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Typically, the elastic properties of composite materials are strongly microstructure de-
pendent. So it comes as a pleasant surprise to come across exact formulae for (or linking)
effective moduli that are universally valid no matter how complicated the microstructure.
Such exact formulae provide useful benchmarks for testing numerical and actual experi-
mental data, and for evaluating the merit of various approximation schemes. This paper
presents a sampling of results in the field.

1. INTRODUCTION

The word myriad has its origin as the Greek word for 10,000. It would be a real chal-
lenge to present that many microstructure independent relations amongst the effective
properties of composites, especially in a short paper. Instead this article presents an
appetizer of results pertaining mostly to elasticity and thermoelasticity. The sampling is
sufficiently diverse to encompass the main ideas used to generate microstructure indepen-
dent relations in many different contexts, including thermoelectricity and piezoelectricity,
where a host of microstructure independent results have been obtained: see [1-5] and
references therein.

2. UNIFORM FIELDS

Consider a bimetal strip. When the temperature is raised the strip bends. This is
due to the difference in thermal expansion of the two metals. Now consider the bimetal
strip immersed in water. As the pressure in the water is increased the strip bends due
to the difference in bulk moduli of the two metals. Now one can imagine applying just
the right combination of temperature increase and water pressure increase or decrease so
both phases expand at exactly the same rate and there is no distortion. Of course this
same argument applies not just to bimetal strips but to any geometric configuration of
two isotropic phases and in particular to a two-phase composite.

Suppose the two-phases are isotropic so that a block of phase 1 or phase 2 immersed
in a fluid heat bath at temperature 7" and pressure p expands or contracts isotropically
as T and p are varied. Let p;(T,p) and p2(T,p) denote the mass density of phase 1 or
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phase 2 relative to some base temperature Ty and base pressure py: thus 1/p; (7, p) and
1/po(T, p) measure the relative change in the volume of each phase as the temperature
and pressure changes from (7y, pg) to (T, p). According to this definition we have

p1(Lo, po) = p2(Lo, po) = 1. (1)

So the two surfaces p; (T, p) and po (T, p) intersect at (T, p) = (Ty, po). Unless the surfaces
are tangent at this point they will intersect along a trajectory passing through (7o, po).
Along this trajectory (7'(h), p(h)) parameterized by h both phases expand or contract at
an equal rate.

Now suppose a composite is manufactured at the base temperature T, and pressure
po with no internal residual stress. When this composite is placed in the heat bath at
temperature 1" and pressure p there is no reason to suppose the composite will expand
or contract isotropically as 1" and p are varied. Indeed by considering the example of the
bimetal strip it is clear that internal shear stresses and warping can occur. However along
the trajectory (T'(h), p(h)) the composite will expand isotropically and its density relative
to its density at the base temperature and pressure will be

p«(L'(h),p(h)) = p1(T(h), p(h)) = p2(T'(h),p(h)) Vh. (2)

Rewriting this relation as 1/p.(T'(h),p(h)) = 1/p1(T(h),p(h)) = 1/p2(T'(h),p(h)) and
differentiating with respect to h, gives

dr(h)  1dp(h) , dT(h) 1dp(h) , dI(h) 1 dp(h)
S T T T M T TR an M T my dh 3)
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are the tangent bulk moduli and thermal expansion constants of the phases and composite
along the trajectory. Provided the trajectory has been suitably parameterized dp/dh and
dT'/dh will not be both zero. Hence the determinant of the system of equations (3) must
vanish which gives the well-known relation
a1(1/ke — 1/Ke) — ao(1/ky — 1 /K1)
a, = , (5)
]./Kl - 1//432

between effective bulk moduli and effective thermal expansion coefficients due to Levin
[6]. Thus (2) is a non-linear generalization of Levin’s formula. This simple observation
is joint but unpublished work with J. Berryman presented in Pittsburgh in 1994 at the
SIAM Meeting on Mathematics and Computation in the Materials Sciences.

There is another viewpoint which sheds light on Levin’s work. Let us begin with a result
that applies to elasticity, and not just to thermoelasticity. Suppose the elasticity tensor
field of a composite has the property that there exist symmetric matrices v and w with
C(x)v = w for all . Then the uniform strain field which equals v everywhere and the
uniform stress field which equals w everywhere are solutions of the elasticity equations.
Consequently the effective tensor C, must satisfy C,v = w. (This remark was made to




me by A. Cherkaev, although in the context of thermal expansion it dates back to work of
Cribb [7]; see also Dvorak [8] who extended the idea.) In an isotropic polycrystal where
the pure crystal has cubic symmetry this condition is satisfied, with v = I, and the result
implies Hill’s microstructure independent formula [9] for the effective bulk modulus of
such a polycrystal.

