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Composites: A Myriad of Microstructure Independent RelationsGraeme W. Miltona�aDepartment of Mathematics, The University of Utah,Salt Lake City, Utah 84112, U.S.A.Typically, the elastic properties of composite materials are strongly microstructure de-pendent. So it comes as a pleasant surprise to come across exact formulae for (or linking)e�ective moduli that are universally valid no matter how complicated the microstructure.Such exact formulae provide useful benchmarks for testing numerical and actual experi-mental data, and for evaluating the merit of various approximation schemes. This paperpresents a sampling of results in the �eld.1. INTRODUCTIONThe word myriad has its origin as the Greek word for 10,000. It would be a real chal-lenge to present that many microstructure independent relations amongst the e�ectiveproperties of composites, especially in a short paper. Instead this article presents anappetizer of results pertaining mostly to elasticity and thermoelasticity. The sampling issu�ciently diverse to encompass the main ideas used to generate microstructure indepen-dent relations in many di�erent contexts, including thermoelectricity and piezoelectricity,where a host of microstructure independent results have been obtained: see [1{5] andreferences therein.2. UNIFORM FIELDSConsider a bimetal strip. When the temperature is raised the strip bends. This isdue to the di�erence in thermal expansion of the two metals. Now consider the bimetalstrip immersed in water. As the pressure in the water is increased the strip bends dueto the di�erence in bulk moduli of the two metals. Now one can imagine applying justthe right combination of temperature increase and water pressure increase or decrease soboth phases expand at exactly the same rate and there is no distortion. Of course thissame argument applies not just to bimetal strips but to any geometric con�guration oftwo isotropic phases and in particular to a two-phase composite.Suppose the two-phases are isotropic so that a block of phase 1 or phase 2 immersedin a 
uid heat bath at temperature T and pressure p expands or contracts isotropicallyas T and p are varied. Let �1(T; p) and �2(T; p) denote the mass density of phase 1 or�The author is grateful to Yury Grabovsky for many helpful comments on the manuscript and thanks him,Johan Helsing, and Alexander Movchan for permission to discuss joint work prior to publication. Thesupport of the National Science Foundation through grants DMS-9501025 and DMS-9402763 is gratefullyacknowledged.



2phase 2 relative to some base temperature T0 and base pressure p0: thus 1=�1(T; p) and1=�2(T; p) measure the relative change in the volume of each phase as the temperatureand pressure changes from (T0; p0) to (T; p). According to this de�nition we have�1(T0; p0) = �2(T0; p0) = 1: (1)So the two surfaces �1(T; p) and �2(T; p) intersect at (T; p) = (T0; p0). Unless the surfacesare tangent at this point they will intersect along a trajectory passing through (T0; p0).Along this trajectory (T (h); p(h)) parameterized by h both phases expand or contract atan equal rate.Now suppose a composite is manufactured at the base temperature T0 and pressurep0 with no internal residual stress. When this composite is placed in the heat bath attemperature T and pressure p there is no reason to suppose the composite will expandor contract isotropically as T and p are varied. Indeed by considering the example of thebimetal strip it is clear that internal shear stresses and warping can occur. However alongthe trajectory (T (h); p(h)) the composite will expand isotropically and its density relativeto its density at the base temperature and pressure will be��(T (h); p(h)) = �1(T (h); p(h)) = �2(T (h); p(h)) 8h: (2)Rewriting this relation as 1=��(T (h); p(h)) = 1=�1(T (h); p(h)) = 1=�2(T (h); p(h)) anddi�erentiating with respect to h, gives3��dT (h)dh � 1�� dp(h)dh = 3�1dT (h)dh � 1�1 dp(h)dh = 3�2dT (h)dh � 1�2 dp(h)dh ; (3)where�a(T; p) = ��@(1=�a)@p ��1; �a(T; p) = 13 @(1=�a)@T ; a = 1; 2 or �; (4)are the tangent bulk moduli and thermal expansion constants of the phases and compositealong the trajectory. Provided the trajectory has been suitably parameterized dp=dh anddT=dh will not be both zero. Hence the determinant of the system of equations (3) mustvanish which gives the well-known relation�� = �1(1=�� � 1=�2)� �2(1=�� � 1=�1)1=�1 � 1=�2 ; (5)between e�ective bulk moduli and e�ective thermal expansion coe�cients due to Levin[6]. Thus (2) is a non-linear generalization of Levin's formula. This simple observationis joint but unpublished work with J. Berryman presented in Pittsburgh in 1994 at theSIAM Meeting on Mathematics and Computation in the Materials Sciences.There is another viewpoint which sheds light on Levin's work. Let us begin with a resultthat applies to elasticity, and not just to thermoelasticity. Suppose the elasticity tensor�eld of a composite has the property that there exist symmetric matrices v and w withC(x)v = w for all x. Then the uniform strain �eld which equals v everywhere and theuniform stress �eld which equals w everywhere are solutions of the elasticity equations.Consequently the e�ective tensor C� must satisfy C�v = w. (This remark was made to



