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Abstract 

Coated nanoparticles, which have a core-shell structure, have many applications. This 

paper investigates the induced torque and orientation of such nanoparticles in an electric field. 

We show that shell of a nanoparticle has an important effect on its orientation, even when the 

shell is thin and takes only a small portion of the total volume. For lossy dielectric particles, the 

permittivity, conductivity, field frequency and core-shell structure together determine the 

magnitude and direction of the induced torque, suggesting a significant degree of experimental 

control over nanoparticle rotation and alignment. 
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Dispersion of functionalized nanoparticles with surface coatings in a dielectric medium 

has a wide spectrum of applications from advanced materials to nanodevices1. Morphology 

control is key to achieving the full potential. Materials with designed distribution and orientation 

of nanoparticles offer superior properties, unique functionalities and maximum flexibilities that 

cannot be achieved by the current uniformly/randomly dispersed nanocomposites. 

Recent studies have shown that nanoparticles with anisotropic geometries may rotate 

preferentially under applied electric fields,2-4 suggesting an approach to bring about controlled 

particle orientations in a matrix. The observations pose interesting scientific problems and call 

for a quantitative understanding of the phenomena. The rotation of a micro or larger sized 

particle in an electric field has been investigated by many researches. For instance,  Schwarz and 

Saito et al. 5,6 were among the first to calculate the potential energy of a lossless dielectric 

particle and determined the stable orientation that corresponded to the lowest potential state of 

the system. However, nanoparticles possess several unique aspects that distinguish their 

behaviors from microscale counterparts. Firstly, nanoparticles are often coated with a functional 

layer to enhance their dispersion or to achieve specific bonding properties. This shell of coating 

may dominate due to the high surface–to-volume ratio and thus completely change the picture of 

particle orientation in response to an external field. Secondly, the effect of Brownian motion 

becomes important due to the small particle sizes. This paper presents rigorous calculations of 

the torque on core-shell nanoparticles with anisotropic geometries under an applied electric field. 

We show that particle structure and applied field can lead to rich behaviors and significant 

degree of experimental control over particle orientation. The study also reveals the competition 

between rotational alignment due to the electric field and randomization due to the rotational 

Brownian motion. 
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The following picture illustrates the mechanism of particle rotation. Imagine a dielectric 

nanoparticle in a fluidic medium. An applied electric field will induce dipole moments inside the 

particle. Generally speaking, when the particle has an anisotropic geometry, the direction of the 

total induced dipole does not coincide with that of the applied field. Thus the dipole moment 

interacts with the field and causes the particle to rotate. To rigorously calculate the torque on a 

core-shell nanoparticle, we propose a Maxwell stress tensor approach. The Maxwell stress tensor 

is defined by ( 21/ 2mε= −σ EE E I) , where E  is the electric field, mε  the permittivity of the 

medium, and I  the identity tensor.7 The electric torque is obtained by an area integration over a 

closed surface which surrounds the particle, namely 

 , (1) ( )e A
dA× ⋅∫T = r σ n

where r  is a position vector and  the unit normal vector of the closed surface. n

Consider a confocal core-shell ellipsoid shown in Fig. 1a, which can represent a wide 

range of shapes from disks to rods. The principal semi-axes are , ,  for the core surface 

and 

ca cb cc

sa , sb , sc  for the outer shell surface. Any confocal ellipsoidal surface can be expressed by 

 (2 2 2 2 2 2/( ) /( ) /( ) 1s s sx a u y b u z c u+ + + + + = s sa b c> > s ). This equation, a cubic in u, has three 

real roots ξ , η , and ζ  that define the ellipsoidal coordinates. The coordinate ξ  is normal to the 

surface. In other words, each ellipsoidal surface is defined by a constant ξ . Define 

. Note that 2 2 2 2 2
c s c s c sa a b b c cξ ≡ − = − = − 2

c 0ξ =  on the outer shell surface. Thus the shell 

occupies the space of 0cξ ξ− ≤ ≤ . The electric field can be solved analytically using Laplace’s 

equation and ellipsoidal coordinates. Consider a uniform applied field  along the 0E x  direction. 
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Theoretical analysis shows that the potentials cφ  in the core, sφ  in the shell, and mφ  in the 

medium can be expressed by  

  c cxC xφ = ,  2( )s sx sx
t s

dtC x D x
R a tξ

φ ∞
= +

+∫ , 2( )m mx mx
t s

dtC x D x
R a tξ

φ ∞
= +

+∫  (2) 

The subscripts c, s, and m denote physical quantities in the three regions of the core, of the shell, 

and of the medium, respectively. Here 2 2 2( )( )(t s s s )R a t b t c t= + + +  and the constants , cxC sxC , 

sxD , ,  are determined by the continuality and boundary conditions, i.e. the electric 

potentials and normal components of the electric displacements are continuous at the core-shell 

interface and shell-medium interface; the potential gradient at infinity must equal to the applied 

electric field. The continuality of the tangential electric field at the interfaces is already satisfied 

by Eq. (2). Similarly, we can solve the potential field when the applied field is in the or  

direction, and denote the constants with corresponding subscripts. An applied field in arbitrary 

directions relative to the particle axis can be treated by superposition. For an applied uniform 

field , the electric field on the particle surface (i.e. 

