
An open source program to generate zero-thickness cohesive interface elements

Vinh Phu Nguyen1,∗

School of Engineering, Institute of Mechanics and Advanced Materials, Cardiff University, Queen’s Buildings, The Parade, Cardiff
CF24 3AA

Abstract

An open source program to generate zero-thickness cohesive interface elements in existing finite element discretizations
is presented. This contribution fills the gap in the literature that, to the best of the author’s knowledge, there is no
such program exists. The program is useful in numerical modeling of material/structure failure using cohesive interface
elements. The program is able to generate one/two dimensional, linear/quadratic cohesive elements (i) at all inter-
element boundaries, (ii) at material interfaces and (iii) at grain boundaries in polycrystalline materials. Algorithms and
utilization of the program is discussed. Several two dimensional and three dimensional fracture mechanics problems
are given including debonding process of material interfaces, multiple delamination of composite structures, crack
propagation in polycrystalline structures.

Keywords: interface cohesive elements, fracture mechanics, cohesive zone models, finite element method, open source
code

1. Introduction

Cohesive crack models (CM) which were pioneered in [1, 2] is a continuation of linear elastic fracture mechanics
with which the unrealistic stress singularity ahead the crack tip is avoided. Application of CMs as fracture models
used in the context of the finite element method however appeared substantially later in [3]. From a numerical point
of view, CMs have been incorporated in a finite element (FE) context using zero-thickness interface elements, elements
with embedded discontinuities and elements with discontinuous enrichment via the extended/generalized finite element
method (XFEM/GFEM). A comparative study on the modelling of discontinuous fracture using these techniques was
given in [4] and a review of computational methods for fracture in quasi-brittle solids has been recently reported in
[5]. It should be emphasized that the term ”cohesive elements” usually used to refer to cohesive interface elements is
misleading since elements with embedded cohesive cracks or XFEM with cohesive cracks are also cohesive elements.
Therefore, in this contribution, we suggest the name ”cohesive interface elements” (in subsequent discussion interface
elements are used for brevity) to indicate interface elements equipped with a cohesive law.

Elements with embedded discontinuities are a powerful tool to model crack propagation, see e.g., [6, 7, 8, 9], among
others. Its most distinct advantage is the simplicity of implementation into existing FE codes compared to XFEM.
Recently XFEM, which is a local partition of unity (PUM) [10] based finite element method, pioneered in [11] has
become the dominant numerical method for both weak discontinuities (material interfaces) [12, 13, 14] and strong

∗This work was carried out when the author was a PhD candidate at the Faculty of Civil Engineering and Geosciences, Delft University
of Technology, The Netherlands under the supervision of Prof. Bert Sluys.

1nguyenpv@cardiff.ac.uk

Preprint submitted to Elsevier March 30, 2014

n

discontinuities (cracks) see e.g., [15, 16, 17] among others. Its popularity is arguably due to the fact that XFEM can
be applied to numerous varieties of problems (fluid mechanics, biofilm growth, multiphysics etc.). However, it comes
with complications including numerical integration of elements crossed by the discontinuities, complexity concerning
the implementation of the method in existing finite element packages. Furthermore, finding the enrichment functions to
model intersecting discontinuities is not a feasible task, especially for three dimensions. Also, parallelizing the XFEM
is not straightforward.

For polycrystalline structures, a common fracture phenomenon is inter-granular cracking i.e., cracks propagate along
the grain boundaries. This fracture mechanism is naturally modelled with interface elements that are inserted, prior
to computation, along the grain boundaries because the crack path is known in advance. Recently, this problem was
tackled with the generalized finite element method (GFEM) [18]. The advantage of GFEM is that only a structured
simple mesh is required since the grain topology is independent of the mesh and modelled with special enrichment
functions. However extending these enrichment functions to three dimensions and intra-granular fracture is not easy.
Moreover, imposing Dirichlet boundary conditions on enriched nodes is not a trivial task. In contrary, using interface
elements, both two dimensional (2D) and three dimensional (3D) inter and intra-granular fracture can be modelled.
Such a 2D application has been recently reported in [19] and 3D cases in [20].

Delamination of laminated composites has been traditionally modelled using interface elements [21, 22, 23]. Recently,
PUM-based finite elements has been used to model delamination with mesh independent of the delamination surface
[24, 25]. However, to model 3D delaminated composites, PUM-based method must employ either a layer of 3D solid
elements or solid-like shell elements which increases the computational efforts significantly. Furthermore, PUM-based
method is not suited for two dissimilar structures bonded together such as skin-stringer interface. Using interface
elements, an effective cohesive element for shell analysis was presented in [26].

In addition to the natural application of interface elements for problems in which crack paths are known a priori
such as material interface debonding [27, 28], delamination, inter-granular cracking, other advantages of interface
elements include (i) crack initiation does not rely on some fracture criteria, (ii) straightforward implementation, (iii)
complex fracture mechanism such as crack branching, crack coalescence can be handled with ease [29, 30, 19, 31, 20].
Other applications of interface elements are mesoscopic modeling of concrete materials [32], dynamic fracture and
fragmentation of solids [33, 34] and shell fracture [35, 36]. Other computational methods that are capable of dealing with
complex fracture mechanics problems (with large deformation) include meshfree methods, e.g., [37, 38, 39, 40, 41, 42],
and peridynamics see [43, 44] among others.

There are two ways by which one can implement interface elements. In the first approach, interface elements
are introduced, where necessary, before the simulation starts. The cohesive laws used in this approach is referred
to as intrinsic cohesive laws. In the second approach, interface elements are inserted during the simulation and the
corresponding cohesive laws are referred to as extrinsic cohesive laws. Both approaches have their own advantages and
shortcomings. In the former, the shortcomings are (i) mesh sensitivity (this however does not apply for problems in
which the crack path is known in advance, for example delamination analysis, inter-granular fracture of polycrystals
or debonding of material interfaces) and (ii) reliance on a high dummy stiffness to model the perfect bond prior to
fracture. Mesh sensitivity issue can be eliminated with sufficiently refined random meshes. For the artificial compliance
introduced by the interface elements, one remedy is to initially constraint the interface elements (using the master-slave
method [19] or a discontinuous Galerkin [45, 20]) and only active them when necessary. Another possibility is to find
the proper value for the dummy stiffness for interface elements as in [46]. In the latter, by only introducing interface
elements when a fracture criterion is met all the shortcomings of intrinsic cohesive elements are removed. However, it
brings complex implementation and parallelism issues.

Although implementation of intrinsic cohesive elements is straightforward (and thus available in major commercial
FE packages), the pre-processing stage in which one has to insert interface elements into an existing finite element mesh
is quite complicated and there does not exist any open source tool to do that. The aim of this manuscript is therefore
to present a simple pre-processing program which is able to insert one and two dimensional interface elements in a finite

2

element mesh. This program is independent of mesh generation programs and freely downloadable on our website.
We believe that it is helpful for researchers doing fracture analysis using interface elements, which play an important
role despite of the emergence of novel methods such as XFEM, but do not have access to commercial preprocessors.
It should also be useful for Discontinuous Galerkin based analyses [47]. The code also generates interface elements
that are suitable for discontinuous Galerkin based methods. Moreover, through the open source code, adaptation to
individual needs is much easier than using commercial preprocessors. The tool has been used in [48, 49, 50] and we
hope through this manuscript it will be shared with the fracture and the discontinuous Galerkin communities. For
completeness, this paper also presents implementation details of 2D interface elements in a nonlinear FE setting.