3me by A. Cherkaev, although in the context of thermal expansion it dates back to work ofCribb [7]; see also Dvorak [8] who extended the idea.) In an isotropic polycrystal wherethe pure crystal has cubic symmetry this condition is satis�ed, with v = I, and the resultimplies Hill's microstructure independent formula [9] for the e�ective bulk modulus ofsuch a polycrystal.A corollary is that if in a two phase composite the tensor C1 � C2 is singular with(C1 � C2)v = 0 then (C� � C2)v = 0: (6)Now consider the equations of thermoelasticity. These take the form� �(x)&(x) � = � S(x) �(x)�(x)T cp(x)=T0 ���(x)� � with r � � = 0; � = [ru+ (ru)T ]=2; (7)where � = T � T0 is the change in temperature T measured from some constant basetemperature T0, �(x) and �(x) are the strain and stress �elds, &(x) is the local increasein entropy per unit volume over the entropy of the state where � = � = 0, S(x) is thecompliance tensor, �(x) is the tensor of thermal expansion and cp(x) is speci�c heat perunit volume at constant stress. Macroscopically the average �elds satisfy� h�ih&i� = � S� ���T� c�p=T0 �� h�i� � ; (8)and this serves to de�ne the e�ective elasticity tensor S�, the e�ective tensor of thermalexpansion S�, and the e�ective constant of speci�c heat at constant stress c�p.The important observation is that because the entropy �eld &(x) is not subject toany di�erential constraints, we can ignore it completely when computing the e�ectivecompliance tensor and e�ective thermal expansion tensor. In other words it su�ces towork with the reduced set of equations�(x) =M (x)��(x)� � with r � � = 0; � = [ru+ (ru)T ]=2; (9)where for three-dimensional thermoelasticity M(x) = (S(x) �(x) ) is representableas a 6 � 7 matrix in an appropriate basis. Now in a two phase composite the matrixM 1�M 2, like any matrix which has more columns than rows, is necessarily singular, i.e.there necessarily exists a v such that (M 1�M 2)v = 0. Consequently the e�ective tensorM � must satisfy (M ��M 2)v = 0. When the phases are isotropic this reduces to Levin'sformula (5). When the phases are anisotropic (but each with constant orientation) itreduces to the formula of Rosen and Hashin [10]. Having obtained particular solutions forthe stress and strain �eld with a non-zero value of � it is an easy matter to determine thecorresponding entropy �eld &(x) and thereby obtain a formula for the e�ective constantof speci�c heat c�p in terms of the e�ective elasticity tensor [10].The same reasoning can be applied to obtain an exact expression for e�ective constantof speci�c heat and e�ective thermal expansion tensor in terms of the e�ective compli-ance tensor for polycrystaline materials constructed from a single crystal [11,12]. Thecompliance tensor S0 and thermal expansion tensor �0 of the single crystal must be suchthat S0I and �0 are both uniaxial with a common axis of symmetry. This is ensured ifthe crystal has hexagonal, tetragonal or trigonal symmetry. The contact between crystals



4need not necessarily be ideal; slippage along grain boundaries is allowed [13]. When theconstitutive relation involves more than one constant �eld in addition to �, such as hu-midity causing expansion due to moisture absorption, then uniform �eld arguments yieldexact relations even when S0I and �0 are biaxial, provided they share the same threeprincipal axes [14].There is also a direct mathematical correspondence between the equations of poroelas-ticity and those of thermoelasticity (the 
uid pressure plays the role of the temperature).Consequently these exact microstructure independent relations extend to e�ective poroe-lastic moduli of two phase media [15,16].Uniform �eld arguments are also important three dimensional elastic two phase mediawhen the microstructure and stress and strain �elds are independent of the x3 coordinate.The constitutive relation can be expressed in the form� g(x)�33(x)� = � L(x) �(x)�(x)T C3333(x)��h(x)�33 � ; (10)whereL = 0BBBBB@ C1111 C1122 p2C1112 p2C1123 �p2C1113C1122 C2222 p2C2212 p2C2223 �p2C2213p2C1112 p2C2212 2C1212 2C2312 �2C1312p2C1123 p2C2223 2C2312 2C2323 �2C2313�p2C1113 �p2C2213 �2C1312 �2C2313 2C1313
1CCCCCA ; (11)and� = 0BBBBB@ C1133C2233p2C3312p2C3323�p2C3313

1CCCCCA ; g = 0BBBBB@ �11�22p2�12E 01E 02
1CCCCCA ; h = 0BBBBB@ �11�22p2�12D01D02

1CCCCCA ; (12)in which E 01(x1; x2), E 02(x1; x2), D01(x1; x2), and D02(x1; x2) are components of the vector�eldsE 0 = �E 01E 02 � = � p2�23�p2�13 � ; D0 = �D01D02 � = � p2�23�p2�13 � : (13)Here the Cijk` are the cartesian components of the elasticity tensor �eld C(x1; x2). Let usalso introduce two-dimensional stress and strain �elds�0 = � �11 �12�12 �22 � ; �0 = � �11 �12�12 �22 � : (14)Now the three dimensional displacement �eld is necessarily of the form u(x) = v(x1; x2)+x3w where w is constant, and this together with the constraints on the three dimensionalstress �eld �(x) implies thatr�E0 = 0; r �D0 = 0; r � �0 = 0; � = [ru0 + (ru0)T ]=2; (15)and that �33 [like � in the thermoelastic problem (7)] is constant, where u0 = (v1; v2) is atwo dimensional displacement �eld. Thus if we interpret E0 and D0 as two-dimensional