mxC mxD

y z

0E 0ξ = ) is given by 

 0
8 )
3

E E AD n(n Dm V m
π

= − + ⋅ . (3) 

Here  is the particle volume (core plus shell), A  a diagonal matrix 

with

V

( )2
11 0 t sA dt R a t

∞
= +∫ , ( )2

22 0 t sA dt R b t
∞

= +∫ , ( )2
33 0 t sdt R c t

∞
=A +

m

∫ , and 

. [ , , ]mx my mzD D D= T
mD

Now consider the rotation of a lossless dielectric nanoparticle about its x-axis when  is 

applied along the fixed  axis, as shown in Fig. 1b. The torque from Eq. (1) depends on the 

particle shape and permittivity ratios of core/medium,

0E

0z

/c cβ ε ε= , shell/medium /s s mβ ε ε= . 
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When s cβ β= , i.e. the shell and core have the same dielectric property, the particle reduces to a 

bare particle. Figure 2 shows results for axially symmetric particles ( ) at . 

Superposition of  along the local and directions gives 

ca b= c

s

45θ =

0E y z

 2
0( ) ( , ) sin coe m e s cT V E Hε β β θ θ= , (4) 

where ( , )e s cH β β  is a shape function. Thus the normalized torque at  is 

essentially . In Fig. 2 the particle is a disk with 

2
0/( )e mT V Eε 45θ =

/ 2eH / 0.1c cc a = . The thin shell is given by 

, or . A positive torque increases 2/ 0.00c caξ = 1 / 1.0005s ca a = θ . When both the permittivities 

of the core and shell are larger than that of the medium ( 1cβ >  and 1sβ > ) , a larger shell 

permittivity helps to increase the torque. In contrast, when both permittivities are smaller than 

that of the medium ( 1cβ <  and 1sβ < ), a smaller shell permittivity helps to increase the torque. 

The curves of 10,100,1000cβ =  (right half, 1sβ > ) and 0.1,0.01,0.001cβ =  (left half, 1sβ < ) 

clearly demonstrate the trend. If the core has larger and the shell has smaller permittivity than 

that of the medium ( 1cβ > , 1sβ < ), or vice versa ( 1cβ < , 1sβ > ), the trend becomes more 

complicated. The curves of 100,1000cβ =  (left half, 1sβ < ) show that smaller shell permittivity 

reduces the torque. The curve of 10cβ =  reaches maximum at a certain sβ  when 1sβ < , 

suggesting a competition of the core and shell contribution to the torque. The curves of 

0.1,0.01,0.001cβ =  (right half, 1sβ > ) show that larger shell permittivity increases the torque, a 

trend similar to those 1cβ >  curves. These diverse situations are in contrast to the simple 

behaviors of a bare particle ( s cβ β= = β ). For a bare particle, a larger β  (when 1β > ) or 

smaller β  (when 1β < ) increases the torque. 
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In general, nanoparticles and the surrounding medium are not ideal dielectrics. In this 

case we must take into account electric conductivity. The response of a lossy dielectric to an 

external field depends on the field frequency since a material's polarization does not respond 

instantaneously to the applied field. Define complex dielectric properties * ( ) /m m miε ω ε σ ω= − , 

*( ) /s s siε ω ε σ= − ω  and *( ) /c c ciε ω ε σ= − ω , where ω  is the frequency of the applied electric 

field, mσ , sσ , and cσ  are the electric conductivities of the medium, shell, and core, respectively. 

The time-averaged Maxell stress tensor is 21 4 Re{ }( * *σ EE E E E I)mε= + −

ε

, where is the 

complex conjugate of .

*E

E 7  The torque is still calculated by Eq. (1). 

Normalize the permittivity and conductivity of the core and shell by those of the medium. 

Define /c c mε ε= /c c mσ, σ σ=  for the core and /s s mεβ ε ε= , /s sσβ β mβ σ σ=  for the shell. Note 

that the torque becomes frequency-independent in the special case of c cε σβ β=  and s sε σβ β= . 

Figure 3 shows an example of a core-shell disk with / 0.1c cc a = . The thin shell is given by 

. The frequency is normalized by 20.001c aξ = c m/m mω σ ε= . Note that at high frequencies the 

complex permittivity converges to real permittivity. Thus a particle behaves more dielectric at 

high frequencies. In contrast, conductivity dominates the behavior at low frequencies. Figure 3a 

clearly demonstrates the trend. The frequency-independent curve A in Fig. 3a has 

0.5s sε σβ β= =  and 1.5c cε σβ β= = . All other curves have the same 0.5sεβ = , 1.5cεβ =  but 

various ,s cσ σβ β . They converge to flat curve A at high frequency, where conductivity has little 

effect on the torque. At low frequency the shell conductivity can significantly affect the torque, 

even though the shell takes a very small percentage of the total particle volume. These curves 

reveal a frequency window where the torque becomes negative. In this case the particle will 

rotate so that its longest axis is orthogonal to the applied field direction. At certain frequency the 
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torque becomes zero so that a particle can stay at its current orientation. These behaviors suggest 

the possibility to combine material properties, core-shell structure and field frequency to control 

the torque and orientation of a particle. 