A corollary is that if in a two phase composite the tensor C; — C, is singular with

(C1 — Cg)’l) =0 then (C* — CQ)’U = 0. (6)

Now consider the equations of thermoelasticity. These take the form

(49)= (55 25 (7F) s o emvur i @
where § = 1" — Tj is the change in temperature 7" measured from some constant base
temperature T, €(x) and o (x) are the strain and stress fields, ¢(x) is the local increase
in entropy per unit volume over the entropy of the state where & = 6 = 0, S(x) is the
compliance tensor, a(x) is the tensor of thermal expansion and ¢,(x) is specific heat per
unit volume at constant stress. Macroscopically the average fields satisfy

()= (& o) (7)) ®
@) ot epm) o)

and this serves to define the effective elasticity tensor &,, the effective tensor of thermal
expansion S, and the effective constant of specific heat at constant stress c,,,.

The important observation is that because the entropy field ¢(x) is not subject to
any differential constraints, we can ignore it completely when computing the effective
compliance tensor and effective thermal expansion tensor. In other words it suffices to
work with the reduced set of equations

e(z) = M(x) ("(9“’)> with V.o =0, €=[Vu+(Vu)]/2, ()

where for three-dimensional thermoelasticity M (z) = (S(x) a(x)) is representable
as a 6 X 7 matrix in an appropriate basis. Now in a two phase composite the matrix
M, — M, like any matrix which has more columns than rows, is necessarily singular, i.e.
there necessarily exists a v such that (M, — Ms)v = 0. Consequently the effective tensor
M, must satisfy (M, — Ms)v = 0. When the phases are isotropic this reduces to Levin’s
formula (5). When the phases are anisotropic (but each with constant orientation) it
reduces to the formula of Rosen and Hashin [10]. Having obtained particular solutions for
the stress and strain field with a non-zero value of # it is an easy matter to determine the
corresponding entropy field ¢(x) and thereby obtain a formula for the effective constant
of specific heat c,, in terms of the effective elasticity tensor [10].

The same reasoning can be applied to obtain an exact expression for effective constant
of specific heat and effective thermal expansion tensor in terms of the effective compli-
ance tensor for polycrystaline materials constructed from a single crystal [11,12]. The
compliance tensor 8y and thermal expansion tensor a of the single crystal must be such
that SyI and o are both uniaxial with a common axis of symmetry. This is ensured if
the crystal has hexagonal, tetragonal or trigonal symmetry. The contact between crystals



need not necessarily be ideal; slippage along grain boundaries is allowed [13]. When the
constitutive relation involves more than one constant field in addition to #, such as hu-
midity causing expansion due to moisture absorption, then uniform field arguments yield
exact relations even when 8yI and « are biaxial, provided they share the same three
principal axes [14].

There is also a direct mathematical correspondence between the equations of poroelas-
ticity and those of thermoelasticity (the fluid pressure plays the role of the temperature).
Consequently these exact microstructure independent relations extend to effective poroe-
lastic moduli of two phase media [15,16].

Uniform field arguments are also important three dimensional elastic two phase media
when the microstructure and stress and strain fields are independent of the x3 coordinate.
The constitutive relation can be expressed in the form

(20~ (E ) ()

where
Ciin Chia2 \/501112 \/501123 —\/501113
Chi22 Ca22 \/502212 \/502223 —\/502213
L = \/501112 \/502212 2C1912 2C9312 —2C312 ) (11)
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Ciiss 011 €11
02233 022 €22
o = \/503312 y g = \/5012 , h= \/5612 ) (12)
\/503323 Ei Dll
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in which E}(z1,x2), Ey(x1,22), Di(x1,23), and D)(x,z,) are components of the vector
fields

P ()= () o= () - () &

Here the Cjjj, are the cartesian components of the elasticity tensor field C(xy, z3). Let us
also introduce two-dimensional stress and strain fields

o — (Un U12> €= (611 612) ' (14)
012 099 €12 €22
Now the three dimensional displacement field is necessarily of the form u(x) = v(xy, z5)+

r3w where w is constant, and this together with the constraints on the three dimensional
stress field o (x) implies that

VXxE =0, V-D'=0, V.-0'=0, e=[Vu'+(Vu')]/2, (15)

and that es3 [like 6 in the thermoelastic problem (7)] is constant, where u' = (v, v9) is a
two dimensional displacement field. Thus if we interpret E' and D' as two-dimensional



electric and electric displacement fields, then the equation g = Lh can be regarded as a
two-dimensional piezoelectric equation incorporating a positive definite symmetric tensor
L(x), which will have an associated effective tensor L,. Since the field os3(xq,22) is
not subject to any differential constraints we can drop it from the equation (10). By
applying the uniform field argument we thereby obtain expressions for the components
of the three-dimensional effective elasticity tensor C, in terms of the components of the
two-dimensional effective piezoelectric tensor L., assuming it is a two-phase medium. If
the medium has more than two phases then, by setting e33 = 0, 15 of the 21 components
of C, can be determined from the elements of L,.

