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The dependence of the fracture toughness of two-dimensional (2D) elastoplastic lattices
upon relative density and ductility of cell wall material is obtained for four topologies:
the triangular lattice, kagome lattice, diamond lattice, and the hexagonal lattice.
Crack-tip fields are explored, including the plastic zone size and crack opening displace-
ment. The cell walls are treated as beams, with a material response given by the
Ramberg–Osgood law. There is choice in the criterion for crack advance, and two
extremes are considered: (i) the maximum local tensile strain (LTS) anywhere in the lat-
tice attains the failure strain or (ii) the average tensile strain (ATS) across the cell wall
attains the failure strain (which can be identified with the necking strain). The depend-
ence of macroscopic fracture toughness upon failure strain, strain hardening exponent,
and relative density is obtained for each lattice, and scaling laws are derived. The role of
imperfections in degrading the fracture toughness is assessed by random movement of
the nodes. The paper provides a strategy for obtaining lattices of high toughness at low
density, thereby filling gaps in material property space. [DOI: 10.1115/1.4030666]
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1 Introduction

Two-dimensional lattice materials show promise for a wide
range of applications ranging from structural armor to lightweight
support for satellites, and are commonly used as the core of a
sandwich panel [1,2]. Square lattices made from the elastic–brittle
ceramic cordierite are used in catalytic converters and in particu-
late filters for automobiles, and the fracture properties of these
have been explored recently [3,4]. Less is known about the frac-
ture toughness of metallic lattices, such as titanium lattices with
potential application in jet blast deflection structures and in heat
exchangers [5–7]. Lattice materials offer the possibility of high
strength and toughness at low density. However, in order to vector
material development, there is a need to determine the sensitivity
of fracture toughness to the choice of cell wall material, topology,
relative density �q, cell size, and degree of imperfection. In
so doing, there exists the opportunity to fill the gaps in material
property space. This is the primary objective of the current study.

The elastoplastic crack-tip fields are explored for four topolo-
gies of 2D lattice: the triangular lattice, kagome lattice, diamond
lattice, and the hexagonal lattice, as shown in Figs. 1(b)–1(e).
Each lattice comprises struts of length ‘ and thickness t, such that
the relative density �q is given by

�q ¼ A
t

‘
(1)

with the values of A listed in Table 1 [8–10].
The structural properties of these lattices are sensitive to the

value of coordination number Z for each lattice [8]. When Z is
less than 4, such as Z¼ 3 for the hexagonal lattice, the lattice can
accommodate macroscopic straining by cell wall bending without
stretching. In contrast, when the coordination number exceeds 4,

such as Z¼ 6 for the triangular lattice, macroscopic straining nec-
essarily involves cell wall stretching, which is a much stiffer
mode of deformation than cell wall bending. The transition case is
Z¼ 4 and a range of macroscopic behaviors are possible. For
example, the diamond lattice is compliant when it is sheared
along the direction of the struts, but is a stiff, stretching structure
under direct straining in the strut direction. In contrast, the
kagome lattice is an isotropic, stiff, stretching structure. This
broad range in behaviors motivates the choice of these four latti-
ces in this study: the triangular, hexagonal, and kagome lattices
are isotropic in-plane, whereas the diamond lattice is strongly
anisotropic.

Consider a lattice made from an elastic, ideally plastic solid of
cell wall modulus ES and yield strength rYS. The macroscopic
modulus E and the macroscopic yield strength rY in the x2 direc-
tion of each lattice, as defined in Fig. 1, scale with �q according to

E ¼ B�qbES (2)

and

rY ¼ C�qcrYS (3)

Now the exponents b and c equal unity for a stretching lattice, and
exceed unity for a bending lattice, see Refs. [8–10]. Values for
(B, b; C, c) are listed in Table 1 for the four lattices of interest, as
taken from Ref. [11]. We note in passing that the diamond lattice
is highly anisotropic. Its shear modulus G and shear strength sY in
the x1 � x2 reference frame of Fig. 1 are given by

G ¼ 1

4
�qES and sY ¼

1

2
�qrYS (4)

respectively, see Refs. [11,12].
Much less is known about the fracture of lattice materials. The

fracture toughness of 2D elastic–brittle lattices has been recently
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studied by Fleck and coworkers [3,11,13] and by a number of
other groups [14–16]. In contrast, only preliminary studies exist
on the fracture toughness of a ductile hexagonal lattice [17], and
on the reduction in strength of a ductile lattice due to the presence
of short cracks [18].