5electric and electric displacement �elds, then the equation g = Lh can be regarded as atwo-dimensional piezoelectric equation incorporating a positive de�nite symmetric tensorL(x), which will have an associated e�ective tensor L�. Since the �eld �33(x1; x2) isnot subject to any di�erential constraints we can drop it from the equation (10). Byapplying the uniform �eld argument we thereby obtain expressions for the componentsof the three-dimensional e�ective elasticity tensor C� in terms of the components of thetwo-dimensional e�ective piezoelectric tensor L�, assuming it is a two-phase medium. Ifthe medium has more than two phases then, by setting �33 = 0, 15 of the 21 componentsof C� can be determined from the elements of L�.When the elasticity tensors C1 and C2 of the two phases are both invariant underthe re
ection transformation x3 ! �x3 then the two-dimensional piezelectric problemdecouples into a planar elastic problem and a two-dimensional dielectric problem (theantiplane elastic problem). In particular if both phases are elastically isotropic and thecomposite is transversely isotropic, then the relation between C� and L� reduces to Hill'sformulae [17] for C� in terms of the e�ective bulk and shear moduli of the planar elasticproblem and the e�ective axial shear modulus of the antiplane elastic problem.3. TRANSLATING BY A NULL{LAGRANGIANThe translation discussed below originates in the work of Lurie and Cherkaev [18] onthe plate equation. Its existence accounts [19] for certain invariance properties of thestress �eld discovered by Dundurs [20]. More general stress invariance properties, under alinear rather than a constant shift of the compliance tensor, have recently been discoveredby Dundurs and Markensco� [21]. The following analysis is largely based on the papersof Cherkaev, Lurie and Milton [22] and Thorpe and Jasiuk [19].In a two-dimensional, simply-connected, possibly inhomogeneous, elastic body withno body forces present the components of the stress �eld � can be expressed in termsof a potential �, known as the Airy stress function, through the equations �11 = �;22,�12 = ��;12 and �22 = �;11. Here as elsewhere we use a comma in a subscript to denotedi�erentiation with respect to the indices that follow the comma: thus, for example,�;22 = @2�=@x22. The relation between the stress and Airy stress function can be expressedin the equivalent form� =Rrr� where rr� = ��;11 �;12�;12 �;22 � ; (16)and R is the fourth order tensor with cartesian elementsRijk` = �ij�k` � (�ik�j` + �i`�jk)=2; (17)whose action in two-dimensions is to rotate a matrix by 90�. Now the key point is torecognize that rr� satis�es the same di�erential constraints as a strain �eld: it derivesfrom the \displacement �eld" r�. In other words, the stress �eld rotated at each pointby 90� produces a strain �eld. We use this observation to rewrite any solution of thetwo-dimensional elasticity equations� = S�; � = [ru+ (ru)T ]=2; r � � = 0; (18)



6in the equivalent form�0 = S 0�; �0 = [ru0 + (ru0)T ]=2; r � � = 0; (19)whereS 0 = S + tR; u0 = u+r�: (20)Evidently if the strain and stress �elds � and � solve the elasticity equations in a mediumwith compliance tensor S then the strain and stress �elds �0 and � solve the elasticityequations in a translated medium with compliance tensor S 0. The basic Euler-Lagrangeequations for the Airy stress function are the same in both media: hence the name null-Lagrangian. General characterizations of null-Lagrangians, or quasicontinuous functionalshave been given by Ball, Currie and Olver [23] and by Murat [24].When the medium under consideration is a composite, we have from (19) thath�0i = hS�i+ tRh�i = (S� + tR)h�i: (21)Since it is this linear relation which de�nes the e�ective tensor S 0� of the translatedmedium we deduce thatS 0� = S� + tR: (22)Thus the e�ective tensor undergoes precisely the same translation as the local tensor.For example, consider a locally isotropic planar elastic material which is macroscopicallyelastically isotropic. The local compliance tensor S(x) and e�ective compliance tensorS� have elementsSijk`(x) = (�ik�j` + �i`�jk)=2E(x)� [�ij�k` � (�ik�j` + �i`�jk)=2]�(x)=E(x);S�ijk`(x) = (�ik�j` + �i`�jk)=2E� � [�ij�k` � (�ik�j` + �i`�jk)=2]��=E�; (23)where E(x) and E� are the local and e�ective in plane Young's modulus and �(x) and�� are the local and e�ective in plane Poisson's ratio. It follows from (17) and (20) thatunder translation these moduli transform toE 0(x) = E(x); � 0(x) = �(x)� tE(x); (24)i.e. the Young's modulus remains unchanged, while the ratio of the Poisson's ratio toYoung's modulus is shifted uniformly by �t. Under this translation the result (22) impliesthat the e�ective Young's modulus E� and Poisson's ratio �� transform in a similar fashion,E 0� = E�; � 0� = �� � tE�: (25)A nice application of this result is to a metal plate with constant moduli E and � thathas a statistically isotropic distribution of holes punched into it. Under the translation(24) the holes remain holes (since the holes e�ectively correspond to a material withzero Young's modulus) while the Young's modulus E of the metal is unchanged, andits Poisson's ratio is shifted from � to � � tE. By dimensional analysis it is apparentthat the ratio, E�=E can only depend on � and on the geometry. But (25) implies thisratio remains invariant as t and hence � varies. We conclude that E�=E only depends