The structure of the rest of the paper is as follows. In Section 2, the governing equations of a cracked solid are given
together with the semi-discrete equations discretized by finite elements. Section 3 presents the algorithms that are
used to insert one and two dimensional interface elements in a finite element mesh. In the next section, the installation
and usage of the presented program is discussed. Various numerical examples are given in Section 5 including material
interface debonding, two dimensional crack propagation problems in homogeneous structure and in polycrystalline
structure; two and three dimensional delamination analysis. Finally some conclusions are drawn in Section 6.

2. Finite element formulation

2.1. Strong and weak forms

Figure 1: A two dimension solid containing a cohesive crack

The governing equations include the equilibrium equation, the natural, essential boundary conditions and the
traction continuity on the crack surface

∇ · σ + b = 0 x ∈ Ω (1a)

n · σ = t̄ x ∈ Γt (1b)

u = ū x ∈ Γu (1c)

n+
d · σ = t+

c ; n−
d · σ = t−c ; t+

c = −tc = −t−c x ∈ Γd (1d)

where σ is the Cauchy stress tensor, u is the displacement field and b is the body force vector. The traction applied
over the boundary Γt with outward unit normal vector n is denoted by t, ū is the applied displacement over the

3

Dirichlet boundary Γu; Γu∪Γt = Γ, Γu∩Γt = ∅; tc is the cohesive traction across the crack Γd with unit normal vector
nd. For simplicity, only small strain assumption is considered where the strain is taken as the symmetric part of the
displacement gradient εs = 1

2 (∇us +∇Tus). Constitutive relations for the bulk and the cohesive crack are given later.
The weak formulation reads, see [51] for details

δW ext = δW int + δW coh (2)

with

δW int =

∫
Ω

∇sδu : σdΩ (3a)

δW ext =

∫
Ω

δu · bdΩ +

∫
Γt

δu · t̄dΓt (3b)

δW coh =

∫
Γd

δJuK · tcdΓd (3c)

where JuK denotes the displacement jump.

2.2. Discretization

Figure 2: Discretization of the solid into continuum elements and zero-thickness interface elements.

The bulk is discretized by standard continuum elements and the discontinuity surfaces (cracks, material interfaces)
are discretized by zero-thickness interface elements which are one dimensional less than the continuum elements. Fig. 2
illustrates the idea for two dimensions.

The displacement fields of the upper and lower faces of the interface element are given by

u+ = Nintu+, u− = Nintu− (4)

4

with Nint denotes the matrix of shape functions of the interface element 2 and u+ and u− denote the nodal displacements
of the upper face and lower face, respectively.

Having defined the displacement of the upper and lower faces of the interface, it is able to compute the displacement
jump as

Ju(x)K = u+ − u− = Nint(u+ − u−) (5)

where we have used Eq. (4).
For completeness, the displacement of the continuum elements and the virtual displacement are recalled here

u = NIuI , δu = NIδuI (6)

where NI is the shape functions of the continuum elements.
Introducing Eqs. (6) and (5) into the weak form Eq. (2), we get the following semi-discrete equations

f ext = f int + f coh (7)

where f ext, f int and f coh are the external force, internal force and cohesive force vectors, respectively.
The external and internal force vectors are computed from contributions of continuum elements and given by

f int
e =

∫
Ωe

BTσdΩe (8)

f ext
e =

∫
Ωe

NTbdΩe +

∫
Γe
t

NTt̄dΓe
t (9)

where the shape function matrix and the strain-displacement matrix, of which expressions are standard and thus not
given here, are denoted by N and B.

The cohesive force vector is computed by assembling the contribution of all interface elements. It is given by for an
interface element ie

f coh
ie,+ =

∫
Γd

(Nint)TtcdΓ

f coh
ie,− = −

∫
Γd

(Nint)TtcdΓ

(10)

where the first quantity is assembled to the total internal force vector according to the degrees of freedom (dofs) of
nodes of the upper surface and the second quantity contributes to the internal force vector to locations defined by
nodes of the lower surface.

2For 4-node element, we have

Nint =

[
N1 0 N2 0
0 N1 0 N2

]
where N1, N2 are the two-node line element shape functions.

5

2.3. Linearisation

For the sake of simplicity, we assume that the nonlinear process is concentrated on the cohesive cracks. The bulk is
thus simply a linear elastic material. The behaviour of cracks is modelled with a cohesive law or a traction separation
law (TSL). The constitutive equations are then given in rate form as

σ̇ = Dε̇

ṫc = TJu̇K
(11)

where D is the bulk tangent matrix which is simply the elasticity matrix and T is the cohesive (discrete) tangent
matrix whose precise form depends on the TSL used.

The linearization of the internal force vector Eq. (8) leads to the standard material tangent stiffness matrix which
is given by

Kcon
e =

∫
Ω

BT
e DBedΩ (12)

which is regiven here only for completeness. The implementation of interface elements is independent of the bulk solid
element formulation.

Substituting the displacement jump in Eq. (5) into Eq. (11) leads to

ṫc = TNint(u̇+ − u̇−) (13)

This is then transformed to the global coordinate system by using the orthogonal transformation matrix Q

ṫc = QTQTNint(u̇+ − u̇−) (14)

with Q is given by

Q =
[
n s t

]
(15)

where n is the unit normal vector of the interface element and s, t are the unit tangential vectors of the interface
element. Refer to [52] for the construction of Q for 2D interface elements.

The linearization of the cohesive force vector Eq. (10) requires a bit of elaboration as shown
∂f coh

ie,+

∂u

∂f coh
ie,−

∂u

 =

∂f coh

ie,+

∂u+

∂f coh
ie,+

∂u−

∂f coh
ie,−

∂u+

∂f coh
ie,−

∂u−

[
δu+

δu−

]
(16)

Therefore, the cohesive tangent stiffness matrix for a given interface element is given by

Kint
e =

∫

Γd

NTQTQTNdΓ −
∫

Γd

NTQTQTNdΓ

−
∫

Γd

NTQTQTNdΓ

∫
Γd

NTQTQTNdΓ

 (17)

In fact only one term, which is a 2n × 2n matrix with n being the number of nodes of one surface of the interface
element, in the above needs to be computed, and it is then assembled to the appropriate locations. Also noting that

6

in the above we have omitted the superscript int for clarity. It is interesting to note that the above equation for the
interface stiffness has the same form with the one established with the phantom node method [53, 54] or the method
used by [55]. For completeness, the peusedo code of a general interface element program is given in Box 1 in which we
have omitted the contribution of continuum elements since it is standard.