In the elastic–brittle case, finite element (FE) simulations were
performed on selected 2D lattices containing a long crack
[3,11,13]. In brief, a boundary layer analysis was performed, such
that the outer boundary of an edge-cracked lattice was subjected
to the asymptotic displacement fields associated with a remote
mode I stress intensity factor, K. The stress state in the lattice and
the location of maximum local tensile stress rmax near the crack
tip were determined. Upon equating rmax to the fracture strength
rf , the macroscopic fracture toughness KIC was estimated for the
four lattices of Fig. 1, see Refs. [4,13]. It was demonstrated that
KIC scales with rf , the cell size ‘, and the relative density �q of the
lattice according to

KIC ¼ D�qdrf

ffiffi
‘
p

(5)

where (D; d) are tabulated in Table 3. The sensitivity of fracture
toughness to relative density is quantified by the exponent d: the
fracture toughness falls rapidly with diminishing �q for the hexago-
nal lattice (d¼ 2), but less rapidly for the diamond lattice (d¼ 1),
triangular lattice (d¼ 1), and kagome lattice (d¼ 1/2). The value
d¼ 2 for the hexagonal lattice is consistent with the fact that its
cell walls bend under general in-plane loading, whereas the struts
of the triangular lattice and diamond lattice stretch, giving d¼ 1,
see Ref. [8] for a full discussion. The kagome lattice has an excep-
tionally high fracture toughness (with d¼ 1/2), and this is ascribed
to crack-tip blunting by elastic zones of shear emanating from the
crack tip, see Ref. [13]. However, the fracture toughness of the
kagome lattice is sensitive to geometric imperfection: Symons
and Fleck [19] and Romijn and Fleck [11] have explored the
knockdown in fracture toughness due to imperfections in the form
of randomly displaced nodes. They found that the kagome and
diamond lattices are the most imperfection-sensitive, while the tri-
angular and hexagonal lattices are imperfection-insensitive. In the
current study, the significance of imperfection is revisited for the
case of ductile lattices that can undergo large deformations prior
to failure.

Scope of Study. This paper is in two parts. First, the mode I
crack-tip field is obtained numerically for an elastoplastic lattice
of topology listed in Fig. 1. Both the perfect topology and the
imperfect case (random misalignment of the nodes) are consid-
ered. A Ramberg–Osgood description is used for the cell wall
solid, such that the strain e is related to the stress r in uniaxial
tension by

e
e0S

¼ r
r0S

þ r
r0S

� �n

(6)

in terms of the three material parameters ðr0S; e0S; nÞ, where r0S is
the yield strength, e0S is the yield strain, and n is the strain harden-
ing exponent. The plastic zone shape and size rP, and the crack-tip
opening displacement d are obtained by FE simulation of the
small scale yielding problem. And scaling laws are derived for the
dependence of rP and d upon the magnitude of K, n, and �q.

Second, the fracture toughness of the ductile lattices is predicted,
based on the maximum value of (i) LTS at any point in the lattice,
or (ii) average tensile strain (ATS) at any cross section of the lattice
upon averaging the axial strain over the strut thickness. For both
criteria, the significance of finite strain is determined. Scaling laws
are obtained for the fracture toughness as a function of relative
density, topology, degree of imperfection, and strain hardening
exponent. Finally, a scoping study is performed to determine the
potential of lattices to fill gaps in material property space: the intent
is to achieve lightweight materials of high toughness.

2 The Elastoplastic Crack-Tip Field

2.1 Scaling Relations for Plastic Zone Size. The crack-tip
field for each of the four lattices is determined by a boundary layer
analysis, such that the outer boundary of a square mesh is sub-
jected to the displacement field associated with the mode I stress
intensity factor K. Consider the general case of a semi-infinite
edge crack in an orthotropic plate, as shown in Fig. 1(a). Write
the displacement field in Cartesian form as uiðxjÞ, and introduce
the polar coordinate system ðr; hÞ centered on the crack tip, with
the crack faces lying along h ¼ 6p. The displacement field in the
elastic annulus surrounding the crack-tip plastic zone scales with
K according to

ui ¼
K
ffiffi
r
p

E
fi hð Þ (7)

as given by Refs. [20,21] for an orthotropic plate; the lengthy but
explicit formulae for the nondimensional functions fi hð Þ are not
repeated here. They additionally depend upon �q for the diamond

Fig. 1 Crack geometry and lattice topologies: (a) coordinate
reference frame for the lattice with crack, (b) triangular lattice,
(c) kagome lattice, (d) diamond lattice, and (e) hexagonal lattice

Table 1 Coefficients for relative density, elastic modulus, and
yield strength

A B b C c

Triangular 2
ffiffiffi
3
p

1/3 1 1/3 1
Kagome

ffiffiffi
3
p

1/3 1 1/2 1
Diamond 2 1/4 3 1/4 2
Hexagonal 2=

ffiffiffi
3
p

3/2 3 1/2 2
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lattice, since the degree of anisotropy is dependent on relative
density (recall that the ratio of direct modulus to shear modulus
scales as �q2 for this lattice). The cell wall material is described by
Eq. (6). FE calculations are performed using the commercial FE
code ABAQUS (version 6.12). A 2D FE mesh is generated, with 500
struts along each edge of the domain and each strut around the
crack tip represented by 70 Euler–Bernoulli beam elements for
small strain calculations and 150 Timoshenko beam elements for
finite strain calculations.2 Both elements are two-noded and
account for both bar stretching and bending deformations. The
Ramberg–Osgood description, see Eq. (6), of J2 deformation
theory is used to describe the material response. Note that loading
is close to proportional for the mode I crack-tip field and so defor-
mation theory and flow theory predictions almost coincide. (This
was confirmed in the present study by performing selected calcu-
lations using J2 flow theory.) A previous study on predicting the
fracture toughness of brittle lattices [13] concluded that the differ-
ence in fracture toughness is negligible when the peripheral nodes
of the mesh are subjected to the material rotation associated with
the asymptotic K-field or are unconstrained in rotation. Thus, it
suffices to apply only translational displacements on the boundary
nodes and to allow boundary nodes to have free rotation.