7on the geometry, and is not in
uenced by �. This result was observed numerically byDay, Snyder, Garboczi and Thorpe [25] and subsequently proved by Cherkaev, Lurie andMilton [22]. The extent to which it holds in three dimensions was explored by Christensen[26].Moreover when there are so many holes that the plate is about to fall apart, then E� isclose to zero, and (25) implies that �� is also independent of � in this limit [25,19]. Thisis a striking result: no matter what the geometry of the con�guration happens to be (solong as it is just about to fall apart) the e�ective Poisson's ratio takes a universal valuewhich is independent of both the Young's modulus and the Poisson's ratio of the plate.Translations are also useful for deriving microstructure independent results in the con-text of three-dimensional elasticity. The following is an extension of a two-dimensionalargument [18,22,19] used to rederive Hill's result [17] for the e�ective bulk modulus of alocally isotropic planar elastic medium with constant shear modulus. [22,19].First consider the rather extreme example of a locally isotropic three-dimensionalmedium with a compliance tensor S(x) with cartesian elementsSijk`(x) = �ij�k`=9�(x): (26)This material has in�nite shear modulus and �nite bulk modulus �(x) , i.e. at each pointits Poisson's ratio is �1. (Although seemingly unphysical, materials with Poisson's ratioarbitrarily close to �1 can in fact be constructed: see [27,28] and references therein.)The deformation of the material is conformal since any change of angles corresponds toshear. In three dimensions the only conformal mappings are inversion in a sphere anduniform dilation, and since we are looking for periodic solutions the �rst can be ruledout. Therefore the strain �(x) must equal �I where � is constant. The three dimensionalstress �eld �(x) being symmetric and divergence-free derives from a 3 � 3 symmetricmatrix valued potential �(x):�(x) = r� (r� �(x))T ; (27)Substituting this in the constitutive equation S� = � = �I gives an equation for thematrix potential �:Tr[r� (r� �(x))T ] = 9�(x)�: (28)Since this is a single equation it seems plausible to look for solutions of the form�(x) = �(x)I with �(x) = �0(x) + (x � x)f; (29)in which the scalar function �0(x) is periodic and f is a constant determining the averagevalue of the stress. The associated stress �eld is� = I���rr�; (30)which when substituted in the constitutive law gives the equation2��0 = 9�(x)�� 6f; (31)



8for the periodic potential �0. This has a solution if and only if the average value of theright hand side is zero, which thereby determines the value of f and the associated averagevalue of the stress:f = 3h�(x)i�=2; h�i = 2fI = 3h�(x)i�I = 3h�(x)ih�i: (32)Clearly the e�ective bulk modulus of this composite is microstructure independent andequal to�� = h�(x)i: (33)Now let T denote the fourth order tensor with cartesian elementsTijk` = �ij�k`=2� (�ik�j` + �i`�jk)=2: (34)This tensor has the important property that for stresses of the form (30) the �eld T � =rr� satis�es the same di�erential constraints as a strain: it derives from the \displace-ment �eld" r�. The translated medium S + tT now will have three dimensional inversebulk and shear moduli1=�0(x) = 1=�(x) + 3t=2; 1=�0 = �2t: (35)By applying the same sort of analysis as before it follows that inverse e�ective bulk andshear moduli of the translated medium equal1=�0� = 1=�� + 3t=2 = 1=h�(x)i+ 3t=2; 1=�0� = �2t: (36)By combining these formulae we see that a locally isotropic elastic medium with constantshear modulus �0 and bulk modulus �0(x) has e�ective shear and bulk moduli �0� and �0�given by�0� = �; 14=�0� + 3=�0 = � 14=�0(x) + 3=�0� (37)which is Hill's result [17].4. DUALITY FOR ANTIPLANE ELASTICITYThe duality relations for antiplane elasticity have their origins in the work of Keller[29] and Dykhne [30]. Mendelson [31], upon whose work the following treatment is based,extended their analysis to arbitrary inhomogeneous anisotropic planar media.Let u(x1; x2) be the vertical displacement in a state of anti-plane shear and let '(x1; x2)be the shear stress potential. The equations of antiplane elasticity take the form� �31�32 � =m(x)� 2�312�32 � ; � �31�32 � = � ';2�';1 � ; � 2�312�32 � = �u;1u;2 � ; (38)where m(x1; x2) is a symmetric 2� 2 anti-plane shear elasticity matrix. Now let us intro-duce a new vertical displacement u0(x1; x2) = '(x1; x2) and a new shear stress potential