Box 1 Flowchart of a general interface element model

1. For a given load step and for an interface element e, do

2. Get the connectivity inodes

3. Get dofs of upper and lower faces, idofsA, idofsB

4. Get nodal displacements of upper and lower faces, uA, uB

5. Compute the global jump: JuK = uA − uB

6. Loop over integration points, ip with weight wip ∗

(a) Compute displacement jump at ip: JuKip = NJuK
(b) Convert to local system: JuKloc

ip = QTJuKip
(c) Compute local traction and tangent tloc, T using JuKloc

ip and a TSL

(d) Compute the cohesive internal force vector: f coh = f coh + NTQtlocwip

(e) Compute the tangent stiffness: Kcoh = Kcoh + NTQTQTNwip
∗∗

7. Assembling to global force and tangent ∗∗∗

(a) f [idofsA] = f [idofsA] + f coh

(b) f [idofsB] = f [idofsB]− f coh

(c) K[idofsA, idofsA] = K[idofsA, idofsA] + Kcoh

(d) K[idofsB, idofsB] = K[idofsB, idofsB] + Kcoh

(e) K[idofsA, idofsB] = K[idofsA, idofsB]−Kcoh

(f) K[idofsB, idofsA] = K[idofsB, idofsA]−Kcoh

∗ Any kind of numerical integration rules can be used here. However, it has been reported that, [56] the Newton-Cotes
scheme overcomes the traction oscillation issues. The integration surface Γ is generally the midsurface of the cohesive
element.
∗∗ In literature, was made use of Kcoh =

∫
Γ
NTQTTQNdΓ, in this case, their transformation matrix is the transpose

of our.
∗∗∗ Extension to large displacement case can be made by two additions. First the midsurface Γ is the one in the current
deformed configuration. Second, a geometry tangent stiffness is added to Kcoh.

3. Automatic generation of interface elements

The implementation of interface elements into an existing finite element code is quite straightforward provided that
meshes including both continuum and interface elements is available. However, creating such meshes has not been
discussed in the literature yet, at least to the authors’ knowledge. In this section, a simple pre-processing program 3

is presented that reads a FE mesh and modifies that mesh so that 1D and 2D interface elements can be inserted along

3Freely downloadable at https://sites.google.com/site/phuvinhnguyensite/home/programs. The code consists of about 2000 lines of
C++ code and uses extensively the STL and Boost libraries.

7

https://sites.google.com/site/phuvinhnguyensite/home/programs

either material interfaces or grain boundaries of a polycrystalline solid or along a surface where the crack is assumed to
grow. Supported interface elements are given in Fig. 3. Note that high order B-spline interface elements given in [49] are
also implemented. The program starts by reading a FE mesh including nodal coordinates, element connectivity arrays
and element groups. It then builds the support for all nodes (support of a node is the set of elements sharing this node)
and the neighbors of all elements. After that, it adapts the mesh by duplicating nodes and changing connectivities.
Finally it generates a set of interface elements. In the following, algorithms used to insert interface elements along
material interfaces and grain boundaries in 2D and 3D are going to be given in detail. We note that in an isogeometric
analysis framework, interface elements can be created straightforwardly as presented in [57].

Figure 3: Supported interface elements: left column linear elements and right column quadratic elements; 1D interface
elements (top row) and 2D interface elements.

3.1. Interface elements along a material interface

Fig. 4 illustrates the algorithm, adopted to place 1D cohesive elements along a material interface, which is given in
detail in Box 2. In words, nodes on the material interface are cloned and elements containing this interface are divided
into two groups. The first group contains elements below the interface: their connectivities are kept unchanged. The
second group consists of elements above the interface, their connectivities are modified using the duplicated nodes.

Figure 4: Insertion of interface elements along a bimaterial interface. Note that this horizontal material interface is
only for illustration. The code can generate interface elements along curved material interfaces.

8

Box 2 Algorithm to insert interface elements along material interfaces

1. Initialization

(a) Building nodal support

2. Detecting interface nodes

(a) For node I, loop over its support
(b) Count the number of materials present in this support, nmat
(c) If nmat >= 2, then I is an interface node

3. Duplicating nodes

(a) i = nodeCount, nodeCount is the total number of original nodes
(b) For an interface node I, do

i. Clone node I: build a new node with coordinate of I, index of i
ii. Store index of node I in duplicatedNodes[I][0]
iii. Store index of this new node in duplicatedNodes[I][1]
iv. i = i+ 1

4. Tearing elements (modifying connectivities)

(a) For node I of interface nodes, loop over support of node I, s

i. First element in s kept unchanged, let mat be the material of this element
ii. For element e in the rest of s,

iii. if material of e coincides with mat, continue with next element
iv. change node I in the connectivity of e by duplicatedNodes[I][1] ∗

(b) End loop over s

5. Inserting interface elements

(a) For element e, loop over edges s of e ∗∗

i. If s is on external boundary or s already treated, continue next edge
ii. Let the nodes of edge s be I and J

iii. If either I or J is not an interfacial node, continue next edge
iv. Add one interface element with connectivity as

[I J duplicatedNodes[I][1] duplicatedNodes[J][1]]

(b) End loop over edges

∗ In fact, we store the original connectivity of one element in an array inodes0 and the new (modified) one in inodes.
∗∗ For quadratic elements, the edge s connects the two corner nodes I and J and the midside node of s is P . Then the
interface element’s connectivity is

[I P J duplicatedNodes[I][1] duplicatedNodes[P][1] duplicatedNodes[J][1]]

Noting that this is dependent on the node numbering convention of the FE code.

9

To generate 2D cohesive surfaces along 2D material interfaces, the procedure in Box 2 needs only be modified in
step 5 by looping over the faces rather than the edges. To this end, after reading the mesh, the program constructs
the faces of all elements. For quadratic 3D solid elements, two kinds of face are created, one consists of corner nodes of
that face and the other contains all nodes. The former is used to check whether a given face f is interfacial i.e., lying
on a material interface and f is treated already. The later is used to build the connectivity of the inserted interface
elements.

3.2. Interface elements at grain boundaries

The algorithm in Box 2 has been extended with minor modifications to insert cohesive elements along grain bound-
aries of polycrystalline solids. To this end, elements belong to different grains are assigned to different materials (more
precisely different groups) when meshing the domain as shown in Fig. 5(a). Thus, the grain boundaries can be consid-
ered as material interfaces. The procedure is given in Box 3 with the only difference from Box 2 lies in the treatment
of junction nodes (e.g., those have three materials present in their supports) because for a junction node there are two
duplicated nodes whereas for a normal interfacial node there is only one duplicated node. To tear elements around a
junction node I, refer to Fig. 5(b), elements belonging to one grain are kept unchanged, elements in the second grain
will be modified using the first duplicated node of I and finally elements in the third grain will be changed to the second
duplicated node of I. This is exactly what is given in step 4 of Box 3. To insert an interface element along the edge
s, connecting nodes I and J, of element ie where s connects one junction node or two, we find the neighbor element
je sharing the same edge s. Knowing the positions of I and J in the original connectivity jnodes0 of je, it is able to
find the indices of the duplicated nodes of I and J by using the new connectivity jnodes of je. See the Fig. 5(c) for an
illustration. It is noting that in some special cases, there are edges (KJ in Fig. 5(d)) connecting interfacial nodes but
they are not on grain boundaries. Thus, no interface elements are created there. The extension to 3D polycrystals is
straightforward and also implemented in the program.