When the elasticity tensors C; and Cs, of the two phases are both invariant under
the reflection transformation x3 — —x3 then the two-dimensional piezelectric problem
decouples into a planar elastic problem and a two-dimensional dielectric problem (the
antiplane elastic problem). In particular if both phases are elastically isotropic and the
composite is transversely isotropic, then the relation between C, and L, reduces to Hill’s
formulae [17] for C, in terms of the effective bulk and shear moduli of the planar elastic
problem and the effective axial shear modulus of the antiplane elastic problem.

3. TRANSLATING BY A NULL-LAGRANGIAN

The translation discussed below originates in the work of Lurie and Cherkaev [18] on
the plate equation. Its existence accounts [19] for certain invariance properties of the
stress field discovered by Dundurs [20]. More general stress invariance properties, under a
linear rather than a constant shift of the compliance tensor, have recently been discovered
by Dundurs and Markenscoff [21]. The following analysis is largely based on the papers
of Cherkaev, Lurie and Milton [22] and Thorpe and Jasiuk [19].

In a two-dimensional, simply-connected, possibly inhomogeneous, elastic body with
no body forces present the components of the stress field o can be expressed in terms
of a potential ¢, known as the Airy stress function, through the equations 0y, = ¢ 2,
o12 = —¢ 12 and o9y = ¢ ;. Here as elsewhere we use a comma in a subscript to denote
differentiation with respect to the indices that follow the comma: thus, for example,
¢ 20 = 0*¢/0x5. The relation between the stress and Airy stress function can be expressed
in the equivalent form

o =RVYVG where VV= (2’“ 2’12> , (16)
12 P2

and R is the fourth order tensor with cartesian elements
Rijie = 0ij0ke — (03050 + 0iedjn) /2, (17)

whose action in two-dimensions is to rotate a matrix by 90°. Now the key point is to
recognize that VV¢ satisfies the same differential constraints as a strain field: it derives
from the “displacement field” V¢. In other words, the stress field rotated at each point
by 90° produces a strain field. We use this observation to rewrite any solution of the
two-dimensional elasticity equations

e=8o, e€=[Vu+ (Vu)']/2, V.-o=0, (18)



in the equivalent form

€ =80, €=[Vu+(Vu)']/2, V-a=0, (19)
where
S =8 +1tR, u' =u+ V. (20)

Evidently if the strain and stress fields € and o solve the elasticity equations in a medium
with compliance tensor & then the strain and stress fields € and o solve the elasticity
equations in a translated medium with compliance tensor 8’. The basic Euler-Lagrange
equations for the Airy stress function are the same in both media: hence the name null-
Lagrangian. General characterizations of null-Lagrangians, or quasicontinuous functionals
have been given by Ball, Currie and Olver [23] and by Murat [24].

When the medium under consideration is a composite, we have from (19) that

(€Y= (So)+tR{o) = (S, +tR)(0o). (21)

Since it is this linear relation which defines the effective tensor 8. of the translated
medium we deduce that

S =8, +1R. (22)

Thus the effective tensor undergoes precisely the same translation as the local tensor.

For example, consider a locally isotropic planar elastic material which is macroscopically
elastically isotropic. The local compliance tensor S(x) and effective compliance tensor
S, have elements

Sijre(®) = (0ik0je + 03jr) /2B (x) — [0i50ke — (Oirdje + 0sedjn) 2]V () / E(),
:;M(CB) = (5ik6j£ + 6ig6jk)/2E* — [6ij6kg — (6ik6jg + 5ig5jk)/2]l/*/E*, (23)

where E(x) and E, are the local and effective in plane Young’s modulus and v(x) and
v, are the local and effective in plane Poisson’s ratio. It follows from (17) and (20) that
under translation these moduli transform to

E'(x) = E(z), V'(z) =v(z) — tE(x), (24)

i.e. the Young’s modulus remains unchanged, while the ratio of the Poisson’s ratio to
Young’s modulus is shifted uniformly by —¢. Under this translation the result (22) implies
that the effective Young’s modulus £, and Poisson’s ratio v, transform in a similar fashion,

E =E,, v, = v, — tFE,. (25)

A nice application of this result is to a metal plate with constant moduli £ and v that
has a statistically isotropic distribution of holes punched into it. Under the translation
(24) the holes remain holes (since the holes effectively correspond to a material with
zero Young’s modulus) while the Young’s modulus E of the metal is unchanged, and
its Poisson’s ratio is shifted from v to v — tE. By dimensional analysis it is apparent
that the ratio, E,/F can only depend on v and on the geometry. But (25) implies this
ratio remains invariant as ¢ and hence v varies. We conclude that E,./E only depends



on the geometry, and is not influenced by v. This result was observed numerically by
Day, Snyder, Garboczi and Thorpe [25] and subsequently proved by Cherkaev, Lurie and
Milton [22]. The extent to which it holds in three dimensions was explored by Christensen
[26].