9'0(x1; x2) = �u(x1; x2). The associated stress and strain �eld components satisfy therelations��031�032 � = � '0;2�'0;1 � = R? � 2�312�32 � ; � 2�0312�032 � = � u0;1u0;2 � = R? � �31�32 � ; (39)whereR? = � 0 1�1 0� (40)is the matrix for a 90� rotation. In two dimensions a curl free vector �eld when rotatedpointwise by 90� produces a divergence free vector �eld and vice-versa. This key factexplains why the new stress and strain �elds given by (39) satisfy the required di�erentialconstraints. These �elds are linked through the constitutive relation��031�032 � =m0 � 2�0312�032 � ; (41)in whichm0(x) = [RT?m(x)R?]�1 =m(x)=det[m(x)]: (42)In other words these potentials solve the antiplane shear problem in a dual medium withanti-plane shear elasticity matrix m0(x).By taking averages of the �elds we deduce that the dual medium has e�ective shearmatrixm0� = [RT?m�R?]�1 =m�=det[m�]; (43)wherem� is the e�ective shear matrix of the original medium. Thus duality relations linkthe e�ective tensors of two di�erent media. If the medium is a composite of two isotropicphases, then m(x) and m0(x) take the formm(x) = �(x)�1I + (1� �(x))�2I; m0(x) = [�(x)�2I + (1� �(x))�1I]=�1�2; (44)where �1 and �2 are the shear moduli of the two phases and �(x) is the characteristicfunction representing the microstructure of phase 1 (taking the value 1 when x is inphase 1 and zero otherwise.) So, the phase interchanged medium is obtained from thedual medium by multiplyingm0(x) by the factor �1�2 and therefore its e�ective tensor isobtained by multiplying m0� by the same factor �1�2. If we consider the e�ective tensorm� as a function m�(�1; �2) of the two-phases then (43) impliesm�(�2; �1) = �1�2m�(�1; �2)=det[m�(�1; �2)]: (45)It may happen that the geometry is phase interchange invariant like a checkerboard. Thenm�(�2; �1) = m�(�1; �2) and it follows from the above equation that det[m�(�1; �2)] =�1�2. In particular if the e�ective shear matrix is isotropic then we havem� = ��I where�� = p�1�2 [30]. By this procedure we have obtained an exact expression for the e�ectiveantiplane shear modulus �� of the composite without solving for the �elds directly.



105. DUALITY FOR PLANAR ELASTICITYThe duality relations for incompressible planar elastic media discussed here are due toBerdichevski [32]. The extension of the duality relations to compressible planar elasticmedia with a constant bulk modulus and to certain other anisotropic planar media is dueto Helsing, Milton and Movchan [33].Consider a planar elastic medium which is incompressible at each point. Since r�u = 0there exists a potential  (x) such that u1 =  ;2 and u2 = � ;1. Let us introduce thematricesa1 = 1p2 � 1 00 1� ; a2 = 1p2 � 1 00 �1� ; a3 = 1p2 � 0 11 0� ; (46)as a basis on the space of 2�2 symmetric matrices. The two-dimensional stress and strain�elds �(x) and �(x) can be expanded in this basis,�(x) = �1(x)a1 + �2(x)a2 + �3(x)a3; �(x) = �2(x)a2 + �3(x)a3; (47)where the coe�cients satisfy the equations� �2�3 � = S(x)��2�3 � ; � �2�3 � = 1p2 � 2 ;12 ;22 �  ;11 � ; ��2�3 � = 1p2 ��;22 � �;11�2�;12 � ; (48)and �1 = (�;11+�;22)=p2. Here the 2�2 matrix S(x) represents the non-singular part ofthe compliance tensor in this basis and �(x) is the Airy stress function. We now introducedual potentials �0(x1; x2) =  (x1; x2) and  0(x1; x2) = ��(x1; x2) and the associated stressand strain �eld components� �02�03 � = 1p2 � 2 0;12 0;22 �  0;11 � = R? � �2�3 � ; � �02�03 � = 1p2 ��0;22 � �0;11�2�0;12 � = R? � �2�3 � ;(49)and �01 = (�0;11 + �0;22)=p2. These �eld components satisfy the constitutive relation� �02�03 � = S0(x)��02�03 � where S0(x) = [RT?S(x)R?]�1 = S(x)=det[S(x)]: (50)In other words the dual potentials solve the planar elasticity equations in an incompressiblemedium with S0(x) being the non-singular part of the compliance tensor in the basis(46). By taking averages of the �elds we deduce that the non-singular part of the e�ectivecompliance tensor for the dual medium isS 0� = [RT?S�R?]�1 = S�=det[S�]; (51)in which S� is the non-singular part of the compliance tensor of the original medium inthe basis (46).As an example, consider an isotropic incompressible planar elastic composite of twoisotropic phases. Then the matrices S(x) and S� take the formS(x) = �(x)I=(2�1) + (1� �(x))I=(2�2); S� = I=(2��); (52)