Figure 5: Insertion of interface elements along grain boundaries of polycrystal: (a) original FE mesh, (b) modified
mesh, (c) inserted interface and (d) special case (KJ connecting interfacial nodes but it is not on grain boundaries.
Thus, no interface element is created there).

3.3. Interface elements at every inter-element boundaries

The program is also capable of inserting cohesive elements in between every inter-element boundaries. This is useful
for discontinuous Galerkin problems and for dynamic fracture and fragmentation problems. In this case, at a node I,

10

Box 3 Algorithm to insert interface elements along grain boundaries

1. Initialization

(a) Building nodal support
(b) Building neighbors for all elements

2. Detecting interface nodes (see Box 2)

3. Duplicating nodes

4. Tearing elements (modifying connectivities)

(a) For node I of interface nodes, do
(b) If I is not a junction node, following Box 2
(c) Get support of node I, s
(d) j = 0
(e) For element ie in s, do

i. Let material of ie be imat
ii. For element je in s, do

A. Ignore elements treated (je < ie)
B. Let material of je be jmat
C. If jmat 6= imat continue with next element
D. Change connectivity of je at node I by duplicatedNodes[I][j]

iii. End loop over je
iv. j = j + 1

(f) End loop over ie

5. Inserting interface elements

(a) For element ie, loop over edges of ie, s

i. If s is on external boundary or s already treated, continue next edge
ii. Let the nodes of edge s be I and J ,

iii. If neither of I nor J is a junction node, following Box 2
iv. Loop over neighbors of ie, then find element je sharing the edge s with ie
v. Get original connectivity of je, say jnodes0
vi. Get new connectivity of je, say jnodes
vii. Denote positions of I and J in jnodes0 as p1, p2

viii. Add a cohesive element with connectivity

[I J jnodes[p1] jnodes[p2]]

(b) End loop over s

11

there are (duplicity − 1) duplicated nodes where duplicity is the size of the support of I, Fig. 6. To tear elements in
the support s of a node I, the first element in s uses the first duplicated node of I (which is essentially node I), the
second uses the second duplicated node of I and so on.

Figure 6: Insertion of interface elements at every inter-element boundaries.

Extension to the case where interface elements are not allowed at a certain domain (for example for hard inclusions
in a composite material) is straightforward as demonstrated in Fig. 7. There are two differences: interfacial nodes
and nodes locate in the domain where interface elements are not allowed (restricted domain). To tear elements in the
support s of an interfacial node I, all the elements in s that belong to the restricted domain keep their connectivities,
other elements use the duplicated nodes of node I to change their connectivities (at location of node I). Nodes within
the restricted domain are skipped in the loop over all nodes of the mesh.

Figure 7: Insertion of interface elements at every inter-element boundaries except for a group of elements (grey ele-
ments).

3.4. Discontinuous Galerkin interface elements

In the formulation of the cohesive interface elements one has to compute the displacement jump which is essentially
the difference between the displacement of the upper and lower faces. Therefore, evaluating the jump needs only the
displacement of the element edges locating on either side of the interface. The volumetric elements are not needed for the

12

computation of the cohesive terms. The situation, however, changes for discontinuous Galerkin (dG) methods, see e.g.,
[47, 34]. In dG methods, the FE displacement field is discontinuous across interelement boundaries (this is achieved by
inserting interface elements along every interelement boundaries) and continuity in the displacement is weakly enforced
by introducing extra terms which involve, in addition to [[u]], also the averaged stress field σ = 0.5(σ+ + σ−); where
σ+/− denote the stresses at either side of an interface. It has been shown that [34] dG methods can be implemented
using interface elements. However, in order to compute the averaged stresses, the two volumetric elements to which
the interface element is attached, see Fig. 8, are needed. In order to support dG methods, or the hybrid dG/cohesive
interface elements [45, 34, 20], the previously presented algorithms were updated (with a slight modification) to generate
the indices of volumetric elements that attach to the interface elements. Note that this is also useful for analyses based
on triaxiality cohesive elements [58] or dG based rotation-free shell elements [36].

Figure 8: Discontinuous Galerkin interface elements: in addition to nodes at the interface (nodes 1,3,5,7) the two
volumetric elements this interface links to (elements 4,8) are also needed in evaluating the interface terms.

4. Installation and usage

The program is entirely written in object-oriented C++ and uses the Standard Template Library (STL) and the
Boost library which can be downloaded at www.boost.org. The program can be compiled using the scons program,
(www.scons.org) or using Gnu Make. It has been compiled and tested on Ubuntu and Mac OS machines. By issuing
the command ./interface-elem –help on a terminal, one gets the help given in List 1.

Listing 1: Simple interface of the interface generator.

1 USAGE:
2 ∗ −−mesh− f i l e FILE s e t the f i l e conta in ing the mesh
3 ∗ −−out− f i l e FILE s e t the f i l e conta in ing the modi f i ed mesh
4 ∗ −−i n t e r f a c e − f i l e FILE s e t the f i l e conta in ing the i n t e r f a c e mesh
5 ∗ −−paraview− f i l e FILE s e t the f i l e o f ParaView format
6 ∗ −− i n t e r f a c e generate i n t e r f a c e e lements a long mate r i a l i n t e r f a c e
7 ∗ −−everywhere generate i n t e r f a c e e lements at a l l i n t e r e l ement boundar ies
8 ∗ −−domain domNum not generate i n t e r f a c e e lements in domain number domNum
9 ∗ −−p o l y c r y s t a l generate i n t e r f a c e e lements along i n t e r g r a n u l a r boundar ies

10 ∗ −−notch x1 y1 x2 y2 e x i s t i n g notch (d u p l i c a t e nodes but no i n t e r f a c e the re)
11 ∗ −−notches x1 y1 x2 y2 x3 y3 . . . e x i s t i n g notches (d u p l i c a t e nodes but no i n t e r f a c e the re)
12 ∗ −−n o I n t e r f a c e x1 y1 x2 y2 no dup l i ca t ed nodes , no i n t e r f a c e e lements along t h i s l i n e

13

www.boost.org
www.scons.org

13 ∗ −−isContinuum 1 or 0 continuum i n t e r f a c e e lements or d i s c r e t e e lements
14 ∗ −−help p r i n t t h i s he lp and e x i t

Currently the code only supports Gmsh meshes [59] and the FE solver jem-jive [60]. In other words, it reads a
Gmsh mesh file, generate the interface elements and write output files in jem-jive format. However extension can be
made to support other formats. An Abaqus extension is about to finish. As can be seen, the program generates two
output files–one stores the modified mesh of bulk elements and the second contains the mesh of interface elements.
The option ”–isContinuum” is used to generate either standard cohesive interface elements or discrete spring elements
[61]. The option ”–domain domNum” is used to not create interface elements in a domain numbered domNum. This
is useful for instance if one does not allow hard inclusions (embedded in a soft matrix) to be cracked.