Moreover when there are so many holes that the plate is about to fall apart, then E, is
close to zero, and (25) implies that v, is also independent of v in this limit [25,19]. This
is a striking result: no matter what the geometry of the configuration happens to be (so
long as it is just about to fall apart) the effective Poisson’s ratio takes a universal value
which is independent of both the Young’s modulus and the Poisson’s ratio of the plate.

Translations are also useful for deriving microstructure independent results in the con-
text of three-dimensional elasticity. The following is an extension of a two-dimensional
argument [18,22,19] used to rederive Hill’s result [17] for the effective bulk modulus of a
locally isotropic planar elastic medium with constant shear modulus. [22,19].

First consider the rather extreme example of a locally isotropic three-dimensional
medium with a compliance tensor S(x) with cartesian elements

Sijkg(lc) = §lj§kg/9/<;(w) (26)

This material has infinite shear modulus and finite bulk modulus k() , i.e. at each point
its Poisson’s ratio is —1. (Although seemingly unphysical, materials with Poisson’s ratio
arbitrarily close to —1 can in fact be constructed: see [27,28] and references therein.)
The deformation of the material is conformal since any change of angles corresponds to
shear. In three dimensions the only conformal mappings are inversion in a sphere and
uniform dilation, and since we are looking for periodic solutions the first can be ruled
out. Therefore the strain €(x) must equal oI where « is constant. The three dimensional
stress field o () being symmetric and divergence-free derives from a 3 x 3 symmetric
matrix valued potential ¢(x):

o(x) =V x (Vx ¢(z))?, (27)

Substituting this in the constitutive equation So = € = al gives an equation for the
matrix potential ¢:

Tr[V x (V x ¢(x))T] = 9x(x)a. (28)
Since this is a single equation it seems plausible to look for solutions of the form
¢(x) = p(x)I with ¢(x) = ¢o(x) + (x - x)f, (29)

in which the scalar function ¢y () is periodic and f is a constant determining the average
value of the stress. The associated stress field is

o=I1IA¢p—-VVop, (30)
which when substituted in the constitutive law gives the equation

2A¢py = Ik (x)or — 6f, (31)



for the periodic potential ¢g. This has a solution if and only if the average value of the
right hand side is zero, which thereby determines the value of f and the associated average
value of the stress:

f=3(r(@)a/2, (o) =21 = 3(x(@))al = 3{(@))e). (32)

Clearly the effective bulk modulus of this composite is microstructure independent and
equal to

ke = (k(x)). (33)
Now let T~ denote the fourth order tensor with cartesian elements
Tijke = 0ij0ke/2 — (8ikbje + 6iebji) /2. (34)

This tensor has the important property that for stresses of the form (30) the field To =
V'V ¢ satisfies the same differential constraints as a strain: it derives from the “displace-
ment field” V. The translated medium & +¢7 now will have three dimensional inverse
bulk and shear moduli

1/k' (x) = 1/k(x) +3t/2, 1/ = -2t (35)

By applying the same sort of analysis as before it follows that inverse effective bulk and
shear moduli of the translated medium equal

1K, = 1)k, +3t/2 = 1/(s(®)) + 3t/2, 1/, = —2t. (36)

By combining these formulae we see that a locally isotropic elastic medium with constant
shear modulus ¢/ and bulk modulus £'(x) has effective shear and bulk moduli p!, and &/,
given by

;o 1 B 1
o= 1 AL+ 3/ <4//<’(a:)+3/u’> (37)

which is Hill’s result [17].

4. DUALITY FOR ANTIPLANE ELASTICITY

The duality relations for antiplane elasticity have their origins in the work of Keller
[29] and Dykhne [30]. Mendelson [31], upon whose work the following treatment is based,
extended their analysis to arbitrary inhomogeneous anisotropic planar media.

Let u(xq, x2) be the vertical displacement in a state of anti-plane shear and let p(z1, x2)
be the shear stress potential. The equations of antiplane elasticity take the form

2 2
<031>:m(w)< 631>, <U31>:<_90,2 )7 ( €31>:<U,1>, (38)
032 2639 032 Y1 2639 U2
where m (x4, z5) is a symmetric 2 X 2 anti-plane shear elasticity matrix. Now let us intro-
duce a new vertical displacement u'(x,z5) = p(21,29) and a new shear stress potential



¢'(x1,9) = —u(x1,79). The associated stress and strain field components satisfy the
relations
1)-()-m () (2)-(4)-m (2
<<7§2 \—¢ - 2e32) " 26 )\, - R 032/ (39)
where

0 1
r-(" ) (40)

is the matrix for a 90° rotation. In two dimensions a curl free vector field when rotated
pointwise by 90° produces a divergence free vector field and vice-versa. This key fact
explains why the new stress and strain fields given by (39) satisfy the required differential
constraints. These fields are linked through the constitutive relation

() = (52) @
in which
m/(z) = [RIm(z)R.]"" = m(z)/det[m(z)]. (42)

In other words these potentials solve the antiplane shear problem in a dual medium with
anti-plane shear elasticity matrix m/(x).