11where �1, �2 and �� are the shear moduli of the phases and composite, while �(x) is thecharacteristic function representing the microstructure of phase 1 (taking the value 1 whenx is in phase 1 and zero otherwise.) Then, by direct analogy with the relation (45) forantiplane shear, we see that the e�ective shear modulus �� as a function ��(�1; �2) of theshear moduli of the phases satis�es the phase interchange relation ��(�1; �2)��(�2; �1) =�1�2. By translation we can extend this result to two phase planar elastic composites thathave compressible phases sharing a common bulk modulus �. Then the phase interchangerelation takes the formE�(E1; E2)E�(E2; E1) = E1E2; (53)where E�(E1; E2) is the e�ective in plane Young's modulus expressed as a function of thein-plane Young's moduli E1 and E2 of the two phases. In particular if the composite isphase interchange invariant, like a two-dimensional checkerboard, then (53) implies itse�ective in plane Young's modulus is pE1E2. If the bulk modulus is not the same in bothphases then Gibiansky and Torquato [34] have shown that the e�ective elastic moduli ofthe composite and phase interchanged material are linked by inequalities which reduce tothe relation (53) when the bulk moduli are equal.A related example is that of an isotropic two-dimensional polycrystal of incompressiblecrystals. The individual crystals, being incompressible, necessarily have square symmetryand are characterized by two shear moduli �(1) and �(2). The duality result (51) impliesthat the e�ective shear modulus �� of the polycrystal is given by the formula �� =q�(1)�(2) of Lurie and Cherkaev [18]. Using translations they generalized this result totwo-dimensional polycrystals, comprised of compressible grains with square symmetryand found that the e�ective shear modulus �� of the polycrystal is given by�� = ��1 +q(�+ �(2))(�+ �(1))=(�(1)�(2)) ; (54)where �, �(1) and �(2) are the planar bulk and two shear moduli of the crystal.More generally, planar elastic duality transformations can be applied whenever thereexists a matrix v and constant t such that (S(x)� tR)v = 0 for all x [33]. High accuracynumerical results for the e�ective compliance tensor of periodic media comprised of twoorthotropic phases con�rm the predictions of the theory.6. LINKING ANTIPLANE AND PLANAR ELASTICITY PROBLEMSGiven that duality relations hold for both antiplane and planar elasticity, one mightwonder if these problems are are linked in some way. Such a link would be a surprisebecause antiplane problems involve a second order shear matrix, whereas planar elasticproblems involve a fourth order elasticity tensor. A formal similarity between incom-pressible elasticity and antiplane elasticity is known [35] but this does not provide acorrespondence between the �elds solving the planar and antiplane problems. Here weestablish a direct correspondence. The ensuing analysis is based on the papers of Miltonand Movchan [36,37] and Helsing, Milton and Movchan [33].



12The constitutive relation in a simply connected, planar, locally orthotropic medium,with the axes of orthotropy aligned with the coordinate axes takes the form0B@ u1;1u2;2(u1;2 + u2;1)=p21CA = S 0B@ �11�22p2�211CA ; S = 0B@ s1 s2 0s2 s4 00 0 s61CA ; (55)and the equilibrium constraint r � � = 0 implies there exist stress potentials �1(x) and�2(x) such that� �11 �12�21 �22 � = � �1;2 �2;2��1;1 ��2;1 � : (56)Let us substitute these expressions back into the constitutive law and into the relation�12 = �21, implied by symmetry of the stress �eld. Manipulating the resulting fourequations so the terms involving derivatives with respect to x2 appear on the left whileterms involving derivatives with respect to x1 appear on the right gives an equivalent formof the elasticity equations�;2 =N�;1 (57)introduced by Ingebrigtsen and Tonning [38], where� = 0BBB@ u1u2�1�21CCCA ; N = 0BBB@ 0 �1 �s6 0s2=s1 0 0 s22=s1 � s41=s1 0 0 s2=s10 0 �1 0 1CCCA : (58)The matrixN(x) is known as the fundamental elasticity matrix. The associated e�ectivefundamental elasticity matrix N � governs the relation between the average �elds,h�;2i =N �h�;1i; (59)and is related to the e�ective compliance matrix S� in the same way that the fundamentalelasticity matrix N(x) is related to the local compliance matrix S(x).Now notice that the equations can be rewritten in the equivalent form�0;2 =N 0�0;1; h�0;2i =N 0�h�0;1i; (60)where�0(x) =K�(x); N 0(x) =K�1N(x)K; N 0� =K�1N �K; (61)and K is an arbitrary constant, non-singular 4 � 4 matrix. In other words, when thefundamental matrix �eld N(x) undergoes a constant similarity transformation then thee�ective fundamental matrix N � undergoes the same similarity transformation. Thetranslation of the compliance tensor discussed in section 3 corresponds a particular sim-ilarity transformation of the fundamental matrix, as do the duality transformations forantiplanar and planar elasticity. (For antiplane elasticity the associated fundamental ma-trix is a 2� 2 matrix). Other duality transformations of the fundamental matrix form ofthe equations have been analysed by Nemat-Nasser and Ni [39].