5. Numerical examples

In this section some numerical results will be presented to illustrate the utility of the proposed meshing program
and the efficiency of the energy-based arc-length control [62, 63, 64] in modelling material failure. The quasi-static
examples include debonding of a single fibre in an epoxy matrix, multiple delamination of a composite beam and inter-
granular cracking of a notched polycrystalline sample. A dynamic fracture example using the hybrid discontinuous
Galerkin/cohesive elements is also given. The original meshes (one without interface elements) have been generated
using Gmsh [59].

5.1. Debonding of material interface

Figure 9: Geometry and loading conditions of a single fibre in an epoxy matrix.

Considering a single fibre in an epoxy matrix as shown in Fig. 9 [65]. The specimen is subjected to prescribed
displacement in the x direction while the top and bottom edges are constrained in the y direction. The bulk materials
are taken as linear elastic materials with parameters given in Fig. 9 whereas the interface is modelled by the Xu-
Needleman’s TSL [29] with σmax = 50 MPa, q = 1, r = 0 and δn = δt = 10−5 mm. The weighting factor β used
to compute the effective displacement jump is taken as 2.3 [66]. Due to symmetry, only a quarter of the specimen is
modelled and the plane strain condition is assumed.

Given the displacement jump (∆n,∆t), the traction according to the Xu-Needleman’s TSL [29] is written as

tn = −φn
δn

exp

(
−∆n

δn

){(
−r +

∆n

δn

)
1− q
r − 1

−
[
q +

r − q
r − 1

(
∆n

δn
− 1

)]
exp

(
−∆2

t

δ2
t

)}
tt = 2

φn
δ2
t

∆t

[
q +

(
r − q
r − 1

)
∆n

δn

]
exp

(
−∆n

δn

)
exp

(
−∆2

t

δ2
t

) (18)

14

where δn and δt are the characteristic separations in the sense that tn(δn) = σmax and tt(δt/
√

2) = τmax with σmax

being the maximum value of the normal traction (also called tensile strength) and τmax denotes the ultimate shear
traction. Furthermore, the mode-mixity of the model is controlled by the parameters q and r. The first parameter
denotes the ratio of the fracture energy in the normal and shear direction q = φt/φn, the second parameter controls
the magnitude of the normal opening ∆∗

n in case of a complete pure shear separation when the normal traction is zero:
r = ∆∗

n/δn. In Eq. (18), φn and φt represent the amount of work needed for complete separation. Using the definitions
of the characteristic separations tn(δn) = σmax and tt(δt/

√
2) = τmax, one can determine φn and φt as follows

φn = σmax exp(1)δn, φt = τmax

√
exp(1)/2δt, (19)

An unstructured mesh consists of 3440 quadratic triangular elements and 31 six-node interface elements is adopted.
Concerning the solver, the simulation starts with load control of constant load step equals 0.1 N up to step 6 where the
released energy G exceeded 5 · 10−8 Nmm the solver is switched to the arc-length control. The load versus prescribed
displacement curve is shown in Fig. 10 together with the deformed configuration. It can be shown that the energy
arc-length control is able to capture both the limit point and the snapback behavior in a low number of load steps.
The number of iterations of all steps around this critical point is only 3 which proves the robustness of the method.

Figure 10: Load versus prescribed displacement of a single fibre in an epoxy matrix and deformed configuration.

5.2. Multi-delamination of a double cantilever beam

This example addresses a multiple mixed-mode delamination analysis of a composite specimen. The geometry and
loading is given in Fig. 11. This problem was studied several times see e.g., [23, 67]. There are two initial cracksthe first
initial crack on the left-hand of the specimen is placed along the mid plane and the second initial crack is positioned
20 mm on the right of and two plies below the first crack. In the numerical model, a plane strain state is assumed and
material properties, which are taken from [23], is given in Table 1. The interface stiffness is k = 105 N/ mm3. In this
example, we adopt the damage-based bilinear cohesive law developed in [68, 69].

Since there are two potential delamination surfaces, one is the interface between layers 12 and 13, the second one
is the interface between layers 10 and 11, the mesh has been built in such a way that elements on either sides of
those delamination surfaces are assigned to different groups (indicated by different colors in Fig. 12). Following the
standard procedure given in Box 2 would generate interface elements along the whole delamination surfaces which is

15

Figure 11: Multiple delamination analysis: geometry and loading.

Figure 12: Multiple delamination analysis: FE discretization showing different element groups.

E11 E22 G12 ν12 = ν13 = ν23

115 GPa 8.5 GPa 4.5 GPa 0.29

GIc GIIc τ0
1 τ0

3 µ

0.33 N/mm 0.8 N/mm 7.0 MPa 3.3 MPa 2.0

Table 1: Multiple delamination analysis: material properties.

16

obviously not desired. So, the program has been implemented an option not to add interface elements along existing
notches (however, the nodes on those notches are still duplicated). Furthermore, for nodes fall within 0 ≤ x ≤ 60 and
y = −0.265, albeit interfacial nodes, they are not duplicated, thus no interface elements are created there. A mesh of
5× 360 four-node quadrilateral elements and 361 four-node interface elements is adopted. Contact elements are placed
along the second initial crack to avoid interpenetration there.

Figure 13: Multiple delamination problem: reaction-prescribed displacement curve (left) and reference solution [70]
(right).

The deformed configuration obtained is presented in Fig. 14. The response of the specimen in terms of the reaction
and two times the displacement at the top left corner is plotted in Fig. 13. A good agreement with the solution reported
in [70] was obtained.

Figure 14: Multiple delamination analysis: deformed mesh.

17

5.3. Intergranular fracture of polycrystal
In this section the intergranular fracture of a specimen made of polycrystalline material is presented. The geometry

of the specimen together with the FE mesh is shown in figure 15. The bulk material is simply an isotropic elastic one
with E = 72000 N/mm2 and ν = 0.33. The interfaces are modelled using the Xu-Needleman exponential TSL [29] with
the following parameters β = 1, r and q are taken of 0 and 1 respectively, σmax = 500 N/mm2 and δn = δt = 0.001.
The left edge is fixed in both directions and a horizontal force is applied on the right edge. The deformed configuration
is given in Fig. 16. For a throughout study on inter-granular fracture of polycrystals, we refer to the work given in [71]
which employs XFEM/GFEM.

Figure 15: A pre-notched polycrystalline sample: geometry and FE discretization. Note that all grains are of the same
material but assigned to different groups while being meshed in Gmsh so that the proposed algorithm can be applied.

Figure 16: A pre-notched polycrystalline sample: deformed configuration.

5.4. Some 3D problems
Finally we present some examples on 3D fracture problems using the 2D interface elements as shown in Fig. 17.