By taking averages of the fields we deduce that the dual medium has effective shear
matrix

m, = [R'm.R,]"" = m,/det[m,], (43)

where m, is the effective shear matrix of the original medium. Thus duality relations link
the effective tensors of two different media. If the medium is a composite of two isotropic
phases, then m(x) and m/(x) take the form

m(z) = x(x)l + (1 — x(@)pel, m'(x)=[x(x)pol + (1 — x(x))I]/pap2, (44

where p; and o are the shear moduli of the two phases and y(x) is the characteristic
function representing the microstructure of phase 1 (taking the value 1 when @ is in
phase 1 and zero otherwise.) So, the phase interchanged medium is obtained from the
dual medium by multiplying m'(x) by the factor u; o and therefore its effective tensor is
obtained by multiplying m/ by the same factor ujus. If we consider the effective tensor
m, as a function m., (u1, po) of the two-phases then (43) implies

M, (o, pi1) = paprom (pi, po) /det[my, (1, p2)]. (45)

It may happen that the geometry is phase interchange invariant like a checkerboard. Then
M (fo, 1) = m(py, pe) and it follows from the above equation that det[m, (uy, po)] =
1 1o In particular if the effective shear matrix is isotropic then we have m, = p, I where
tt = \/fiif2 [30]. By this procedure we have obtained an exact expression for the effective
antiplane shear modulus u, of the composite without solving for the fields directly.
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5. DUALITY FOR PLANAR ELASTICITY

The duality relations for incompressible planar elastic media discussed here are due to
Berdichevski [32]. The extension of the duality relations to compressible planar elastic
media with a constant bulk modulus and to certain other anisotropic planar media is due
to Helsing, Milton and Movchan [33].

Consider a planar elastic medium which is incompressible at each point. Since V-u =0
there exists a potential ¢(x) such that u; = ¢, and us = —1;. Let us introduce the
matrices

R N I A ()} w

as a basis on the space of 2 x 2 symmetric matrices. The two-dimensional stress and strain
fields o (x) and €(x) can be expanded in this basis,

o(x) =o(x)a; + os(x)as + o3(x)as, €(x) =e(x)as + e3(x)as, (47)
where the coefficients satisty the equations
<€2> _ S(w)<02> (62>:L< 2919 ) <02>:i<¢,22—¢,11>
€3 o3)’ €3 \/§ ¢,22 - 2/),11 ’ 03 \/§ —2¢,12 ’
(48)

and oy = (¢11+ ¢ 22)/v/2. Here the 2 x 2 matrix S(x) represents the non-singular part of
the compliance tensor in this basis and ¢ () is the Airy stress function. We now introduce
dual potentials ¢'(x1, ) = ¢¥(x1, x2) and ¢'(x, 3) = —¢ (21, x2) and the associated stress
and strain field components

(2) = A )=r(2) (7)) = (Pl = (),

(49)
and o] = (¢'}; + ¢'5,)/V2. These field components satisfy the constitutive relation
(2)=5@ (%) whee §'@) = [RIS@R.]" = S()/det]S (@) (50)

3 3

In other words the dual potentials solve the planar elasticity equations in an incompressible
medium with S'(z) being the non-singular part of the compliance tensor in the basis
(46). By taking averages of the fields we deduce that the non-singular part of the effective
compliance tensor for the dual medium is

S =[RIS.R,|"' =8,/det[S,], (51)

in which S, is the non-singular part of the compliance tensor of the original medium in
the basis (46).

As an example, consider an isotropic incompressible planar elastic composite of two
isotropic phases. Then the matrices S(x) and S, take the form

S(x) = x(@)I/(2pm) + (1 = x(@)I/(2p2), S =1/(2p.), (52)
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where pi1, p1o and g, are the shear moduli of the phases and composite, while y(x) is the
characteristic function representing the microstructure of phase 1 (taking the value 1 when
x is in phase 1 and zero otherwise.) Then, by direct analogy with the relation (45) for
antiplane shear, we see that the effective shear modulus p, as a function g, (g, po) of the
shear moduli of the phases satisfies the phase interchange relation . (p, o)t (f2, 1) =
i1 2. By translation we can extend this result to two phase planar elastic composites that
have compressible phases sharing a common bulk modulus k. Then the phase interchange
relation takes the form

E.(E\,E))E,(Ey, Ey) = E\E,, (53)

where E,(FE}, E,) is the effective in plane Young’s modulus expressed as a function of the
in-plane Young’s moduli £; and FE, of the two phases. In particular if the composite is
phase interchange invariant, like a two-dimensional checkerboard, then (53) implies its
effective in plane Young’s modulus is v/ £ Es. If the bulk modulus is not the same in both
phases then Gibiansky and Torquato [34] have shown that the effective elastic moduli of
the composite and phase interchanged material are linked by inequalities which reduce to
the relation (53) when the bulk moduli are equal.