As the applied K is increased via the peripheral nodal displace-
ments, a plastic zone develops at the crack tip and envelopes an
increasing number of unit cells. In order to define the plastic zone
boundary, we make the choice that the cell wall material yields
when the von Mises measure of total strain exceeds a value of
2e0S. Since the plastic zone is not circular in shape, write rP as the
maximum extent of plastic zone from the crack tip, at an
inclination x to the cracking plane. Thus, (rP,x) are the polar
coordinates of the maximum radial extent of the plastic zone.
Recall that the plane strain plastic zone size for a fully dense
elastic, ideally plastic solid of yield strength rYS is given by

rP ¼
1

3p
K

rYS

� �2

(8)

and we anticipate a similar scaling for the lattices, provided that
we replace rYS by the effective yield strength of the lattice rY,
as defined in Table 1. Consider the case of an elastic, ideally plas-
tic lattice with n ¼ 1 in Eq. (6), such that r0S ¼ rYS and
e0S ¼ rYS=ES. FE simulations have been performed to determine
the plastic zone shape and size as a function of K, and a regression
analysis confirms that

rP ¼ a1

K

rY

� �2

(9)

for each of the triangular, hexagonal, and kagome lattices. (A dif-
ferent scaling applies to the diamond lattice, see below.) The best
fit values of a1 are given in Table 2 as a function of n for each lat-
tice; the inclination x to the cracking plane, associated with the
maximum radial extent of plastic zone, is almost independent of n
and is included in Table 2 as a single entry for each lattice.

We can compare the predictions of a1 for the hexagonal lattice
with the previous estimate in Ref. [17] for a lattice made from a
solid of bilinear stress–strain law. The numerical simulations as
given in Fig. 5 of Ref. [17] agree with their analytical estimate in
Eq. (14) of Ref. [17], and they obtain a1 ¼ 0:32 at x ¼ 71 deg;
this is in good agreement with the value of a1 as reported here of
0.17–0.36 depending upon the choice of n.

The diamond lattice does not obey the scaling (9): a
regression analysis (not plotted here for the sake of brevity)
reveals that

rP ¼ a1 �q
K

rY

� �2

(10)

This is a consequence of the fact that its shear strength is much
less than its axial strength (in axes aligned with the lattice). The
redefined values of a1 are included in Table 2.

A plot of the plastic zone for each lattice (with n ¼ 1) is given
in Fig. 2 for the converged case where the plastic zone envelopes
many unit cells (so that the lattice behaves as an effective
medium). The axes ðx1; x2Þ have been normalized with regard to
the value of rP for each lattice. The orientation x along which the
plastic zone has maximum extent is indicated in Fig. 2 by a solid
line emanating from the crack tip to the plastic zone boundary.
There is marked difference in plastic zone shape from lattice to
lattice, with the triangular lattice closest to that of a fully dense
solid (see, for example, Fig. 2.36 of Ref. [22]). The plastic zone of
each lattice has two lobes, a primary one pointing forward and a
smaller one pointing backward. The difference between the trian-
gular and kagome lattice is striking since both are isotropic,
stretching lattices in the elastic state. We note that the orientation
x along which the plastic zone has maximum extent is close to
the strut orientation for all lattices. The plastic zone extends only
a small distance directly ahead of the crack tip for the diamond
and hexagonal lattices (see Figs. 2(c) and 2(d), respectively) and
this can be traced to the fact that the stress state directly ahead of
the crack tip is close to hydrostatic, and these lattices have a much
greater hydrostatic strength than shear strength. Further, the
extreme anisotropy of the diamond lattice, with a low shear
strength along the strut directions leads to two elongated lobes at
x ¼ 645 deg. There is only a minor effect of strain hardening
index n upon the shape and size of the plastic zone, consistent
with the case of a fully dense solid, see, for example, Fig. 2.36 of
Ref. [22]. To give direct evidence for this, the plastic zones for
n¼ 3 and 10 are included in Fig. 2, with axes still normalized by
the value of rP for n ¼ 1: For each lattice, the plastic zone
shrinks slightly with decreasing n.

2.2 Scaling Relations for Crack Opening Displacement.
Consider the crack opening profile d rð Þ as a function of distance r
from the crack tip for each lattice. A typical crack opening profile
for the elastoplastic lattices, with n ¼ 10, is given in Fig. 3. The
dependence of d upon r;K; �q; nð Þ has already been given in
Ref. [13] for the linear case, n ¼ 1. Similar scaling arguments
apply to the nonlinear case, as follows. Recall from Ref. [13] that
the crack-tip opening profiles for linear elastic, hexagonal, and
triangular lattices are adequately approximated by the crack-tip
solution for an elastic continuum down to r on the order of ‘.