In the top-left figure is shown the deformation of a sample made of a composite material with four long fibers. The

18

sample is subjected to a uniaxial displacement in the horizontal direction. In the top-right figure, a thin slice of a
polycrystalline solid was studied. Again the sample was under uniaxial tensile loading. The bottom figure is the
familiar 3D cantilever beam with an initial notch at the middle plane of the beam starting from the left. It should be
emphasized that the examples were provided to demonstrate the capability of the presented program to generate 2D
cohesive elements for 3D geometries..

Figure 17: Three dimensional fracture analyses with 2D cohesive interface elements: material interface debonding,
inter-granular fracture and delamination of composites.

5.5. Dynamic fracture simulation with dG method

A doubly notched specimen under an impact load is investigated. The geometry of the specimen is shown in Fig. 18,
and the impact loading is applied by a projectile. In the experiment [72], two different failure modes were observed by
modifying the projectile speed, v0; at high impact velocities, a shear band is observed to emanate from the notch at an
angle of 10o with respect to the initial notch and at lower strain rates, brittle failure with a crack propagation angle

19

of about 70o is observed. We are interested only in the velocity range that resulted in a brittle failure mode. Note
that the failure model also depends on the notch tip radius, see [73] for a discussion on this. The material parameters
of Maraging steel 18Ni(300), which are taken from [74], are as follows: Young’s modulus E = 190 GPa (×103 MPa),
a Poisson ratio of ν = 0.3, and a density of ρ = 8000 kg/m3. The material properties for the interface elements (the
initially rigid damage-based bilinear cohesive law [68, 69] is used) are τ0

1 = τ0
3 = 1733 MPa (N/mm2) (tensile and

shear strength), GIc = GIIc = 22.2 N/mm (fracture energies), K = 106 N/mm3 and µ = 1.0. The wave speed is
c =

√
E/ρ = 4873.4 m/s. Due to symmetry only the upper half was modeled and the impact velocity v0 of 16.54

m/s is applied along the edge of the sample hit by the projectile. In our implementation we imposed the displacement
boundary conditions rather than the velocities. Therefore, on the impact edge, a prescribed displacement ux = v0 × t
(t denotes the time) is imposed.

Figure 18: Experimental set up for edge-cracked plate under impulsive loading: shaded region denotes the numerically
modeled region (left) and the plane strain FE model with boundary conditions (right). Also shown is the crack path
(dashed line) experimentally observed.

The FE mesh is depicted in Fig. 19 with a refinement of the region where the crack is going to appear. The
crack trajectory with respect to time is shown in Fig. 20. It can be seen that a good agreement of the crack path
with the experiment was obtained. The propagation angle is estimated to be around 69o, which agrees well with the
experimental prediction (70o). Although the overall crack path follows an inclined direction, from Fig. 20b, the initial
crack propagation shows a short vertical segment. Other researchers [37, 73, 74] also reported similar results, although
in [74] a very short vertical crack segment was present. In order to study mesh convergence of crack path, we performed
another simulation with a slightly different mesh, called mesh2 in the sequel (the other is called mesh1). The crack
path obtained with mesh2 is compared with the one obtained with mesh1 and the result is depicted in Fig. 21. As can
be seen, the crack paths are quite similar regardless of using different meshes.

6. Conclusions

In this paper, simple algorithms to generate cohesive surfaces into a finite element mesh was presented. The resulting
program, which is available for download without any cost on our website, is believed to be useful for researches on
fracture modelling of structure and material. The program is able to create both one and two dimensional cohesive

20

Figure 19: Edge-cracked plate under impulsive loading: unstructured mesh of three node triangle elements (46 832
bulk elements, 23 590 nodes) and zoom in of the region around the crack tip. The thick line denotes the initial
crack. After inserting interface elements, the mesh consists of 135 118 nodes with 66 853 four node interface elements.
Note that interface elements were not placed in the domain below the initial crack. The smallest element size (for
unstructured meshes consisting of triangle/quadrilateral elements, he was computed as the ratio of the element area
over the maximum edge length) is 0.27 mm which leads to the time step of 5× 10−9 s (0.1he/c).

elements, both linear and quadratic. In the current implementation, only the mesh created by Gmsh is supported and
the output format is tailored to our in-house FE code. Extension to other mesh formats, is, however, straightforward.
Future work would be to incorporate this directly into a good free mesh generator like Gmsh.

Also given in the paper was the flowchart of a general interface element implementation that works for any interface
element type in both 2D and 3D. This flowchart is interestingly very closed to the one of the phantom node method,
a simple version of XFEM, that has simplified the implementation of XFEM into existing FE codes.

Concerning fracture modelling using interface elements, as mentioned in the introduction, one remedy to the reliance
of the method on the use of a high dummy stiffness is to exactly constraint the interface elements and activate them
when a certain failure criterion is fulfilled. This technique was adopted in [19] but without implementation details.
It would be interesting to perform a comparative study between this technique and the discontinuous Galerkin based
cohesive interface elements [45, 20] which approximately constraint the interface elements in the pre-failure stage.

Acknowledgements

The author would like to thank Prof. Bert Sluys for the support during the author’s PhD time in TU Delft
and Dr. Clemens Verhoosel (Eindhoven University of Technology, The Netherlands) for the fruitful discussion on the
preliminary ideas of the meshing algorithm. The input on grain topology from Dr. Zahid Sabir (former PhD student at
Delft University of Technology, The Netherlands) is also gratefully acknowledged. The author would like to express the
gratitude towards Drs. Erik Jan Lingen and Martijn Stroeven at the Dynaflow Research Group, Houtsingel 95, 2719
EB Zoetermeer, The Netherlands for providing us the numerical toolkit jem/jive. Financial support of the Framework
Programme 7 Initial Training Network Funding under grant number 289361 ”Integrating Numerical Simulation and
Geometric Design Technology” is kindly acknowledged.

References

[1] D.S. Dugdale. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2):100–
104, 1960.

[2] G. Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture. Advanced Applied Mechanics,
7:55–129, 1962.

21

(a) t = 26 µs (b) t = 26 µs, zoom

(c) t = 40 µs (d) t = 75 µs

Figure 20: Edge-cracked plate under impulsive loading: crack path with respect to time. The unit of stresses is MPa.

22

(a) t = 75 µs, mesh1 (b) t = 100 µs, mesh2

Figure 21: Edge-cracked plate under impulsive loading: crack paths obtained with two meshes.

[3] A. Hillerborg, M. Moder, and P.-E. Petersson. Analysis of crack formation and crack growth in concrete by means
of fracture mechanics and finite elements. Cement and Concrete Research, 6(6):773–781, 1976.

[4] D. Dias-da Costa, J. Alfaiate, L.J. Sluys, and E. Júlio. A comparative study on the modelling of discontinuous
fracture by means of enriched nodal and element techniques and interface elements. International Journal of
Fracture, 161(1):97–119, 2010.

[5] T. Rabczuk. Computational methods for fracture in brittle and quasi-brittle solids: State-of-the-art review and
future perspectives. ISRN Applied Mathematics, 2013.