13Similar mappings between equivalent sets of equations, obtained by taking linear com-binations of potentials and 
uxes separately, have been applied to coupled �eld problemsby Straley [1] and Milgrom and Shtrikman [2] among others. For media with isotropicphases they use these mappings to transform to a diagonal form of the equations whereno couplings are present, and thereby obtain exact relations between the e�ective thermo-electric moduli in a two-phase medium. By mixing the potentials and 
ux potentials oneobtains a more general class of equivalence transformations for two-dimensional coupled�eld problems (see Milton [40], Benveniste [5] and references therein). Under these thetensor entering the constitutive law undergoes a fractional linear transformation. Suchtransformations are equivalent to the similarity transformations of the fundamental ma-trices considered here. Working with the fundamental matrices has the advantage thatthe transformation takes a simpler form and is therefore easier to analyze.For simplicity, let us suppose the moduli are such that for all x�(x) = (s2(x) + s6(x))2 � s1(x)s4(x) > 0: (62)Then the eigenvalues of the N(x) at each point x are�1 = ��2 = �i�1; �3 = ��4 = �i�2; (63)where �1(x) and �2(x) are the two real positive roots of the polynomials1(x)�4 � 2(s2(x) + s6(x))�2 + s4(x) = 0: (64)The corresponding eigenvectors arev1 = 0BBB@ �p1i�1p2i�11 1CCCA ; v2 = 0BBB@ �p1�i�1p2�i�11 1CCCA ; v(j)3 = 0BBB@ �p2i�2p1i�21 1CCCA ; v(j)4 = 0BBB@ �p2�i�2p1�i�21 1CCCA ; (65)in whichp1(x) = �s6(x) +q�(x)=2; p2(x) = �s6(x)�q�(x)=2: (66)Now suppose p1 and p2 do not depend on x. (This holds if and only if s6 and � areboth independent of x.) Then v1 and v2 will span a two-dimensional space that doesnot depend on x, and v3 and v4 will span a two-dimensional space that does not dependon x. Thus with an appropriate choice of K the matrix N 0(x) will be block diagonal.Speci�cally, the choiceK = 0BBB@�p1 0 0 �p20 p2 p1 00 1 1 01 0 0 �1 1CCCA gives N 0 = 0BBB@ 0 �1 0 0�21 0 0 00 0 0 �220 0 �1 0 1CCCA : (67)As a consequence the equation �0;2 = N 0�0;1 decouples into a pair of equations that canbe expressed in the form� �02;2��02;1 � =m1 � �01;1�01;2 � ; � �03;2��03;1 � =m2 � �04;1�04;2 � ; (68)



14where m1(x) and m2(x) are the 2� 2 matrix valued �eldsm1 = ��21 00 1� ; m2 = ��22 00 1� : (69)These can be regarded as equations of antiplane elasticity in two di�erent inhomogeneousanisotropic media withm1(x) andm2(x) being the antiplane shear matrix �elds of thesemedia. In other words, when s6 is constant and � is constant and positive, the originalplanar elasticity equations can be reduced to a pair of uncoupled antiplane elasticityequations. The uniform �eld argument implies that when s6 is constant the e�ectivecompliance matrix S� is necessarily orthotropic with its axes aligned with the co-ordinateaxes having s�6 = s6. From the e�ective antiplane shear matricesm�1 = ��2�1 00 1� ; m�2 = ��2�2 00 1� ; (70)associated withm1(x) andm2(x) we can compute the remaining elements s�1 s�2 and s�4of the e�ective compliance matrix S� associated with S(x) by solving the three equations(s�2 + s�6)2 � s�1s�4 = �; s�1�4�j � 2(s�2 + s�6)�2�j + s�4 = 0; j = 1; 2: (71)This correspondence between the moduli of the e�ective antiplane shear matrices andthe moduli of the e�ective compliance tensor has been veri�ed numerically [33]. Whens6 is constant and � is constant and negative there is still a correspondence with an-tiplane elasticity: the original planar elasticity equations can then be reduced to a singleviscoelastic antiplane problem, with a complex shear matrix �eld m(x).7. A QUESTION OF PERCOLATIONThe following is joint work with Yury Grabovsky. For more details, and for referencesto the relevant results from partial di�erential equation theory, see [41].When we think of percolation it is usually in the context of current 
ow, where thecurrent may be electrical, thermal or 
uid 
ow. Perhaps one is considering a compositeof two isotropic phases where phase 1 is permeable to current while phase 2 is imperme-able to it. Or perhaps one is considering a polycrystal where each individual crystallinegrain only allows the current to 
ow in certain directions within that crystal. At a per-colation transition the rank of the e�ective conductivity or permeability tensor changes.For isotropic three-dimensional composites of two isotropic phases. the transition is froma tensor of rank 0, when phase 2 blocks all current 
ow, to a tensor of rank 3, whenpaths of phase 1 form a connected labyrinth of in�nite extent. In the context of elas-ticity we can study the analogous percolation question: given that the local compliancetensor (or local elasticity tensor) is singular in some parts or in all of the material, is therank of the e�ective compliance tensor (or e�ective elasticity tensor) dependent on themicrostructure?Curiously, the rank of the e�ective compliance tensor is independent of the microstruc-ture in a planar elastic material where the local compliance tensor is rank 1, of the formS(x) = s(x)
 s(x); (72)



