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Abstract  
This paper proposes a simple extension to a collocation based 

composite time integration proposed by Silva and Bezerra [16]. 

In this scheme, each time step is divided further into two 

substeps which may not be necessarily equal. In the first 

substep, the Newmark scheme is employed an d the three point 

backward Euler scheme is used in the second substep. The 

proposed scheme is applied to non-linear problems to study the 

transient response solution under large deformations and long 

time durations. The influence of Newmark parameters and 

substep sizes on conservation of energy and momentum is 

studied through a numerical example. It is found that the 

numerical dissipation increases as the Newmark parameters are 

changed. Also, as the substep size corresponding to Newmark 

scheme increases the numerical dissipation increases. The 

proposed scheme can be used to study of nonlinear transient 

response of structures with required dissipation. 
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1 Introduction 
 
The distinctive nature between static and dynamic problem is the presence of 

inertia forces which opposes the motion generated by the applied dynamic 

loading. The 
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dynamic nature of a problem is dominant if the inertia forces are large compared to the total applied 

forces [14]. In order to investigate the characteristics of transient dynamic problems, the resulting 

motion of a structural dynamic problem is studied for a given load distribution in space and time. 

Transient response analysis is used to compute the dynamic response of structure subjected to time-

varying excitation. In order to obtain the time history of transient response time integration schemes 

are widely used. Time integration schemes are broadly classified into two categories: explicit and 

implicit [1, 5, 6, 14]. In an explicit scheme, the displacement and the velocity at the current time step 

are found using the values from the previous time step. The acceleration is then calculated by 

substituting these values into dynamic equation and solving system of simultaneous linear equations 

[8, 7, 15]. If lumped matrices are used, then no iterations are required to solve the system of 

equations. Some of the examples of explicit schemes are central difference method, Runge-Kutta 

method etc. A prominent disadvantage of the explicit schemes is that they are only conditionally 

stable. This means that the time step size has to be below a critical value. Explicit schemes are widely 

used for fast transient analysis, for example, in the analysis of crash problems. On the other hand in 

the implicit schemes, the displacement and velocity at the current time step are expressed not only 

interms of the values of the previous time step but also of the current time step. Hence, the solution of 

system of resulting equations requires an iterative scheme, usually Newton-Rapshon method, to 

obtain the solution. This allows for larger time step size to be used during the analysis. Some of the 

examples of implicit schemes are Newmark scheme [12], Bathe composite scheme [3, 2, 4] etc.  
The implicit trapezoidal scheme is unconditonally stable for the linear dynamic problems. 

However, for nonlinear dynamic problems, the trapezoidal scheme does not guarantee the 

conservation of energy and momentum as time progresses [10, 17, 3, 11]. It fails to provide high 

frequency dissipation in nonlinear analysis. Even if smaller time step is considered, convergence is 

not guaranteed as it may lead to excitation of even higher frequencies which lead to instability. In 

linear dynamic analysis the spectral stability is sufficient condition for unconditional stability of the 

time integration scheme [13]. However, for nonlinear dynamic analysis spectral stability is required 

but it is only a necessary condition [10].  
Recently, Bathe and coworkers have proposed an implicit composite time integration scheme for 

dynamic analysis [2, 4, 3]. The scheme is usually referred as Bathe scheme. In the Bathe scheme, a 

highly dissipative time integration scheme is combined with a non-dissipative time integration 

scheme. For conservation of energy and momentum, trapezoidal scheme is combined to three-point 

backward Euler scheme. Trapezoidal scheme ensures second order accuracy and the back-ward Euler 

scheme ensures high-frequency numerical dissipation. Numerical dissipation is considered to be 

advantageous as it ensures better numerical stability for time integration schemes. Silva and Bezerra 

[16] proposed a scheme which is based on the Bathe scheme [2] but with generalised substep sizes 

instead of equal substep size used in the Bathe scheme. It was shown that for too large time step, the 

scheme remains stable but numerical dissipations are also large. Klarmann and Wagner [9] have 

further analyzed the Bathe scheme for variable step sizes and have shown that at a particular value of 

the step size, the period elongation is minimum and the numerical dissipation is maximum.  
In the present work, an extension to the implicit composite scheme of Silva and Bezerra [16] is 

proposed. In this composite scheme, Newmark scheme [12] has been coupled with three-point 

backward euler scheme thus making it a three parameter based composite time integration scheme. 

The proposed scheme is applied to a nonlinear dynamic problem. The rest of the paper is structured as 

follows. In section 2 the proposed scheme is explained. Numerical example is presented in section 3. 

Section 4 concludes this paper. 