[6] J. C. Simo, J. Oliver, and F. Armero. An analysis of strong discontinuities induced by strain-softening in rate-
independent inelastic solids. Computational Mechanics, 12(5):277–296, 1993.

[7] F. Armero and C. Linder. Numerical simulation of dynamic fracture using finite elements with embedded discon-
tinuities. International Journal of Fracture, 160(2):119–141, 2009.

[8] C. Linder and F. Armero. Finite elements with embedded branching. Finite Elements in Analysis and Design,
45(4):280 – 293, 2009.

[9] D. Dias da Costa, J. Alfaiate, L.J. Sluys, and E. Júlio. A discrete strong discontinuity approach. Engineering
Fracture Mechanics, 76(9):1176 – 1201, 2009.

[10] J. M. Melenk and I. Babuška. The partition of unity finite element method: Basic theory and applications.
Computer Methods in Applied Mechanics and Engineering, 139:289–314, 1996.

[11] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without remeshing. International
Journal for Numerical Methods in Engineering, 46(1):131–150, 1999.

23

[12] N. Sukumar, D.L. Chopp, N. Moës, and T. Belytschko. Modeling holes and inclusions by level sets in the extended
finite element method. International Journal for Numerical Methods in Engineering, 190(47):6183—6200, 2001.

[13] N. Moës, M. Cloirec, P. Cartraud, and J.-F. Remacle. A computational approach to handle complex microstructure
geometries. Computer Methods in Applied Mechanics and Engineering, 192(28-30):3163–3177, 2003.

[14] T. Hettich and E. Ramm. Interface material failure modeled by the extended finite-element method and level sets.
Computer Methods in Applied Mechanics and Engineering, 195(37-40):4753–4767, July 2006.

[15] G. N. Wells and L. J. Sluys. A new method for modelling cohesive cracks using finite elements. International
Journal for Numerical Methods in Engineering, 50:2667–2682, 2001.

[16] T. P. Fries and T. Belytschko. The extended/generalized finite element method: An overview of the method and
its applications. International Journal for Numerical Methods in Engineering, 84(3):253–304, 2010.

[17] P.M.A. Areias and T. Belytschko. Analysis of three-dimensional crack initiation and propagation using the ex-
tended finite element method. International Journal for Numerical Methods in Engineering, 63:760–788, 2005.

[18] A. Simone, C. A. Duarte, and E. Van der Giessen. A generalized finite element method for polycrystals with
discontinuous grain boundaries. International Journal for Numerical Methods in Engineering, 67(8):1122–1145,
2006.

[19] C.V. Verhoosel and M.A. Gutiérrez. Modelling inter- and transgranular fracture in piezoelectric polycrystals.
Engineering Fracture Mechanics, 76(6):742–760, 2009.

[20] L. Wu, D. Tjahjanto, G. Becker, A. Makradi, A. Jérusalem, and L. Noels. A micromeso-model of intra-laminar
fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method. Engineering
Fracture Mechanics, 104(0):162 – 183, 2013.

[21] J.C.J. Schellekens and R. De Borst. A non-linear finite element approach for the analysis of mode-i free edge
delamination in composites. International Journal of Solids and Structures, 30(9):1239 – 1253, 1993.

[22] O. Allix, P. Ladevèze, and A. Corigliano. Damage analysis of interlaminar fracture specimens. Composite Struc-
tures, 31(1):61 – 74, 1995.

[23] G. Alfano and M. A. Crisfield. Finite element interface models for the delamination analysis of laminated com-
posites: mechanical and computational issues. International Journal for Numerical Methods in Engineering,
50(7):1701–1736, 2001.

[24] G.N.Wells. Discontinuous modelling of strain localisation and failure. PhD thesis, Delft University of Technology,
2001.

[25] J. J. C. Remmers, R. de Borst, and A. Needleman. A cohesive segments method for the simulation of crack growth.
Computational Mechanics, 31(1):69–77, 2003.

[26] C.G. Dávila, P.P. Camanho, and A. Turon. Effective simulation of delamination in aeronautical structures using
shells and cohesive elements. Journal of Aircraft, 45(2):663–672, 2008.

[27] A. Needleman. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics,
54(3):525–531, 1987.

24

[28] V. Tvergaard. Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering: A,
125(2):203 – 213, 1990.

[29] X.P. Xu and A. Needleman. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics
and Physics of Solids, 42(9), 1994.

[30] M. G. A. Tijssens, L. J. Sluys, and E. van der Giessen. Simulation of fracture of cementitious composites with
explicit modeling of microstructural features. Engineering Fracture Mechanics, 68(11):1245–1263, 2001.

[31] I. Carol, C. M. López, and O. Roa. Micromechanical analysis of quasi-brittle materials using fracture-based
interface elements. International Journal for Numerical Methods in Engineering, 52(1-2):193–215, 2001.

[32] A. Caballero, C.M. López, and I. Carol. 3D meso-structural analysis of concrete specimens under uniaxial tension.
Computer Methods in Applied Mechanics and Engineering, 195(52):7182–7195, 2006.

[33] J. F. Molinari, G. Gazonas, R. Raghupathy, A. Rusinek, and F. Zhou. The cohesive element approach to dynamic
fragmentation: the question of energy convergence. International Journal for Numerical Methods in Engineering,
69(3):484–503, 2007.

[34] R. Radovitzky, A. Seagraves, M. Tupek, and L. Noels. A scalable 3D fracture and fragmentation algorithm based
on a hybrid, discontinuous Galerkin, cohesive element method. Computer Methods in Applied Mechanics and
Engineering, 200(14):326 – 344, 2011.

[35] F. Cirak, M. Ortiz, and A. Pandolfi. A cohesive approach to thin-shell fracture and fragmentation. Computer
Methods in Applied Mechanics and Engineering, 194(21–24):2604–2618, 2005.

[36] G. Becker, C. Geuzaine, and L. Noels. A one field full discontinuous Galerkin method for Kirchhoff–Love shells
applied to fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 200(4546):3223 – 3241,
2011.

[37] P.A. Klein, J.W. Foulk, E.P. Chen, S.A. Wimmer, and H.J. Gao. Physics-based modeling of brittle fracture:
cohesive formulations and the application of meshfree methods. Theoretical and Applied Fracture Mechanics,
37(13):99 – 166, 2001.

[38] T. Rabczuk and T. Belytschko. Cracking particles: a simplified meshfree method for arbitrary evolving cracks.
International Journal for Numerical Methods in Engineering, 61(13):2316–2343, 2004.

[39] T. Rabczuk and T. Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving
cracks. Computer Methods in Applied Mechanics and Engineering, 196(2930):2777 – 2799, 2007.

[40] T. Rabczuk and G. Zi. A meshfree method based on the local partition of unity for cohesive cracks. Computational
Mechanics, 39(6):743–760, 2007.

[41] S. Bordas, T. Rabczuk, and G. Zi. Three-dimensional crack initiation, propagation, branching and junction
in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture
Mechanics, 75(5):943 – 960, 2008.