Table 2 Coefficients for plastic zone size and crack-tip opening

a1 a2

n ¼ 3 n ¼ 10 n ¼ 1 x (deg) n ¼ 1 n ¼ 3 n ¼ 10 n ¼ 1

Triangular 0.16 0.19 0.29 37 2.73 1.46 0.97 0.6
Kagome 0.97 1.08 1.55 61 2.73 2.07 1.73 1.73
Diamond 0.10 0.13 0.23 45 0.67 0.25 0.07 0.04
Hexagonal 0.17 0.19 0.36 71 13.2 2.54 0.76 0.52

2Euler–Bernoulli beam elements are appropriate only for large rotations and
small strains as the cross-sectional thickness change is ignored. Timoshenko beam
elements use a fully nonlinear formulation so that the strains and rotations can be
arbitrarily large.
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Consequently, we anticipate that the crack opening profile for the
elastoplastic hexagonal and triangular lattices can be represented
by the opening profile for a dilatant elastoplastic solid. Now, Pan
and Li [23] have shown that the asymptotic form of the
Hutchinson–Rice–Rosengren (HRR) solution for the crack open-
ing profile dðrÞ is maintained in the compressible case, such that

d rð Þ ¼ a2e0r
K

r0

ffiffi
r
p

� � 2n
nþ1

(11)

where a2 is dependent upon n. We have explored the ability of
Eq. (11) to describe the crack-tip opening of the lattice as a func-
tion of r;K; �q; nð Þ. Note that formula (11) makes use of the effec-
tive properties of each lattice r0 ¼ rY, E, and e0 ¼ eY ¼ rY=E,
and these are related to the cell wall properties by making use of
formulae (1)–(3) along with the coefficients listed in Table 1. A
good fit is obtained but is not shown here for the sake of space.
The reader is referred to Ref. [13] for a full discussion for the
linear case; nonlinearity does not change the conclusions but does
modify the best fitting values for a2 for the hexagonal and triangu-
lar lattices, as given in Table 2.

Fig. 2 Mode I plastic zone for (a) triangular lattice, (b) kagome lattice, (c) diamond lattice, and (d) hexagonal
lattice

Fig. 3 Crack-tip opening profile for (a) triangular lattice, (b)
kagome lattice, (c) diamond lattice, and (d) hexagonal lattice
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Next, consider the kagome lattice. For the linear case, n ¼ 1, it
was observed in Ref. [13] that an elastic blunting phenomenon
occurs and the crack opening profile of the kagome lattice exceeds
that of the continuum solution for an isotropic elastic solid for
r=‘ < 20. Now limit attention to the crack-tip opening d at one
joint back from the crack tip. Consequently, some modification to
formula (11) is needed for the kagome lattice. Numerical simula-
tions reveal that

d ¼ a2e0‘
K

r0

ffiffi
‘
p

� � 2n
nþ1

�q�
1

nþ1ð Þ (12)

to a good approximation (not shown). A similar phenomenon of
crack-tip blunting is observed for the diamond lattice, as discussed
in Ref. [11] for the linear case. The crack-tip opening one joint
back from the crack tip is given by

d ¼ a2e0‘
K

r0

ffiffi
‘
p

� � 2n
nþ1

�q (13)

for the diamond lattice. The values of a2 are summarized in
Table 2 for the kagome and diamond lattices, for n in the range

of 1 to 1.3 We will account for the differences in behavior
(11)–(13) in Sec. 4.

3 The Predicted Fracture Toughness

The numerical simulations of the crack-tip field in each lattice
are used to estimate the initiation value of fracture toughness, KIC.
We emphasize that there is choice in the local fracture criterion.
Fleck and coworkers previously analyzed an elastic–brittle lattice
and used a local maximum tensile stress criterion. Here, we focus
on ductile lattices, and we make use of a local strain criterion.
Beam elements are adopted, with a linear distribution of strain
across the thickness, with an average value eA and a maximum
tensile value eT on the outermost fiber. Two criteria are
considered:

(i) The maximum LTS eT anywhere in the lattice attains the
failure strain termed the LTS criterion, or

Fig. 4 Maximum value of strain in the lattice cell wall for (a) triangular lattice, (b) kagome lattice, (c) diamond
lattice, and (d) hexagonal lattice

3We note in passing that formula (12) is slightly different from the expression
reported in Ref. [13] for the case n¼ 1 and we ascribe the slight difference to the
more refined numerical simulations performed herein.
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(ii) The ATS eA across the cell wall attains the failure strain
(which can be identified with the necking strain or a
smaller strain if some form of damage intervenes) termed
as the ATS criterion.

We shall employ both criteria for completeness. The ATS crite-
rion is most pertinent to highly ductile solids that fail by necking
in the presence of some bending, as discussed by Ref. [24]. In
contrast, brittle alloys such as high strength aluminum alloys
can develop cracks (for example, by shear localization) when a
maximum tensile strain is achieved, and the LTS criterion applies,
see, for example, Refs. [25–27]. We anticipate that the hexagonal
lattice is bending-dominated such that eA � eT whereas the other
three lattices are stretching-dominated with the feature that
eA � eT.