A related example is that of an isotropic two-dimensional polycrystal of incompressible
crystals. The individual crystals, being incompressible, necessarily have square symmetry
and are characterized by two shear moduli (" and p®. The duality result (51) implies
that the effective shear modulus g, of the polycrystal is given by the formula pu, =

pM @ of Lurie and Cherkaev [18]. Using translations they generalized this result to
two-dimensional polycrystals, comprised of compressible grains with square symmetry
and found that the effective shear modulus u, of the polycrystal is given by

T V(s + 1) (5 + p0)/(u® @)’ (54)

where , (1) and p? are the planar bulk and two shear moduli of the crystal.

More generally, planar elastic duality transformations can be applied whenever there
exists a matrix v and constant ¢ such that (S(x) —tR)v = 0 for all  [33]. High accuracy
numerical results for the effective compliance tensor of periodic media comprised of two
orthotropic phases confirm the predictions of the theory.

6. LINKING ANTIPLANE AND PLANAR ELASTICITY PROBLEMS

Given that duality relations hold for both antiplane and planar elasticity, one might
wonder if these problems are are linked in some way. Such a link would be a surprise
because antiplane problems involve a second order shear matrix, whereas planar elastic
problems involve a fourth order elasticity tensor. A formal similarity between incom-
pressible elasticity and antiplane elasticity is known [35] but this does not provide a
correspondence between the fields solving the planar and antiplane problems. Here we
establish a direct correspondence. The ensuing analysis is based on the papers of Milton
and Movchan [36,37] and Helsing, Milton and Movchan [33].
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The constitutive relation in a simply connected, planar, locally orthotropic medium,
with the axes of orthotropy aligned with the coordinate axes takes the form

U1 011 51 sz 0
U2,2 =5 099 s S = S9  S4 0 s (55)
(w12 + U2,1)/\/§ V20 0 0 s

and the equilibrium constraint V - ¢ = 0 implies there exist stress potentials ¢;(x) and
¢o(x) such that

<U11 012) _ ( Pz P22 > (56)
0921 022 —¢1,1 —¢2,1

Let us substitute these expressions back into the constitutive law and into the relation
013 = 091, implied by symmetry of the stress field. Manipulating the resulting four

equations so the terms involving derivatives with respect to xy appear on the left while
terms involving derivatives with respect to x; appear on the right gives an equivalent form
of the elasticity equations

n,=Nn, (57)

introduced by Ingebrigtsen and Tonning [38], where

Uy 0 —1 —Sg 0
Us so/s1 0 0 s2/s1— 84
= , N= o8
n ¢1 ]./81 0 0 82/31 ( )
0o 0 0 -1 0

The matrix N (z) is known as the fundamental elasticity matrix. The associated effective
fundamental elasticity matrix IN, governs the relation between the average fields,

<"7,2> = N*<"7,1>7 (59)

and is related to the effective compliance matrix S, in the same way that the fundamental
elasticity matrix IN () is related to the local compliance matrix S(x).
Now notice that the equations can be rewritten in the equivalent form

ny=N'n'y, (n) = Nn), (60)
where
n'(x) = Kn(z), N'(r)=K 'N(z)K, N.=K 'N.K, (61)

and K is an arbitrary constant, non-singular 4 x 4 matrix. In other words, when the
fundamental matrix field N (x) undergoes a constant similarity transformation then the
effective fundamental matrix IN, undergoes the same similarity transformation. The
translation of the compliance tensor discussed in section 3 corresponds a particular sim-
ilarity transformation of the fundamental matrix, as do the duality transformations for
antiplanar and planar elasticity. (For antiplane elasticity the associated fundamental ma-
trix is a 2 x 2 matrix). Other duality transformations of the fundamental matrix form of
the equations have been analysed by Nemat-Nasser and Ni [39)].
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Similar mappings between equivalent sets of equations, obtained by taking linear com-
binations of potentials and fluxes separately, have been applied to coupled field problems
by Straley [1] and Milgrom and Shtrikman [2] among others. For media with isotropic
phases they use these mappings to transform to a diagonal form of the equations where
no couplings are present, and thereby obtain exact relations between the effective thermo-
electric moduli in a two-phase medium. By mixing the potentials and flux potentials one
obtains a more general class of equivalence transformations for two-dimensional coupled
field problems (see Milton [40], Benveniste [5] and references therein). Under these the
tensor entering the constitutive law undergoes a fractional linear transformation. Such
transformations are equivalent to the similarity transformations of the fundamental ma-
trices considered here. Working with the fundamental matrices has the advantage that
the transformation takes a simpler form and is therefore easier to analyze.

