of K =K1+K2 in (20), where K1 and K2 both lie in K, yields thecorollary, K1A(m)K2 +K2A(m)K1 2 K for all K1;K2 2 K: (21)Applying this with K1 =K and K2 =KA(m)K shows that the cubic term liesin the space K. Similarly all the remaining higher order terms must also lie in Konce (20) is satis�ed. Therefore the condition (20) is both necessary and su�cientto ensure the stability under lamination of the set of all conductivity tensors inMc \W�1n (K).For example, consider two-dimensional conductivity and take �0 = �0I. ThenA(m) = (n
 n�m
m)=�0 is a trace-free 2� 2 symmetric matrix. Now tracefree 2 � 2 symmetric matrices have the property that the product of any threesuch matrices is also trace free and symmetric. So (20) will be satis�ed when Kis the space of trace free 2 � 2 symmetric matrices. Then W�1n (K) consists of2� 2 symmetric matrices �� such that Tr[(�0I � ��)�1] = 1=�0. Equivalently, itconsists of matrices �� such that det�� = �20 . This con�rms that the manifold(11) is stable under lamination.The preceeding analysis extends easily to the elasticity problem (and alsoto piezoelectric, thermoelectric, thermoelastic, pyroelectric and related coupledproblems). Candidate exact relations are found by searching for subspaces K offourth-order tensors K satisfying (20) where A(m) = �(n)��(m) and �(k) is afourth-order tensor dependent upon the choice of a reference elasticity tensor C0 2Me. In particular, for three-dimensional elasticity, if C0 is elastically isotropicwith bulk modulus �0 and shear modulus �0, �(k) has cartesian elementsf�(k)gij`m = 14�0�ki�j`km + ki�jmk` + kj�i`km + kj�imk` � 4kikjk`km�+3kikjk`km3�0 + 4�0 : (22)Once such a subspace K is found the canditate exact relation is the setM =Me \W�1n (K); (23)where W�1n is the inverse of the transformationWn(C) = [I + (C � C0)�(n)]�1(C � C0): (24)Using a related procedure Grabovsky and Sage (1998) found as a canditate exactrelation, stable under lamination, the manifold M = M(�0) consisting of allelasticity tensors in Me expressible in the formC = 2�0(I � I 
 I) +D 
D; (25)for some choice of symmetric second-order tensorD, in which I is the fourth-orderidentity tensor. We will establish that this manifoldM does in fact de�ne an exactrelation valid for all composites and not just laminates. For planar elasticity theanalogous exact relation was proved by Grabovsky and Milton (1998).Documenta Mathematica � Extra Volume ICM 1998 �



Exact relations for composites 7Sufficient conditions for an exact relationWe would like to show that the manifold M of elasticity tensors de�ned by (23)is stable under homogenization and not just lamination, i.e. to ensure that anycomposite with elasticity tensor C(x) 2 M always has an e�ective elasticity tensorC� 2 M. Here we will prove it is su�cient that there exist a larger space of fourth-order tensors K (not necessarily self-adjoint) such thatK1A(m)K2 2 K for all m and for all K1;K2 2 K; (26)and such that K equals the subspace of all self-adjoint tensors in K.To avoid confusion let us �rst return to the setting of the conductivity prob-lem. To �nd K� and hence �� we need to solve (16) for a set of d di�erent valuesv1, v2; : : :vd of v. Associated with each value vi of v is a corresponding polariza-tion �eld pi(x). Let V and P (x) be the d � d matrices with the vectors vi andpi(x), i = 1; 2; : : : ; d, as columns. [Similar matrix valued �elds were introducedby Murat and Tartar (1985).] Taking V = I the set of equations (16) for K� andthe d polarization �elds can be rewritten as[I �KA]P =K; hP i =K�; (27)where now the �eld Q =KAP is given byQ(x) =Xk 6=0 eik�xK(x)A(k) bP (k); (28)in which bP (k) is the Fourier component of P (x), andK(x)A(k) acts on bP (k) bymatrix multiplication. The extension of this analysis to elasticity is mathematicallystraight-forward, but physically intriguing since in the elasticity setting P (x) istaken as a fourth-order tensor �eld.Provided K(x) is su�ciently small for all x, i.e. �(x) is close to �0, thesolution to (27) is given by the perturbation expansionP (x) = 1Xj=0P j(x) where P j = (KA)jK: (29)Now let us suppose K(x) takes values in a tensor subspace K satisfying (26).Our objective is to prove that each �eld P j(x) in the perturbation expansion alsotakes values in K. Certainly the �rst term P 0(x) = K(x) does. Also if for somej � 0 the �eld P j takes values in K then its Fourier coe�cients also take valuesin K and (28) together with (26) implies that P j+1 = KAP j also lies in K. Byinduction it follows that every term in the expansion takes values in K. Providedthe perturbation expansion converges this implies that hP i =K� lies in K. Evenif the perturbation expansion does not converge, analytic continuation argumentsimply the exact relation still holds provided �(x) 2Mc for all x, as will be shownin a forthcoming paper.Documenta Mathematica � Extra Volume ICM 1998 � 1{4