(i) Predictions according to the LTS criterion:
Predictions for the maximum value of eT versus K in the
crack-tip plastic zone are plotted in Figs. 4(a)–4(d) for the
four lattices. Both small strain and finite strain analyses are
considered, and results are presented for the choice n ¼ 10
and e0S ¼ 0:001, and for selected values of t=‘. (Additional
simulations were performed for n ¼ 3 and n ¼ 1, and
results are listed in Table 3 for fracture toughness predic-
tions, but are omitted from the plots for the sake of brev-
ity.) For each topology, the response is elastic and eT scales
linearly with K in the regime eT < e0S. At larger values of
eT, a crack-tip plastic zone is present and the magnitude of
eT increases with K in a power-law manner. Since the sin-
gular field for a compressible power-law plastic solid is of
HRR type, we deduce that

eT / K
2n

nþ1 (14)

for the small strain solution. Numerical checks (not shown
here) have been performed to confirm this for n in the
range of 1–500 (which we treat as the elastic, ideally plas-
tic limit). We note from Fig. 4 that the finite strain solution
for eT exceeds the small strain solution by up to a factor of
2 at large values of K. A regression fit to the curves of Fig.
4 for the small strain and finite strain simulations has been
performed beyond yield, and gives for each lattice

K ¼ D�qd eT

e0S

� �nþ1
2n

r0S

ffiffi
‘
p

(15)

upon making use of Eq. (5). The deduced values for (D,d)
are listed in Table 3 for both the small and finite strain
assumptions. We note in passing that D is remarkably
insensitive to the value of n except for the hexagonal
lattice—the only bending-dominated lattice under
consideration.
The sensitivity of the K versus eT relation to the lattice
topology at �q ¼ 5% is given in Fig. 5(a), for both the small
and finite strain cases. Upon assuming the LTS criterion of

Table 3 Coefficients for fracture toughness

D

n ¼ 3 n ¼ 10 n ¼ 1

n ¼ 1 Small strain Finite strain Small strain Finite strain Small strain Finite strain d

Triangular 0.52 0.51 0.43 0.50 0.42 0.45 0.38 1
Kagome 0.21 0.21 0.17 0.20 0.16 0.13 0.09 0.5
Diamond 0.22 0.21 0.20 0.19 0.17 0.14 0.11 1
Hexagonal 0.90 0.76 0.73 0.52 0.50 0.24 0.22 2

Fig. 5 Mode I fracture toughness of the four topologies for
�q 5 0:05 and n 5 10 according to (a) LTS criterion and (b) ATS
criterion. (c) A comparison of predictions by the LTS and ATS
criteria for the finite strain case.
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crack extension the kagome lattice has the highest tough-
ness, followed by the triangular, diamond, and hexagonal
lattice.

(ii) Predictions according to the ATS criterion:
In order to assess whether this ranking as given in Fig. 5(a)
for the LTS criterion also applies for the ATS criterion, we
plot in Fig. 5(b) the K versus eA relation for the four lattices
at �q ¼ 5%. The ranking is maintained in the finite strain
simulations. Further, the choice of small versus finite strain
assumption has only a minor effect upon the K versus eA

relation for the kagome, triangular, and diamond lattices.
In contrast, the K versus eA response of the hexagonal
lattice is sensitive to the choice of small versus finite strain:
the small strain assumption does not capture the stretching
that develops with finite rotation of the struts near the crack
tip. The progressive alignment in the direction of loading
leads to a switch from bending to stretching, and this is
captured by the finite strain simulations but not the small
strain simulations, see the deformed meshes for both types
of simulation in the inset of Fig. 5(b).

It is instructive to compare the LTS and ATS criteria for finite
strain of the four lattices in Fig. 5(c), again for �q ¼ 5%. There is
small effect of choice of failure criterion upon the predicted
toughness for the kagome, triangular, and diamond lattice, with a
slightly tougher behavior upon assuming the ATS criterion. In
contrast, the toughness of the hexagonal lattice is highly sensitive
to the choice of ATS versus LTS criterion. The ATS criterion
implies a fracture toughness which increases only slightly with
increasing value of eA whereas the LTS criterion implies a lower
fracture toughness that increases more rapidly with increasing
value of eT. A power-law fit of K versus eA for the hexagonal lat-
tice has been conducted for �q in the range of 1–10% and n¼ 3,
10, and1. The curves are not shown for the full range of assumed
�q and n (for the sake of brevity), but are similar to the one given
in Fig. 5(b) for the ATS criterion. The correlation is given by

K ¼ 14�q2 eA

e0S

� �1
n

r0S

ffiffi
‘
p

(16)

in contrast to Eq. (15) for the LTS criterion. We further note from
Fig. 5(c) that, with increasing magnitude of failure strain (from
the yield value of 0.001 to the necking strain of 0.1), the values
of K by the two criteria converge for the hexagonal lattice. The
sensitivity of toughness of the hexagonal lattice to the failure
criterion is striking, but awaits experimental validation.