For simplicity, let us suppose the moduli are such that for all x

A(zx) = (s2(x) + s6(x))* — s1(x)s4(x) > 0. (62)
Then the eigenvalues of the N (x) at each point & are

Al ==Xy = —iaq, A3=—A\; = —iq, (63)
where a; (x) and aq(x) are the two real positive roots of the polynomial

si(x)at — 2(sy(x) + ss(x))a® + s4(x) = 0. (64)

The corresponding eigenvectors are

—D1 —D1 —D2 —D2
v, = ZQ1P2 vy = —ZQ1P2 7 vgj) _ Z%Pl 7 ’Uij) _ —ZQ2P1 (65)
(1671 —10 (16} —103
1 1 1 1
in which

pi(x) = —s¢(x) +\/A(x)/2, pa(x) = —sg(x) — \/Ax)/2. (66)

Now suppose p; and ps do not depend on x. (This holds if and only if s¢ and A are
both independent of x.) Then v; and v, will span a two-dimensional space that does
not depend on @, and v3 and v, will span a two-dimensional space that does not depend
on . Thus with an appropriate choice of K the matrix N'(x) will be block diagonal.
Specifically, the choice

-»nn 0 0 —p 0 -1 0 0

| 0 p2 pm O . ;a2 0 0 0
K = 0o 1 1 0 gives N' = 0 0 0 a2l (67)

1 0o 0 -1 0 0 -1 0

As a consequence the equation 7', = N"l7f1 decouples into a pair of equations that can
be expressed in the form

! ! ! !
< 772,,2 > —m, (W},l) : ( 773,,2 ) — m, <77j1,1> : (68)
21 M2 3,1 a2
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where m; () and my(x) are the 2 x 2 matrix valued fields

2 2
m1:<061 1)’ m2:<062 1)' (69)

These can be regarded as equations of antiplane elasticity in two different inhomogeneous
anisotropic media with m, (x) and my(x) being the antiplane shear matrix fields of these
media. In other words, when sg is constant and A is constant and positive, the original
planar elasticity equations can be reduced to a pair of uncoupled antiplane elasticity
equations. The uniform field argument implies that when sg is constant the effective
compliance matrix S, is necessarily orthotropic with its axes aligned with the co-ordinate
axes having s, = s¢. From the effective antiplane shear matrices

o 0 o, 0
ma= (%G 1) ma= (7). 70

associated with m () and my(x) we can compute the remaining elements s,; s, and s,4
of the effective compliance matrix S, associated with S(z) by solving the three equations

(542 + 546)% — Se1541 = A, s*lafﬁj — 2(840 + s*ﬁ)afj +54=0 j=1,2. (71)

This correspondence between the moduli of the effective antiplane shear matrices and
the moduli of the effective compliance tensor has been verified numerically [33]. When
s¢ is constant and A is constant and negative there is still a correspondence with an-
tiplane elasticity: the original planar elasticity equations can then be reduced to a single
viscoelastic antiplane problem, with a complex shear matrix field m(x).

7. A QUESTION OF PERCOLATION

The following is joint work with Yury Grabovsky. For more details, and for references
to the relevant results from partial differential equation theory, see [41].

When we think of percolation it is usually in the context of current flow, where the
current may be electrical, thermal or fluid flow. Perhaps one is considering a composite
of two isotropic phases where phase 1 is permeable to current while phase 2 is imperme-
able to it. Or perhaps one is considering a polycrystal where each individual crystalline
grain only allows the current to flow in certain directions within that crystal. At a per-
colation transition the rank of the effective conductivity or permeability tensor changes.
For isotropic three-dimensional composites of two isotropic phases. the transition is from
a tensor of rank 0, when phase 2 blocks all current flow, to a tensor of rank 3, when
paths of phase 1 form a connected labyrinth of infinite extent. In the context of elas-
ticity we can study the analogous percolation question: given that the local compliance
tensor (or local elasticity tensor) is singular in some parts or in all of the material, is the
rank of the effective compliance tensor (or effective elasticity tensor) dependent on the
microstructure?

Curiously, the rank of the effective compliance tensor is independent of the microstruc-
ture in a planar elastic material where the local compliance tensor is rank 1, of the form

S(z) = s(x) ® s(x), (72)
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where the 2 x 2 matrix valued field s(x) is positive definite for all . Specifically, the
effective elasticity tensor takes exactly the same rank 1 form,

S, =8, ® sy, (73)

where s, is a 2 x 2 positive definite matrix. The assumption of positive definiteness of
s(x) is necessary: it follows from the work Bhattacharya and Kohn [42] (see sections 5.2
and 5.3) that the existance of “percolating” stress or strain fields can be microstructure
dependent when s(x) is not positive definite.