8The effective shear modulus of a family of polycrystalsTo illustrate the power of this method of generating exact relations, let us considerthree-dimensional elasticity and prove that the manifold M consisting of all elas-ticity tensors in Me expressible in the form (25) for some choice of D de�nes anexact relation. We take C0 to be an arbitrary isotropic elastcity tensor with bulkmodulus �0 and shear modulus �0. The associated tensor �(n), given by (22) hasthe property that Tr[�(m)I ] is independent of m implying that withM = I 
 I=3(3�0 + 4�0); (30)we have Trf[M � �(m)]Ig = 0 for all m: (31)Now consider the subspace K consisting of all fourth order tensors K expressiblein the form K = I 
B +B0 
 I for some choice of symmetric matrices B andB0. Now given symmetric matrices B1, B01, B2 and B02 (31) implies there existsymmetric matrices B3 and B03 such that[I 
B1 +B01 
 I ]A(m)[I 
B2 +B02 
 I ] = I 
B3 +B03 
 I : (32)Therefore the subspace K satis�es the desired property (26). The subspace Kof self-adjoint fourth-order tensors within K is six-dimensional consisting of alltensors of the form K = I 
B +B 
 I , where B is a symmetric matrix. WhenK = I 
B+B
I and 3�0+4�0�2TrB > 0 algebraic manipulation shows thatC =W�1M (K) = 2�0(I � I 
 I) +D 
D; (33)with D = [3�0 + 4�0 � TrB)I + 3B]=p3(3�0 + 4�0 � 2TrB): (34)The manifold M associated with K therefore consists of all tensors C 2 Meexpressible in the form (25), and is stable under homogenization.As an example, consider a three-dimensional elastic polycrystal where theelasticity tensor takes the formC(x) = R(x)R(x)C0RT (x)RT (x); (35)where R(x) is a rotation matrix, giving the orientation of the crystal at each pointx and C0 is the elasticity tensor of a single crystal which we assume has the formC0 = 2�0(I � I 
 I) +D0 
D0; where [Tr(D0)]2 � 2Tr(D20) > 4�0 > 0; (36)in which the latter condition ensures that C0 is positive de�nite. The elasticitytensor �eld C(x) is of the required form (25) with D(x) = R(x)D0RT (x) andtherefore the e�ective tensor C� of the polycrystal must lie on the manifold Mfor some � > � > 0. In particular if C� is isotropic then its shear modulus is �0,independent of the polycrystal microgeometry. For planar elasticity the analogousresult was proved by Avellaneda et. al. (1996).Documenta Mathematica � Extra Volume ICM 1998 �



Exact relations for composites 9Some interesting exact relations for coupled field problemsWe are left with the algebraic problem of characterizing which tensor subspacessatisfy the conditions (20) or (26). One might wonder if there is perhaps someeasy characterization. For elasticity and conductivity in two or three dimensions allpossible rotationally invariant exact relations have now been found [see Grabovsky(1998), Grabovsky and Sage (1988) and references therein] but in a more generalcontext the following example shows that the task is not so simple.Consider a coupled �eld problem where there are there are m divergence free�elds j1(x); j2(x); :::; jm(x) and m curl free �elds e1(x); e2(x); :::; em(x) whichare linked through the constitutive relationji�(x) = dXj=1 mX�=1Li�j�(x)ej�(x); (37)where � and � are �eld indices while i and j are space indices. Milgrom andShtrikman (1989) have obtained some very useful exact relations for coupled �eldproblems. Rather than rederiving these let us look for exact relations withM = 0and a reference tensor L0 which is the identity tensor I . The associated tensorA(m) = M � �(m) has elements Ai�j� = ����mimj : Now take R to be ar-dimensional subspace of m �m matrices and let S denote the d2-dimensionalspace of d � d matrices, and consider the rd2-dimensional subspace K spannedby all tensors K which are tensor products of matrices R 2 R and matricesS 2 S, i.e. which have elements Ki�j� = R��Sij . Given a tensor K1 whichis the tensor product of R1 2 R and S1 2 S and a tensor K2 which is thetensor product of R2 2 R and S2 2 S, the product K1A(m)K2 will certainlybe in K provided R1R2 2 R. Moreover if this holds for all R1;R2 2 R then Kde�nes an exact relation because it is spanned by matrices of the same form asK1 andK2. This observation allows us to generate countless exact relations. Thecondition on R just says that it is closed under multiplication, i.e. that it forms analgebra. Unfortunately there is no known way of characterizing which subspacesof matrices form an algebra for generalm, and this hints of the di�culties involvedin trying to obtain a complete characterization of exact relations. Since M = 0the manifold M consists of an appropriately bounded coercive subset of tensorsof the form L = I +K where K 2 K. The case where m = 2 and R is the setof all 2 � 2 matrices of the form R = aI + bR? (which is clearly closed undermultiplication) corresponds to tensor �elds L(x) for which the consitutive relationcan be rewritten in the equivalent form of a complex equationj1(x) + ij2(x) = (A(x) + iB(x))(e1(x) + ie2(x)): (38)The e�ective tensor L� will have an associated complex form A� + iB�.ReferencesAvellaneda, M., Cherkaev, A.V., Gibiansky, L.V., Milton, G.W., and Rudelson,M. 1996 J. Mech. Phys. Solids 44, 1179-1218.Documenta Mathematica � Extra Volume ICM 1998 � 1{4
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