4 Analytical Models for the Fracture Toughness

of Each Lattice

Assume that the fracture toughness of an elastoplastic lattice is
dictated by the failure of the most highly strained cell wall at the
crack tip. In the approximate treatment of the present section, we
assume that stretching-dominated lattice such as the triangular
lattice fails when the average value of axial strain over the cross
section eA achieves a failure value ef , whereas a bending-
dominated lattice such as the hexagonal lattice fails when
the bending strain at the outer fiber eB achieves a failure value ef .
This approach extends that of Refs [4,11,13] who considered
elastic–brittle lattices and assumed that the toughness is dictated
by a local maximum tensile stress criterion.

Consider the case of a semi-infinite crack in each lattice, with
cell wall properties given by Eq. (6), and loaded by a mode I
K-field. In a Cartesian reference frame centered at the crack tip, as
shown in Fig. 1, the crack is aligned with the x1 axis and lies nor-
mal to the x2 axis. A plastic zone exists near the crack tip, and as
the crack tip is approached, the effective, macroscopic stress rij

and macroscopic strain eij will approach that of J-field for a dilat-
ant plastic solid. This asymptotic field is a variant of the well-

known HRR field for an isotropic von Mises solid with strain
hardening. In particular, the tensile macroscopic stress r22 at a
distance x1 ahead of the crack tip, and the tensile macroscopic
strain e22 scale with the J-integral according to

J � r22e22x1 (17)

as discussed by Refs. [28,29]. The relationship between macro-
scopic stress and cell wall stress (and likewise between macro-
scopic strain and cell wall strain) is dependent upon the lattice
topology. Consider each case in turn.

4.1 Triangular Lattice and Diamond Lattice. The triangu-
lar lattice is stretching-dominated, and so the cell wall at any loca-
tion is subjected to an axial tensile stress rS and to tensile strain
eS. Directly ahead of the crack tip, the normal traction r22 is
related to rS via r22 ¼ rS �q=3 (recall the relationship (3) between
the macroscopic stress and cell wall stress as given in Table 1)
whereas the macroscopic and cell wall strains scale as e22 � eS,
see, for example, Ref. [8]. Near the crack tip, the power-law term
in Eq. (6) dominates the linear term, and Eq. (17) gives

J � 1

3

eS

e0S

� �nþ1
n

r0Se0S �qx1 (18)

Now invoke a fracture criterion: assume that the toughness JIC is
obtained by equating eS to the tensile ductility ef within a cell wall
at a critical distance x1 ¼ ‘ ahead of the crack tip, giving

JIC �
1

3

ef

e0S

� �nþ1
n

r0Se0S �q‘ (19)

The fracture toughness KIC is related to JIC in the usual manner,
KIC ¼

ffiffiffiffiffiffiffiffiffi
EJIC

p
where the macroscopic modulus E ¼ ES �q=3

¼ r0S �q=ð3e0SÞ has already been given in Eq. (2) and Table 1.
Consequently, the fracture toughness KIC is given by Eq. (15)
where d ¼ 1 (as for the elastic–brittle lattice) and D ¼ 1=3 for
all n. A regression fit to the predicted toughness is in good agree-
ment, with d ¼ 1 and D ¼ 0:45� 0:52, see Table 3. FE simula-
tions of the crack-tip elastoplastic field reveal that the diamond
lattice also behaves in a stretching manner. The relation (15) again
holds, but FE simulations give d ¼ 1 and D ¼ 0:14� 0:22.

4.2 Hexagonal Lattice. The hexagonal lattice is bending-
dominated, and so we shall assume that crack advance initiates
when the bending strain at the outer fiber of the cell wall eB attains
the failure value ef . The toughness is again given by Eq. (17), but
we need new relations for the relationship between macroscopic
stress (and strain) and cell wall values. To proceed, recall that the
relationship between macroscopic yield strength and cell wall
yield strength is given by Eq. (3), with the geometric constants as
summarized in Table 1. This same relationship provides the con-
nection between macroscopic stress r22 and the tensile stress on
the outermost fiber of the cell wall rS

r22 ¼
1

2
�q2rS (20)

Likewise, the relationship between e22 and eB for the most highly
strained section of the hexagonal lattice under remote tension
reads

e22 �
1

�q
eB (21)

Now substitute Eqs. (20) and (21) into Eq. (17), and make use
of Eq. (6) to obtain a relation of the form (15) where
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D ¼
ffiffiffi
3
p

=2 ¼ 0:87 and d ¼ 2. The FE analysis gives d ¼ 2 and D
in the range of 0.24–0.90, recall Table 3.