This result has a surprising corollary. If we take a two-dimensional planar elastic
polycrystal constructed from a crystal with a positive definite compliance tensor Sy such
that the translated tensor 8 = 8y — tR is rank 1 of the form s} ® s, for some value
of ¢, then necessarily the effective compliance tensor 8, of the polycrystal must be such
that the translated effective tensor 8, = 8, — tR is rank 1 of the form s, ® s'. (The
positive definiteness of the tensor 8y ensures the positive definiteness of the matrix s.) In
particular, if the polycrystal is elastically isotropic then its two-dimensional shear modulus
is microstructure independent and equal to 1/(2t). The bulk modulus, by contrast, is
microstructure dependent. This result was first derived [43] from the optimal bounds on
the bulk and shear moduli of two-dimensional planar elastic polycrystals constructed from
an orthotropic crystal.

A related result is that if a planar elasticity tensor field C(x) is rank 2 with a positive
definite matrix in its null-space for all x , then the associated effective elasticity tensor
C. is rank 2 with a positive definite matrix in its null-space.

The proof of (73) is technical and rests upon certain results from elliptic partial differ-
ential equation theory. Only those readers interested in getting a rough idea of the steps
involved should read the remainder of this section as it is rather condensed.

If we apply an average stress field such that the resulting strain field in the material is
non-zero then this “percolating” strain field e(x) must be of the form

e(z) = az)s(z), (74)

for some scalar field «(x). The infinitesimal strain compatibility condition that V - (V -
Re(x)) = 0 (which ensures that e(x) derives from some displacement field) requires that
a(x) satisfies the second order elliptic partial differential equation,

V- (V- (a(x)s(x)) =0 where §(x)=Rs(x). (75)

If we impose the normalization constraint that (o) = 1, then it is known from partial
differential equation theory that a solution to the above equation for a(x) exists and is
unique. [For example, when s(x) = f(x)I where f(x) > 0 for all &, as in (26) but in two
dimensions, the solution is a(x) = (1/3)//(x)]. From the solution for a(x) we determine
the average strain

(e(®)) = (a(z)s(z)) = a.s.(z), (76)

where a, is some constant. Thus up to a proportionality constant, we can determine the
matrix s,(x) from the solution for a(x). The uniqueness of the solution for «(x) is what
guarantees that 8, is at most rank 1, of the form (73). It is known that the field a(x) is
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positive everywhere and consequently s, is either a positive definite or negative definite
matrix, depending on the sign of «a,. Since we are free to change the signs of s, and «.
we can take s, to be positive definite.

The associated stress field o(x) must be such that

Tr(s(z)o(x)) = a(x). (77)

By substituting the relation (16) into this we obtain another second order elliptic partial
differential equation,

Tr(s(x)VV9) = a(w), (78)
this time for the Airy stress function ¢(x), which can be taken to have the form
o) = ¢po(x) + = - Fe, (79)

where ¢o(x) is periodic and the constant matrix F is determined by the average value of
the stress field: (o) = 2RF. Thus the periodic function ¢(x) satisfies

Tr(3(z)VVay) = a(z) — 2Tr(3(z)F). (80)

From elliptic partial differential equation theory it is known that (80) has a unique solution
for ¢o(x) if and only if the right hand side is orthogonal to «a(x), i.e. if and only if

0 = (a? — 2Tr(a8F)) = (a*) — a, Tr(s.(a))), (81)

where we have used (76). [When s(z) = f(z)I and a(x) = (1/8)/8(x) equation (80)
becomes Agy = (1/3)/3* — 2Tr(F') and because Agy has zero average value so must
(1/8)/3* — 2Tr(F') which accounts, in this case, for the condition (81).]

From (76) and the effective constitutive law we have Tr(s,(o)) = a, which with (81)
gives a,, = (oﬂ)l/ 2. Thus, we can determine the effective compliance tensor completely by
solving (75) for a(z) and using (76) and the identity o, = (a?)*/? to determine s,.

Incidentally, percolation type questions often arise in the context of finding optimal
microgeometries that attain bounds on effective moduli. For example, the task of finding
three-dimensional polycrystalline microstructures that have the lowest possible effective
conductivity is equivalent [44,45] to the task of finding non-trivial periodic rotation fields
R(zx) (satisfying R(x)" R(z) = I) such that the equation

Vu(z) = a(z)R(z)" AR(x) (82)

has a solution for the vector potential u(x) for some choice of scalar field a(x), where A
is a given positive definite 3 x 3 diagonal matrix. Notice the similarity of (74) and (82).
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