[42] T. Rabczuk, P. M. A. Areias, and T. Belytschko. A simplified mesh-free method for shear bands with cohesive
surfaces. International Journal for Numerical Methods in Engineering, 69(5):993–1021, 2007.

25

[43] Y. Doh Ha and F. Bobaru. Characteristics of dynamic brittle fracture captured with peridynamics. Engineering
Fracture Mechanics, 78(6):1156 – 1168, 2011.

[44] A. Agwai, I. Guven, and E. Madenci. Crack propagation in multilayer thin-film structures of electronic packages
using the peridynamic theory. Microelectronics Reliability, 51(12):2298 – 2305, 2011.

[45] J. Mergheim, E. Kuhl, and P. Steinmann. A hybrid discontinuous Galerkin/interface method for the computational
modelling of failure. Communications in Numerical Methods in Engineering, 20(7):511–519, 2004.

[46] A. Turon, C.G. Dávila, P.P. Camanho, and J. Costa. An engineering solution for mesh size effects in the simulation
of delamination using cohesive zone models. Engineering Fracture Mechanics, 74(10):1665–1682, July 2007.

[47] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin methods for
elliptic problems. SIAM Journal of Numerical Analysis, pages 1749–1779, 2001.

[48] V.P. Nguyen, O. Lloberas-Valls, M. Stroeven, and L. J. Sluys. Computational homogenization for multiscale
crack modelling. Implementational and computational aspects. International Journal for Numerical Methods in
Engineering, 89(2):192–226, 2012.

[49] V. P. Nguyen and H. Nguyen-Xuan. High-order B-splines based finite elements for delamination analysis of
laminated composites. Composite Structures, 102:261–275, 2013.

[50] F.P. van der Meer and L.J. Sluys. A numerical investigation into the size effect in the transverse crack tension
test for mode II delamination. Composites Part A: Applied Science and Manufacturing, 54(0):145 – 152, 2013.

[51] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures. John Wiley &
Sons, LTD - ISBN:0-471-98774-3, 2003.

[52] M. Ortiz and A. Pandolfi. Finite-deformation irreversible cohesive elements for three-dimensional crack-
propagation analysis. International Journal for Numerical Methods in Engineering, 44(9):1267–1282, 1999.

[53] J.H. Song, P. M. A. Areias, and T. Belytschko. A method for dynamic crack and shear band propagation with
phantom nodes. International Journal for Numerical Methods in Engineering, 67(6):868–893, 2006.

[54] T. Rabczuk, G. Zi, A. Gerstenberger, and W. A. Wall. A new crack tip element for the phantom-node method
with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 75(5):577–599, 2008.

[55] J. Mergheim, E. Kuhl, and P. Steinmann. A finite element method for the computational modelling of cohesive
cracks. International Journal for Numerical Methods in Engineering, 63:276–289, 2005.

[56] J. C. J. Schellekens and R. de Borst. On the numerical integration of interface elements. International Journal
for Numerical Methods in Engineering, 36(1):43–66, 1993.

[57] V. P. Nguyen, P. Kerfriden, and S. Bordas. Isogeometric cohesive elements for two and three dimensional composite
delamination analysis. Composites Part B: Engineering, 2013. http://arxiv.org/abs/1305.2738.

[58] M. Anvari, I. Scheider, and C. Thaulow. Simulation of dynamic ductile crack growth using strain-rate and
triaxiality-dependent cohesive elements. Engineering Fracture Mechanics, 73(15):2210 – 2228, 2006.

[59] C. Geuzaine and J. F. Remacle. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and
post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

26

[60] E. J. Lingen and M. Stroeven. Jem/Jive-a C++ numerical toolkit for solving partial differential equations.
http://www.habanera.nl/.

[61] X. Liu, R. Duddu, and H. Waisman. Discrete damage zone model for fracture initiation and propagation. Engi-
neering Fracture Mechanics, 92(0):1 – 18, 2012.

[62] M. A. Gutiérrez. Energy release control for numerical simulations of failure in quasi-brittle solids. Communications
in Numerical Methods in Engineering, 20:19–29, 2004.

[63] C. V. Verhoosel, J. J. C. Remmers, and M. A. Gutiérrez. A dissipation-based arc-length method for robust
simulation of brittle and ductile failure. International Journal for Numerical Methods in Engineering, 77(9):1290–
1321, 2009.

[64] F. van der Meer and L. Sluys. A phantom node formulation with mixed mode cohesive law for splitting in
laminates. International Journal of Fracture, 158(2):107–124, 2009.

[65] J.J.C. Remmers. Discontinuties in materials and structures- a unifying computational approach. PhD thesis, Delft
University of Technology, 2006.

[66] G.T. Camacho and M. Ortiz. Computational modelling of impact damage in brittle materials. International
Journal of Solids and Structures, 33(2022):2899 – 2938, 1996.

[67] G. Alfano and M. A. Crisfield. Solution strategies for the delamination analysis based on a combination of local-
control arc-length and line searches. International Journal for Numerical Methods in Engineering, 58(7):999–1048,
2003.

[68] A. Turon, P.P. Camanho, J. Costa, and C.G. Dávila. A damage model for the simulation of delamination in
advanced composites under variable-mode loading. Mechanics of Materials, 38(11):1072 – 1089, 2006.

[69] P. P. Camanho, C. G. Dávila, and M. F. de Moura. Numerical simulation of mixed-mode progressive delamination
in composite materials. Journal of Composite Materials, 37(16):1415–1438, 2003.

[70] G. Alfano and M. A. Crisfield. Solution strategies for the delamination analysis based on a combination of local-
control arc-length and line searches. International Journal for Numerical Methods in Engineering, 58:999–1048,
2003.

[71] Z. Shabir, E. van der Giessen, C. A. Duarte, and A. Simone. The role of cohesive properties on intergranular crack
propagation in brittle polycrystals. Modelling and Simulations in Materials Science and Engineering, 19(3):035006,
2011.

[72] J. F. Kalthoff and S. Winkler. Failure mode transition at high rates of shear loading. International Conference
on Impact Loading and Dynamic Behavior of Materials, 1:185–195, 1987.

[73] Z. Zhang and G. H. Paulino. Cohesive zone modeling of dynamic failure in homogeneous and functionally graded
materials. International Journal of Plasticity, 21(6):1195 – 1254, 2005.

[74] K. Park, G. H. Paulino, W. Celes, and R. Espinha. Adaptive mesh refinement and coarsening for cohesive zone
modeling of dynamic fracture. International Journal for Numerical Methods in Engineering, 92(1):1–35, 2012.

27

http://www.habanera.nl/

	Introduction
	Finite element formulation
	Strong and weak forms
	Discretization
	Linearisation

	Automatic generation of interface elements
	Interface elements along a material interface
	Interface elements at grain boundaries
	Interface elements at every inter-element boundaries
	Discontinuous Galerkin interface elements

	Installation and usage
	Numerical examples
	Debonding of material interface
	Multi-delamination of a double cantilever beam
	Intergranular fracture of polycrystal
	Some 3D problems
	Dynamic fracture simulation with dG method

	Conclusions