4.3 Kagome Lattice. The kagome lattice is also stretching-
dominated, but has an anomalously high toughness due to the
presence of shear bands at the crack tip. These shear bands
involve cell wall bending and this reduces the level of tensile
strain within the cell walls, as follows. Write d as the crack-tip
opening displacement. The cell walls within a shear band of thick-
ness ‘ undergo bending, such that the bending strain at the outer-
most fiber is of order

ef ¼ eB �
td
‘2

(22)

following the argument of Ref. [4], based on Fig. 2 of that paper.
The toughness is related to the traction at the crack tip r22 and to
the crack-tip opening displacement d according to

J � r22d (23)

To proceed, note that the traction r22 is related to the cell wall
stress rS in the same manner that the macroscopic yield strength
is related to the cell wall strength, relation (3), giving

r22 ¼
1

2
�qrS (24)

Near the crack tip, the power-law term in Eq. (6) dominates the
linear term, and upon substitution of Eqs. (22) and (24) into
Eq. (23) we obtain

JIC �
ffiffiffi
3
p

2

ef

e0S

� �nþ1
n

r0Se0S‘ (25)

Now make use of the Irwin relation KIC ¼
ffiffiffiffiffiffiffiffiffi
EJIC

p
and of Eq. (2)

to obtain Eq. (15) where d ¼ 1=2 and D ¼ 12�1=4 � 0.54. We
emphasize the remarkable result that the fracture toughness scales
with �q1=2. The FE regression gives d ¼ 1=2 and D ¼ 0:13� 0:21
(see Table 3), in support of the above simple model.

5 The Role of Imperfections

In practice, lattice materials contain defects such as missing
cell walls, cell walls of variable thickness (such as Plateau borders
in foams), and spatial variations in relative density. Here, we con-
sider randomly located nodes, as shown in Fig. 6 for each lattice.
Assume that all nodes are radially displaced by a value R but
in random directions from node to node, in the initial unstressed
configuration. What is the knockdown in fracture toughness as a
function of R=‘? We build upon the previous study [11] wherein
an elastic–brittle lattice was considered for the same topologies as
that addressed here. It was demonstrated in Ref. [11] that random
movement of nodes gave a knockdown in fracture toughness
with increasing sensitivity from hexagonal lattice, to triangular,
diamond, and kagome.

A series of up to ten structural realizations have been generated
for each ductile lattice, with n ¼ 10 and ef ¼ 20e0S. We assume
small strain behavior, with fracture dictated by the maximum LTS
achieved at any location within the imperfect lattice. Write �KIC as
the mean value of fracture toughness of the imperfect lattice over
the ten realizations, normalized by the fracture toughness for the
perfect lattice of equal relative density. Then, we plot �KIC versus
imperfection R=‘ in Fig. 7 for the four lattices of relative density
�q ¼ 0:025, and include the elastic–brittle result for comparison.4

We note that the imperfection sensitivity of the ductile triangular
lattice is comparable to that of the elastic–brittle triangular
lattice; for the other three lattices the elastic–brittle case is the
more imperfection-sensitive. The kagome lattice is the most
imperfection-sensitive topology: the random movement of nodes
converts the lattice from stretching-dominated to bending-
dominated. Direct evidence of this behavior is presented in Fig. 8:
the power-law dependence of KIC upon �q switches from �q1=2 for
the perfect lattice to �q3=2 for the imperfect case.

6 The Realization of Tough Lattices: Filling Gaps

in Material Property Space

We draw on the inspiration of Ref. [30] to explore the potential
of the ductile lattices at low density. It is instructive to plot the
predictions of macroscopic fracture toughness for the four lattices
in material property space. Choose as axes KIC and the density q,

Fig. 6 Imperfect lattice topologies (R=‘ ¼ 0:5) for (a) triangular
lattice, (b) kagome lattice, (c) diamond lattice, and (d) hexago-
nal lattice

Fig. 7 The normalized fracture toughness versus R=‘ of imper-
fect lattices, for the choice �q ¼ 0:025 and n ¼ 10

4In agreement with Ref. [11], we find some scatter in predicted toughness from
realisation to realisation, but the overall sensitivity of toughness to imperfection is
reduced in the nonlinear, ductile case compared to the elastic, brittle case, and the
scatter is not shown in Fig. 7.

091004-8 / Vol. 82, SEPTEMBER 2015 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 08/05/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



and add to this plot the wide range of engineering materials that
currently exist, see Fig. 9(a). Now add the prediction (15) for a
lattice of dimension ‘ ¼ 10 mm, made from Ti-6Al-4V alloy of
properties r0S ¼ 600 MPa, e0S ¼ 0:006, ef ¼ 50e0S, and n ¼ 10.
These predictions make use of the local total strain (LTS) crite-
rion, and for all lattices but the hexagonal case, it is recalled that
the predictions are hardly changed if the alternative ATS criterion
was employed. Additionally, predictions are shown for the hexag-
onal lattice failing by the ATS criterion (16). The predicted frac-
ture toughness of the kagome, triangular, and diamond lattices fill
gaps in material property space in the range for which the titanium
lattices can be treated as a framework of beams: for q less than
500 kg m�3. In contrast, the hexagonal lattice (by both failure cri-
teria) offers limited advantage over existing 3D foams. It remains
to manufacture and test these lattices to confirm these predictions.
We emphasize that the fracture toughness of the lattices scales

with
ffiffi
‘
p

on dimensional grounds. Consequently, it is anticipated
that lattices on the micron and nanoscales are more brittle than the
case considered here, ‘¼ 10 mm. In contrast, the pertinent length
scale for fully dense metallic alloys is on the order of microns, as
set by the inclusion spacing in ductile fracture, for example.