Figure 3b shows the results of silver-coated SiO2 and TiO2 nanoparticles suspended in 

water. The particles represent two situations where the permittivity and conductivity of the core 

is larger or smaller than that of the medium. Bare particles are considered by assigning the core 

permittivity and conductivity to the shell. In this way the bare and coated particles have the same 

volume. The highly conductive coating shields the core and dominates the torque in the shown 

frequency range, making the curves flat and indistinguishable of two different core situations. 

To investigate the rotational dynamics of particles in a fluid, consider many axially 

symmetric particles ( ) rotating about their x axes. The electric torque is given in Eq. (1). 

The rotation will be resisted by a viscous torque 

ca b= c

rV Hη− Ω  8. Here  is a shape function, rH η  the 

fluid viscosity, and  the angular velocity. The particles undergo incessant collisions with liquid 

molecules. These collisions cause a random torque, which we analyze by a stochastic approach. 

Using an Orientation Distribution Function (ODF), 

Ω

Ψ , which represents the probability of the 

particle being found in a specific orientation, we can express the torque for Brownian motion by 

9[ (ln ) / ]Bk T × ∂ Ψ ∂z z , where is Boltzmann’s constant, T the absolute temperature, and z the 

unit orientation vector of the particle. Obtaining 

Bk

Ω  from the balance of the three torques and 

substituting it into the continuity equation of ODF gives 

 
2

* ( sin 2 ) 0
t

λ θ
θ θ

∂Ψ ∂ ∂ Ψ
+ Ψ − =

∂ ∂ ∂ 2

)r

, (5) 

where is normalized time and . Thus two competing 

effects, the alignment due to the applied field and randomization due to the rotational Brownian 

( ) (* /Bt t k T V Hη= 2
0 /(2 )m e BV E H k Tλ ε=
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motion, determine the evolution of Ψ . A lager λ  means stronger alignment effect. We solved 

Eq. (5) by the Fourier spectral method. Figure 4 shows ODF evolution from an initial random 

distribution. Over time more particles orient close to θ =90o. After reducing λ from 2 to 1 at 

, ODF starts to relax and spread. * 1t =

In summary, we proposed an approach to rigorously calculate the electric torque on a 

dielectric core-shell particle. The study showed that the shell has an important effect, even when 

it is thin and takes a small portion of the total volume. For lossy dielectrics, the core-shell 

structure demonstrated frequency dependent behavior and a window to tune the preferential 

orientation. The ODF evolution demonstrated the competition between rotational alignment due 

to the electric field and randomization due to the rotational Brownian motion. 

The authors acknowledge financial support from National Science Foundation CAREER 

Award No. DMI-0348375. 

 8



References 

 
1 F  Hussain, M  Hojjati, M  Okamoto, and RE Gorga,  J. Composite Mater. 40, 1511 

(2006). 
2 Fan DL, Zhu FQ, Cammarata RC, and Chien CL,  Appl. Phys. Lett 89, 223115 (2006). 
3 J. Gimsa,  Bioelectrochemistry 54, 23 (2001). 
4 Merkulov VI, Melechko AV, Guillorn MA, Simpson ML, Lowndes DH, Whealton JH, 

and Raridon RJ,  Appl. Phys. Lett 80, 4816 (2002). 
5 M. Saito, H. P. Schwan, and G. Schwarz,  Biophy. J. 6, 313 (1966). 
6 G. Schwarz, M. Saito, and H. P. Schwan,  J. Chem. Phys. 43, 3562 (1965). 
7 Xujing Wang, Xiao-Bo Wang, and Peter R. C. Gascoyne,  J. Electrostatics 39, 277 (1997). 
8 J. J. Newman and R. B. Yarbrough,  J. Appl. Phys. 39, 5566 (1968). 
9 R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquid. (Wiley, 

New York, 1977). 

 9



Figure Captions 

 

FIG 1. (a) A confocal core-shell ellipsoid (b) The rotation of a core-shell particle around the x 

axis. The orientation is measured by the angle θ . 

 

FIG 2. Effect of shell permittivity on induced torques. 

 

FIG 3 (a) Effect of frequency and shell conductivity on induced torques (b) Torques on silver-

coated SiO2 and TiO2 nanoparticles suspended in water. We took 080mε ε= , 0.05mσ = S/m for 

water; 03.8cε ε=  ,  S/m for SiO1810cσ
−= 2; 090cε ε=  , 300cσ =  S/m for TiO2; 010sε ε= , 

 S/m for the silver coating. 76.3 10sσ = × 12
0 8.85 10ε −= ×  F/m. 

 

FIG 4. ODF evolution with 2λ =  ( *0 t 1≤ ≤ ) and 1λ = ( ). * 1t ≥
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