15where the 2 � 2 matrix valued �eld s(x) is positive de�nite for all x. Speci�cally, thee�ective elasticity tensor takes exactly the same rank 1 form,S� = s� 
 s�; (73)where s� is a 2 � 2 positive de�nite matrix. The assumption of positive de�niteness ofs(x) is necessary: it follows from the work Bhattacharya and Kohn [42] (see sections 5.2and 5.3) that the existance of \percolating" stress or strain �elds can be microstructuredependent when s(x) is not positive de�nite.This result has a surprising corollary. If we take a two-dimensional planar elasticpolycrystal constructed from a crystal with a positive de�nite compliance tensor S0 suchthat the translated tensor S 00 = S0 � tR is rank 1 of the form s00 
 s00 for some valueof t, then necessarily the e�ective compliance tensor S� of the polycrystal must be suchthat the translated e�ective tensor S 0� = S� � tR is rank 1 of the form s0� 
 s0�. (Thepositive de�niteness of the tensor S0 ensures the positive de�niteness of the matrix s00.) Inparticular, if the polycrystal is elastically isotropic then its two-dimensional shear modulusis microstructure independent and equal to 1=(2t). The bulk modulus, by contrast, ismicrostructure dependent. This result was �rst derived [43] from the optimal bounds onthe bulk and shear moduli of two-dimensional planar elastic polycrystals constructed froman orthotropic crystal.A related result is that if a planar elasticity tensor �eld C(x) is rank 2 with a positivede�nite matrix in its null-space for all x , then the associated e�ective elasticity tensorC� is rank 2 with a positive de�nite matrix in its null-space.The proof of (73) is technical and rests upon certain results from elliptic partial di�er-ential equation theory. Only those readers interested in getting a rough idea of the stepsinvolved should read the remainder of this section as it is rather condensed.If we apply an average stress �eld such that the resulting strain �eld in the material isnon-zero then this \percolating" strain �eld �(x) must be of the form�(x) = �(x)s(x); (74)for some scalar �eld �(x). The in�nitesimal strain compatibility condition that r � (r �R�(x)) = 0 (which ensures that �(x) derives from some displacement �eld) requires that�(x) satis�es the second order elliptic partial di�erential equation,r � (r � (�(x)ŝ(x)) = 0 where ŝ(x) =Rs(x): (75)If we impose the normalization constraint that h�i = 1, then it is known from partialdi�erential equation theory that a solution to the above equation for �(x) exists and isunique. [For example, when s(x) = �(x)I where �(x) > 0 for all x, as in (26) but in twodimensions, the solution is �(x) = h1=�i=�(x)]. From the solution for �(x) we determinethe average strainh�(x)i = h�(x)s(x)i = ��s�(x); (76)where �� is some constant. Thus up to a proportionality constant, we can determine thematrix s�(x) from the solution for �(x). The uniqueness of the solution for �(x) is whatguarantees that S� is at most rank 1, of the form (73). It is known that the �eld �(x) is



16positive everywhere and consequently s� is either a positive de�nite or negative de�nitematrix, depending on the sign of ��. Since we are free to change the signs of s� and ��we can take s� to be positive de�nite.The associated stress �eld �(x) must be such thatTr(s(x)�(x)) = �(x): (77)By substituting the relation (16) into this we obtain another second order elliptic partialdi�erential equation,Tr(ŝ(x)rr�) = �(x); (78)this time for the Airy stress function �(x), which can be taken to have the form�(x) = �0(x) + x � Fx; (79)where �0(x) is periodic and the constant matrix F is determined by the average value ofthe stress �eld: h�i = 2RF . Thus the periodic function �0(x) satis�esTr(ŝ(x)rr�0) = �(x)� 2Tr(ŝ(x)F ): (80)From elliptic partial di�erential equation theory it is known that (80) has a unique solutionfor �0(x) if and only if the right hand side is orthogonal to �(x), i.e. if and only if0 = h�2 � 2Tr(�ŝF )i = h�2i � ��Tr(s�h�i)i; (81)where we have used (76). [When s(x) = �(x)I and �(x) = h1=�i=�(x) equation (80)becomes ��0 = h1=�i=�2 � 2Tr(F ) and because ��0 has zero average value so musth1=�i=�2 � 2Tr(F ) which accounts, in this case, for the condition (81).]From (76) and the e�ective constitutive law we have Tr(s�h�i) = �� which with (81)gives �� = h�2i1=2. Thus, we can determine the e�ective compliance tensor completely bysolving (75) for �(x) and using (76) and the identity �� = h�2i1=2 to determine s�.Incidentally, percolation type questions often arise in the context of �nding optimalmicrogeometries that attain bounds on e�ective moduli. For example, the task of �ndingthree-dimensional polycrystalline microstructures that have the lowest possible e�ectiveconductivity is equivalent [44,45] to the task of �nding non-trivial periodic rotation �eldsR(x) (satisfying R(x)TR(x) = I) such that the equationru(x) = �(x)R(x)TAR(x) (82)has a solution for the vector potential u(x) for some choice of scalar �eld �(x), where Ais a given positive de�nite 3� 3 diagonal matrix. Notice the similarity of (74) and (82).REFERENCES1. J.P. Straley, J. Phys. D.: Appl. Phys. 14 (1981) 2101-2105.2. M. Milgrom and S. Shtrikman, Physical Review A 40 (1989) 1568-1575.3. K. Schulgasser, J. Mech. Phys. Solids 40 (1992) 473-479.4. Y. Benveniste and G. Dvorak, J. Mech. Phys. Solids 40 (1992) 1295-1312.5. Y. Benveniste, J. Mech. Phys. Solids 43 (1995) 553-571.
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