It is also instructive to compare the predicted toughness JIC of
the lattices with other engineering materials. Upon recalling that
JIC ¼ K2

IC=E for isotropic materials, with the role of the Poisson
ratio taken to be negligible, we make use of relations (2) and (15)
to give

JIC ¼ H�qh ef

e0S

� �nþ1
n

r0Se0S‘ (26)

upon invoking the LTS criterion, eT ¼ ef . The parameters
H � D2=B and h � 2d � b are listed in Table 4, for convenience.
For the hexagonal lattice, the toughness by the ATS criterion is

significantly different from that by the LTS criterion and Eqs. (2)
and (16) combine to give

JIC ¼ 131�q
ef

e0S

� �2
n

r0Se0S‘ (27)

Expressions (26) and (27) are used to plot the predicted toughness
of the three isotropic cases: triangular, kagome, and diamond
lattice in Fig. 9(b), along with the typical values for other engi-
neering materials. It is striking that the toughness of these lattices

Fig. 9 Material property charts (material property CES SELECTOR

software by Granta Design) for (a) fracture toughness versus
density and (b) toughness versus density. Predictions are
included for Ti-6Al-4V lattices of cell length ‘5 10 mm.

Fig. 8 Dependence of fracture toughness of kagome lattice
upon relative density �q for R=‘5 0, 0.3, and 0.5

Table 4 Coefficients for toughness of isotropic lattices that fail by LTS criterion

H

n ¼ 3 n ¼ 10 n ¼ 1

n ¼ 1 Small strain Finite strain Small strain Finite strain Small strain Finite strain h

Triangular 2.43 2.34 1.66 2.25 1.58 1.82 1.29 1
Kagome 0.39 0.39 0.26 0.36 0.23 0.15 0.07 0
Hexagonal 0.54 0.39 0.35 0.18 0.17 0.04 0.03 1
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lay significantly above those of 3D foams and natural materials,
with the kagome lattice the toughest at low density.

7 Conclusions

Our study reveals that the fracture toughness of ductile lattices
is sensitive to the length scale of lattice in addition to relative
density and choice of topology. The predicted fracture toughness
is only mildly sensitive to the details of the failure criterion (maxi-
mum LTS versus ATS across the cell wall) for the triangular,
kagome, and diamond lattice. In contrast, the hexagonal lattice
has extreme sensitivity to the choice of local failure criterion:
when the local maximum strain dictates the toughness, the lattice
has a relatively low toughness (and is sensitive to its relative den-
sity), whereas the hexagonal lattice has high toughness when the
ATS dictates failure. We have also demonstrated that ductile latti-
ces are less imperfection-sensitive than their elastic–brittle coun-
terparts. We predict that gaps in material property space can be
filled by the kagome lattice made from ductile alloys such as tita-
nium alloys.

The current study is a detailed analysis of four lattices in a par-
ticular orientation. It is recognized that a rotation of the lattices
will change the quantitative predictions of fracture toughness. The
qualitative trends for the triangular, hexagonal, and kagome latti-
ces are insensitive to the lattice orientation, as the triangular and
kagome lattices are stretching-governed in all orientations, while
the hexagonal lattice is bending-governed in all orientations.
These three lattices are elastically isotropic but have plastic ani-
sotropy and this will perturb the shape and size of the plastic
zone, and the associated toughness. Deshpande and Fleck [31]
have shown that a 30 deg rotation of the triangular lattice leads to
a 50% change in uniaxial tensile strength, while Hutchinson et al.
[32] find a factor of 2 difference in strength for the kagome lattice,
and Gibson and Ashby [10] report an invariant response for the
hexagonal lattice. These factors are independent of relative den-
sity. A full characterization of the orientation-dependence of
toughness for these lattices is beyond the scope of the present
study. We emphasize that random imperfections as analyzed in
this study will make the lattices more isotropic in both plastic and
toughness responses. The effect of orientation of the perfect dia-
mond lattice upon strength and toughness is more pronounced
than for the other lattices, as the lattice is stretching-dominated
when the loading direction is aligned with the struts and is
bending-dominated otherwise; this has been analyzed by Romijn
and Fleck [11] for the elastic case, and we expect similar trends
for the nonlinear solid (not analyzed here).

Additionally, it remains to determine the tearing response of a
ductile lattice material and the associated R-curve, both experi-
mentally and theoretically. It is known from early studies on crack
advance in metallic foams [17,33,34] that a steeply rising R-curve
exists and this is associated with a combination of crack bridging
behind the advancing crack tip, and plastic dissipation within the
plastic zone due to nonproportional loading effects. Open-cell
metallic foams are 3D bending-dominated random lattices and
behave in a similar manner to 2D hexagonal lattices. The depend-
ence of R-curve behavior upon lattice topology is an open
research topic.
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