 

2 Proposed Implicit Composite Scheme 
 
The scheme proposed in the present work extends the composite scheme proposed by Silva and 

Bezerra [16] where the variable time substep sizes are used. The proposed implicit composite scheme 

is a parameter based time integration scheme in which the Newmark scheme [12] is applied in the first 

substep and three-point backward Euler method for the second substep. The composite scheme is 

shown schematically in Figure (1). 
 



 
 
 
 
 
 
 
 
 

Figure 1: Proposed Composite Scheme. The time step is denoted by tn +1 − tn  = h. 
 
The governing equations of equilibrium for nonlinear transient structural dynamic problems is 

expressed as follows: 

 

where M is the mass matrix, C is the damping matrix, N(u, t) is the internal force vector which is, in 

general, a function of displacement vector u and time t and F(t) is the external force vector. The 

vectors of velocity and acceleration are represented by u˙, and u¨ respectively. Note that for linear 

dynamic analysis. 

is, the internal force vector N(u, t) can be written as K u where K is the stiffness matrix. Next, the 

proposed scheme is explained in detail by applying it to Eq.( 1). 

Considering tn +γt = tn + γt h (where h is the time step size) as an instance of time between tn and tn+1 

for γt ∈ (0,1), Newmark scheme is applied over the first substep, γt h (see Fig. 1). The approximations 

for displacement and velocity at time tn +γt for Newmark scheme are given by 

             (2) 

where β, γ are Newmark scheme parameters. 

In the second substep the three point backward Euler scheme is applied over the second substep ( 1 − 

γt ) h. The approximation for velocity and acceleration at time tn +1 for the three point backward Euler 

scheme is given by 

                             (3) 

where the constants are given expressed as 

                                                                  (4) 

 

 

 



 

 

3 Numerical examples 
 

 

In section 2, formulations of the proposed scheme was presented. In this section, the proposed scheme 

is implemented to solve the flexible pendulum problem and to examine the performance of the 

proposed scheme. The flexible pendulum problem is a classical geometrical nonlinear example which 

involves large displacements and rotations. It is used to study the ability of a time integration scheme 

for solving nonlinear problems. Formulations of this problem has been analyzed by Kuhl and Crisfield 

[10]. A set of Newmark parameters (Refer Table: 1) and γt values have been chosen to test the 

performance of the proposed scheme. Various values of Newmark parameters (β,γ) are selected (Refer 

Table 1) according to the following formula [1]: 

                   (5) 

The geometrical and physical characteristics of the elastic pendulum, the initial conditions, the 

boundary conditions and other data are shown in Figure 2. For elastic pendulum, the stiffness E A is 

taken as 10
4
 N and the initial radial acceleration u¨ as 0 m/s

2
   [10].  Elastic pendulum possess both 

high and low frequency responses. For this two degree-of-freedom model, the first mode is 

represented by the pendulum motion. The second mode, which contains high frequency responses, is 

represented by axial motion [13]. Due to modified initial conditions, the pendulum will be loaded with 

centrifugal force which induces high frequency vibration along the pendulum length. To capture the 

high axial frequency, time steps considered are h = 0.01 seconds and h = 0.05 seconds. The substep 

sizes taken are : γt = 0.2 and 0.9. The transient analysis is done for a total time of 30 seconds. 

 



 

Figures ( 3(a)- 3(b)) and Figures ( 4(a)- 4(b)) show the variation of total energy and angular 

momentum with time for h=0.01s and γt=0.2 and 0.9 respectively. It is observed that for same time 

step, as the value of γt increases, numerical dissipation in total energy and angular momentum also 

increases. This same behavior has been observed when h is changed to 0.05, see Figures ( 5(a), 5(b)) 

and Figures ( 6(a), 6(b)). Also, as the value of Newmark parameters increases, numerical dissipation 

increases. Maximum dissipation is for the newmark parameters (β,γ)=(0.49,0.9). No growth in energy 

and momentum of the system has been observed. Hence, through higher numerical dissipation of the 

proposed scheme, better numerical stability for the given non-linear problem can be obtained 

compared to Bathe scheme [2]. 

 

 

 



 

 

4   Conclusion 

The proposed composite scheme is applied to a nonlinear dynamic problem. This scheme gives more 

flexibility to vary the dissipation aspect by choosing different combinations of Newmark parameters 

(Refer: Table 1) and γt values. The proposed scheme gives more numerical stability compared to 

Bathe scheme [2]. The performance of the scheme is studied for different values of γt on energy and 

momentum conservation. For a particular time step, as the value of γt increases, numerical dissipation 

also increases. Numerical dissipation also increases with the increase of Newmark parameters (Refer: 

Table 1). It can also be concluded from the present study that use of too large time step leads to 

excessive numerical dissipation. 
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